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Abstract 

In geotechnics, several models, empirical or not, have been proposed for the calculation of load capacity in deep 

foundations. These models run mainly through physical assumptions and construction of approximations by 

mathematical models. Artificial Neural Networks (ANN), in addition to other applications, are excellent 

computational mechanisms that, based on biological neural learning, can perform predictions and approximations of 

functions. In this work, an application of artificial neural networks is presented. The objective here is to propose a 

mathematical model based on artificial intelligence focused on Artificial Neural Network (ANN) learning capable of 

predicting the load capacity for driven piles. The results obtained through the neural network were compared with 

actual values of load capacities obtained in the field through load tests. For this quantitative comparison, the following 

metrics have been chosen: Pearson correlation coefficient and mean squared error. The database used to carry out the 

project consisted of 233 load tests, carried out in diverse cities and different countries, for which load capacity, 
hammer weight, hammer drop height, pile length, pile diameter and pile penetration per blow values were available. 

These values have been used as input values in a multilayer perceptron neural network to estimate the load capacities 

of the respective piles. It has been found that the proposed neural model presented, in general, correlation with field 

values above 90%, reaching 96% in the best result. 

Keywords: Artificial neural networks; Load capacity; Deep foundations; Driven piles. 

 

Resumo  

Na geotecnia, diversos modelos, empíricos ou não, têm sido propostos para o cálculo da capacidade de carga em 

fundações profundas. Esses modelos funcionam principalmente por meio de suposições físicas e construção de 

aproximações por meio de modelos matemáticos. Redes Neurais Artificiais (RNA), além de outras aplicações, são 

excelentes mecanismos computacionais que, com base no aprendizado neural biológico, podem realizar previsões e 
aproximações de funções. Neste trabalho, é apresentada uma aplicação de redes neurais artificiais. O objetivo aqui é 

propor um modelo matemático baseado em inteligência artificial focado no aprendizado de Redes Neurais Artificiais 

(RNA) capaz de predizer a capacidade de carga de estacas cravadas. Os resultados obtidos por meio da rede neural 

foram comparados com valores reais de capacidades de carga obtidos em campo por meio de provas de carga. Para 

esta comparação quantitativa, as seguintes métricas foram escolhidas: coeficiente de correlação de Pearson e erro 

quadrático médio. A base de dados utilizada para a execução do estudo consistia em 233 provas de carga, realizadas 

em diversas cidades e diferentes países, para os quais estavam disponíveis os valores de capacidade de carga, peso do 

martelo, altura de queda do martelo, comprimento da estaca, diâmetro da estaca e nega. Esses valores foram usados 

como valores de entrada em uma rede neural do tipo perceptron multicamadas para estimar as capacidades de carga 

das respectivas estacas. Verificou-se que o modelo neural proposto apresentou, em geral, correlação com valores de 

campo acima de 90%, chegando a 96% no melhor resultado. 

Palavras-chave: Redes neurais artificiais; Capacidade de carga; Fundações Profundas; Estacas cravadas. 
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Resumen  

En geotecnia se han propuesto varios modelos, empíricos o no, para el cálculo de la capacidad de carga en 

cimentaciones profundas. Estos modelos se ejecutan principalmente a través de supuestos físicos y construcción de 

aproximaciones mediante modelos matemáticos. Las Redes Neuronales Artificiales (ANN), además de otras 

aplicaciones, son excelentes mecanismos computacionales que, basados en el aprendizaje neuronal biológico, pueden 

realizar predicciones y aproximaciones de funciones. En este trabajo se presenta una aplicación de redes neuronales 

artificiales. El objetivo aquí es proponer un modelo matemático basado en inteligencia artificial centrado en el 

aprendizaje de Redes Neuronales Artificiales (ANN) capaz de predecir la capacidad de carga de pilotes hincados. Los 
resultados obtenidos a través de la red neuronal se compararon con valores reales de capacidades de carga obtenidos 

en campo mediante pruebas de carga. Para esta comparación cuantitativa, se han elegido las siguientes métricas: 

coeficiente de correlación de Pearson y error cuadrático medio. La base de datos utilizada para llevar a cabo el 

proyecto consistió en 233 pruebas de carga, realizadas en diversas ciudades y diferentes países, para las cuales se 

dispuso de valores de capacidad de carga, peso del martillo, altura de caída del martillo, longitud del pilote, diámetro 

del pilote y penetración del pilote en el último golpe. Estos valores se han utilizado como valores de entrada en una 

red neuronal de perceptrón multicapa para estimar las capacidades de carga de los respectivos pilotes. Se ha 

encontrado que el modelo neuronal propuesto presentó, en general, correlación con valores de campo superiores al 

90%, llegando al 96% en el mejor resultado. 

Palabras clave: Redes neurales artificiales; Capacidad de carga; Cimentaciones profundas; Pilotes hincados. 

 

1. Introduction 

In engineering, for example, especially in geotechnics, several models, empirical or not, have been proposed for the 

calculation of load capacity in deep foundations. These models run mainly through physical assumptions and construction of 

approximations by mathematical models. 

A major problem in geotechnics is the calculation of the load capacity of deep foundations (Fellenius, 2020). It is 

common to find in the literature several ways to perform this task, but accuracy of such solutions is, in general, imprecise, 

mainly due to factors such as the fact that some formulas used are obtained empirically or roughly.  

Foundations are the interfacing elements responsible for carrying any buildings resting in the earth (Bowles, 1996). 

Cintra & Aoki (2011) define foundation as a system formed by structural elements of foundation (SEF) and the various layers 

of soils that surround them. It can be said, so, that foundation is the part of the construction that is responsible for receiving the 

loads of the structure and transmitting it to the underlying soil or rock on which it (Das, 2010; Bowles, 1996; Azeredo, 1977).  

Considering its function, Bowles (1996) explains that the soil must be capable of supporting those loads without 

failure nor an excessive and intolerable settlement. To meet such requirements the design of foundations generally requires a 

knowledge of both the behavior and stress-related deformability and of geological conditions of soils that will support the 

foundation (Das, 2011) 

Foundations are usually classified into two major categories: shallow foundations and deep foundations. The criteria 

for classification, although based in similar ideas, may vary according to the different authors. Das (2011, p.1) affirms that “in 

most shallow foundations the depth of embedment can be equal to or less than three to four times the width of the foundation”. 

According to Bowles (1996) foundations may be classified based on where the ground the element sits: for shallow 

foundations, the depth is generally lower than the base dimension, while deep foundations have base length over four times its 

base dimension. Another classification considers that a deep foundation is one whose base rupture mechanism does not reach 

the surface of the ground (Hachich et al, 1998; Velloso & Lopes, 2011).  In turn, NBR 6122/2010 defines that deep foundation 

is the foundation element that transmits the load to the ground either by tip resistance, shaft resistance, or by a combination of 

that two, and its tip or base is at a depth greater than twice its smallest base dimension, being at least 3.0 m (ABNT, 2010). 

Focusing on the second main group, Vesic (1963) explains that deep foundations can be divided on two types: the first 

one refers to foundations installed by some process of excavation or drilling, not inducing significant changes in the adjacent 
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soil; the second one represented by foundations forced into the ground by such operations as driving, which promotes 

significant changes in bearing soil.  

Investigation of ultimate bearing capacity of deep is fundamental (Vesic, 1963). To determine the ultimate capacity of 

an isolated pile, three verification mechanisms can be used: static formulas (theoretical or empirical), dynamic equations, or 

load tests. 

Despite numerous theoretical and experimental investigation already conducted to predict the behavior and the load-

bearing capacity of piles its mechanisms are not yet completely understood (Das, 2011). The same author states, then, that “the 

design and analysis of pile foundations may thus be considered somewhat of an art as a result of the uncertainties involved in 

working with some subsoil conditions” (Das, 2011, p.536).  

The ultimate load capacity is obtained by the sum of the pile point capacity and the frictional resistance (skin friction) 

derived from the soil–pile interface (Das, 2011; Fellenius, 2020). Bowles (1996) states that although this idea is not 

extraordinarily complex, obtaining a prediction of capacity close to actual load tests values through its use is not a frequent 

event once a lack of correspondence may frequently occur due to the difficulties in determining the in-situ soil properties and 

its changes in the pile´s vicinity after its installation. The soil natural variability coupled with the complex pile-soil interaction, 

creates a difficult problem for accurate prediction (Bowles, 1996). 

On the other hand, machine learning-based models have been consistently effective in predicting and functional 

approaches (Kalinli, Acar & Gündüz, 2011; Khanlari et al, 2012; Shahnazari &  Tutunchian, 2012). Neuronal models are 

typically used in classification, forecasting, and other issues (Silva, Spatti & Flauzino, 2016). 

The mathematical construction of Artificial Neural Networks (ANNs) is based on the electrical, chemical and 

biological relationships that occur in the human nervous system. In this system, the importance of neurons stands out. Neurons 

are excitable (or self-excitable) cells that communicate with each other by synapses, forming functional networks for 

processing and storing information (Haykin, 2001). The main characteristic of an ANN is the ability to "learn" tasks for which 

they are assigned. In addition, they can extrapolate this learning to new situations (generalization capacity).  Mathematically, it 

can be said that the learning of an ANN consists of adjusting the set of weights to perform a specific task (Batista, 2012). 

In an artificial neural network neurons are organized in the form of layers, and the way these layers are arranged 

defines the architecture of the network (Tian & Shang, 2006). According to Haykin (2001) the perceptron is the simplest form 

of a neural network initially used for classifying linearly separable patterns. This network consists of a single neuron with 

adjustable synaptic weights (Haykin, 2001). The Multilayer Perceptron (MLP) consists of a neural structure composed of a 

layer of input neurons, one or more hidden layers, and an output layer (Batista, 2012).  

The most common training algorithm of a MLP is Backpropagation. This algorithm consists of using network output 

errors to retroactively update synaptic weights, i.e., "from output to network input" (Yan et al, 2006). The retro propagation 

algorithm is implemented considering two phases, forward and backward. In the forward phase the input values are multiplied 

by the synaptic weights in the input/output direction and at the end of that phase an error is calculated. In the backward phase, 

optimization techniques are applied on the error in such a way that the synaptic weights are adjusted in the output/input order 

(Silva, Spatti & Flauzino, 2016).  

In this context, it is possible to minimize the errors and uncertainties arising from current models using neuronal 

models to predict load capacity of foundations, a possibility that is the main motivator of this work. 

Amancio (2013) proposed a model based on perceptron-type network for predicting settlement in deep foundations. 

The author obtained a correlation of 0.89 as best result. Araújo, Neto & Anjos (2015) also proposed the development of a 
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model for predicting pile settlement using ANN. The model presented a correlation coefficient between the actual and the 

estimated settlements of 0.96 in the validation phase. 

Erzin & Gul (2014); Padmini, Ilamparuthi & Sudheer (2008) also proposed ANN-based methodologies for predicting 

load capacity in deep foundations. However, what is observed in the studies is that, although all of them present a high 

correlation with real values, these studies do not present, for example, the values referring to internal variables of the model, 

which makes it difficult to be used it in practice. 

 The objective here is to propose a mathematical model based on artificial intelligence focused on Artificial Neural 

Network (ANN) learning capable of predicting the load capacity for driven piles. Unlike the studies already existing in the 

literature, this article presents all the internal parameters and matrices that make up the model, so that any reader can use it.  

 

2. Methodology 

As previously stated, to evaluate the quality of ultimate capacity estimates obtained the work compares the load 

capacity predictions obtained through ANNs models with load capacities obtained through load tests. In this article a network 

known as Multilayer Perceptron is used.  

Considering the theoretical discussions presented by Zanella (2013), this work can be classified, in methodological 

terms, as to the objectives, as being explanatory and as to the procedures adopted in data collection as ex-post facto. Regarding 

the classification proposed by Pereira (2018), this research makes use of the quantitative and statistical method. 

Silva et al (2010) explain that the ANN-based prediction methodology is divided into two phases: training and testing. 

In the training phase, part of the data is presented to the network to find the synaptic weights that minimize the errors between 

the network outputs and the desired values. In the test phase, the synaptic weights found in the training are used as parameters 

of the network and the errors are calculated.  

The proposed model has been compared with real results obtained in load tests and evaluated through mean squared 

error and correlation between model´s outputs and field values. The database used to carry out the project then consisted of 233 

load tests (Table 1), carried out in diverse cities and different countries, for which load capacity, hammer weight, hammer drop 

height, pile length and pile diameter values were available. The database consists of both load tests reported in the literature 

and monitored in the authors' professional practice. Among the 233 tests available, 153 also had information on the modulus of 

elasticity of the pile. For the 80 piles that did not have the exact value of such parameter, a conservative estimated value of 

25GPa was adopted. Then, once this parameter is not always previously known, the proposed models have been developed 

under two conditions: one including the modulus of elasticity and another one that did not include such parameter.  

 

Table 1. Load tests database. 

D (m) W (kN) H (m) S (mm) L (m) Qt (kN) Ep (GPa) Site 

0.45 72 0.5 9 21.3 1283 36.407 Open University 

0.45 72 0.5 7 6.1 698 35.339 Hattan Nacional Bank 

0.45 72 0.3 1 17.4 1209 35.339 S. L. Air Force quarters 

0.45 72 0.75 2 18.2 2193 34.415 S. L. Air Force quarters 

0.5 72 0.75 1 8.5 1237 29.98 Voca Technology University 

0.5 72 0.5 5 14.6 1519 29.98 Hemas Hospital 

0.5 35 1.5 1 13.4 1924 26.297 Children's School 

0.5 35 1.5 1 17.1 1832 29.045 Children's School 
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0.5 35 1.5 1 13.4 1924 26.297 Children's School 

0.6 72 1 0.5 25.16 4671 35.154 Petroleum Head Office 

0.6 72 0.75 4.5 7.1 1158 34.415 Hattan Nacional Bank 

0.6 72 1 1 14.1 4495 34.415 Islamic Cultural Complex 

0.6 72 1 3 23.2 3512 33.867 Laugh Property 

0.6 73.5 0.75 0.2 18.61 5233 29.98 Kerawalapitiya Substation 

0.6 72 1 2 17.7 2905 29.98 S. L. Air Force quarters 

0.6 72 1.5 1.5 14.2 2388 29.98 S. L. Air Force quarters 

0.6 72 1.5 6 20.7 2201 31.541 National Drug Laboratory 

0.6 72 1.5 7 20 2467 31.541 National Drug Laboratory 

0.6 72 1 12 3 2391 36.275 Nilasevena Housing Project 

0.6 72 1.5 1 6.3 2690 37.224 Nilasevena Housing Project 

0.6 72 1.5 1 7.7 3900 29.98 Nilasevena Housing Project 

0.6 72 1.5 4 4.1 1782 29.98 Nilasevena Housing Project 

0.6 73.5 0.5 0.5 21.3 2360 30.57 Melbourn Textile 

0.6 35 1 1 22 2011 29.98 Melbourn Textile 

0.6 35 1.25 1 21.3 2165 35.339 Melbourn Textile 

0.6 35 1 1 22.1 2111 29.98 Melbourn Textile 

0.6 35 1 1 24.9 2139 29.98 Melbourn Textile 

0.6 35 2 2 24.66 14740 35.339 Unilever Factory 

0.6 73.5 2 4.5 10.3 2950 36.09 Dambulu Furniture Piling 

0.6 72 1 1 24.8 3522 27.959 Open University 

0.6 72 1 1 18.3 3175 25.77 Open University 

0.6 73.5 1.5 3 16.4 2800 25.08 Dental Hospital 

0.6 73.5 1 1 10.5 3584 35.09 2000 Plaza-Swimming Pool 

0.6 72 0.5 1 13.5 2502 29.98 Furniture Arcade Residence 

0.6 72 0.5 3 12.1 1620 29.98 Furniture Arcade Residence 

0.6 72 0.75 1 11.1 2375 29.98 Voca Technology University 

0.6 75 0.75 5.5 18.33 1827 37.223 Advanced Technical 

0.6 80 0.75 1 19.4 6027 36.08 Power Station (Kerawalapitiya) 

0.6 80 0.8 0.2 27.95 4603 36.08 Power Station (Kerawalapitiya) 

0.6 80 0.8 1 24.26 3023 36.08 Power Station (Kerawalapitiya) 

0.7 73.5 1 1.5 23.8 2683 30.57 Melbourn Textile 

0.71 73.5 1 2 20.1 3630 30.57 Melbourn Textile 

0.7 73.5 1 1.5 20.3 2425 30.57 Melbourn Textile 

0.7 73.5 1.5 6 10.3 2213 36.3 2001 Plaza-Swimming Pool 

0.7 72 1 10 24.7 1705 29.98 Cancer Building 

0.75 72 1.5 6 4.3 4060 37.607 Nilasevena Housing Project 

0.75 72 3 3 15.5 3620 42.291 British Living 

0.75 72 2.5 4 21.6 3294 29.98 NIBM Building 

0.75 72 1.5 5 8.37 2900 34.415 Teaching Hospital 

0.75 72 1.2 7.3 13.9 2675 27.498 Rotary Center 

0.75 72 1.2 7 10.7 2922 27.498 Rotary Center 

0.75 72 0.75 6 8.5 1464 35.339 Hattan National Bank 

0.75 72 1.75 5 27.8 3706 29.98 Laugh Property 
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0.75 72 1.5 4 17.6 3953 29.98 S.L. Air Force quarters 

0.75 72 1.5 4 14.3 3436 34.415 S.L. Air Force quarters 

0.75 72 1 1 14.2 4012 35.339 S.L. Air Force quarters 

0.75 72 1.75 2 18.5 4206 29.98 S.L. Air Force quarters 

0.75 75 1 2 17.04 3977 34.415 Advanced Technical 

0.75 75 0.75 2 16.9 2911 29.98 Advanced Technical 

0.75 75 0.5 0.2 18 4526 34.415 Advanced Technical 

0.75 75 0.5 2 12.9 3900 34.049 Advanced Technical 

0.75 73.5 2 7.5 10.3 3184 39.19 Dambulu Furniture Piling 

0.75 72 1.5 2 18.7 3455 29.98 Open University 

0.75 72 1 2 9.4 4530 29.98 Voca Technology University 

0.75 72 2 3 16.7 3702 29.98 Hemas Hospital 

0.75 72 1.5 11.5 14.1 2781 29.98 CASA Isipatana Project 

0.8 72 2.5 3 25.8 4098 30.842 Fairway Waterfrount 

0.8 72 2 5 17.8 3599 29.146 Fairway Waterfrount 

0.8 72 1.5 4 19.2 3804 30.1 Fairway Waterfrount 

0.8 72 1.2 3 26.6 3783 34.415 Fairway Waterfrount 

0.8 72 0.6 0.2 4.35 5350 34.415 Building at No. 178 

0.8 72 1 13 13.8 2121 29.98 CASA Isipatana Project 

0.8 75 2 7 11.1 2911 29.98 Sheraton Institute 

0.8 75 2.75 2 13.1 3255 29.98 Sheraton Institute 

0.8 72 2.5 9 18.2 3406 34.415 Appartment complex. at 316 

0.8 72 1 1 14 4429 29.98 Furniture Arcade Residence 

0.8 72 1.5 3 21.5 4429 35.339 U.K. Lanka 

0.9 72 2.3 4 22.6 4862 30.1 Open University 

0.9 72 1.5 3 9.61 3881 34.415 Teaching Hospital 

0.9 72 1.75 3 14.4 5263 34.415 S.L. Air Force quarters 

0.9 72 1.5 1 22.9 9737 34.415 H.O. Building for Costoms 

0.9 72 1.5 1.5 19 5025 34.415 H.O. Building for Costoms 

0.9 72 1.5 0.5 17.8 10389 34.415 H.O. Building for Costoms 

0.9 72 1.75 3 20.7 5150 34.415 H.O. Building for Costoms 

0.9 72 1.5 4 13.2 3845 27.596 Rotary Center 

0.9 72 1 1 5.1 9944 34.415 Sri-Ja-pura University 

0.9 72 2.5 3 15.1 4076 29.98 Hemas Hospital 

0.9 72 1.5 3.2 19.4 4089 36.087 Medical ward complex 

0.9 72 1 0.1 25.7 5037 39.059 Petroleum Head Office 

0.9 80 2 0.5 16.8 11124 36.08 Power Station (Kerawalapitiya) 

0.9 80 2 0.5 16.9 12324 36.08 Power Station (Kerawalapitiya) 

1 72 2.5 5 21.7 5938 29.98 Fairway Waterfrount 

1 72 2 10 15.5 5949 34.415 Fairway Waterfrount 

1 72 2.2 9.5 23.4 5901 34.415 Fairway Waterfrount 

1 72 2 2 28.35 6857 34.415 Petroleum Head Office 

1 72 2.5 2.5 22.5 7805 34.968 Iceland Residencies 

1 73.5 1.1 0.5 18.6 7141 34 Apartment Develop Project 

1 73.5 1.5 8 25.33 4100 29.98 Grand Metropoliton 
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1 73.5 1.75 1.5 28.1 11790 37.224 Grand Metropoliton 

1 73.5 1.5 1 29 12155 33.504 Grand Metropoliton 

1 72 1.5 11 15.9 4964 34.599 H.O. Building for Costoms 

1 72 2 2 22.1 4915 34.415 H.O. Building for Costoms 

1 72 1.75 0.5 20.6 7348 31.541 H.O. Building for Costoms 

1 72 1.5 0.1 24.7 7405 29.98 Flyover Bridge (Kelaniya) 

1 72 1.5 0.2 26.4 7041 31.016 Flyover Bridge (Kelaniya) 

1 72 1 1 20.8 5832 29.98 Flyover Bridge (Kelaniya) 

1 72 1.5 3 24.4 4150 29.298 Flyover Bridge (Kelaniya) 

1 75 1.5 0.8 9.8 4280 34.415 Elevated Water tanks 

1 75 1.5 2 10.8 4462 34.415 Elevated Water tanks 

1 75 2 2 10 3246 37.033 Elevated Water tanks 

1 75 1.5 2.5 10.3 3416 36.275 Elevated Water tanks 

1 75 1 3 10.02 3873 36.275 Elevated Water tanks 

1 75 1 5 9.3 3279 36.275 Elevated Water tanks 

1 72 1.5 1 19.48 3250 34.415 Flyover Bridge (Nugegoda) 

1 72 2 2.5 25.17 3742 41.139 Flyover Bridge (Nugegoda) 

1.2 75 2.5 2.5 24.8 11149 23.519 Iceland Residencies 

1.2 75 2.5 0.5 23.9 11350 27.465 Iceland Residencies 

1.2 72 1.5 0.5 26 10480 34.415 H.O. Building for Costoms 

1.2 72 2 2 21.7 7142 34.415 H.O. Building for Costoms 

1.2 72 2 1 22 8530 34.415 H.O. Building for Costoms 

1.2 72 2 3 19.6 6852 35.339 Medical ward complex 

1.2 72 1.5 0.1 23.2 8127 29.894 Flyover Bridge (Kelaniya) 

1.2 72 2 1 23.2 6380 34.415 Flyover Bridge (Kelaniya) 

1.2 72 2 2 20.4 5991 41.542 Flyover Bridge (Nugegoda) 

1.2 85 1.5 1 8.9 8800 34.415 Apartment Complexes 

1.2 72 3 2 21.1 8710 37.223 Central Hospital 

1.8 200 2.285 4 22.7 17516 39.157 Mayfair City 

1.8 200 2.5 1 19 21923 42.945 Mayfair City 

1.8 200 2.3 3 20.95 17660 39.157 Mayfair City 

1.8 200 2.5 5.5 23 15918 32.604 Mayfair City 

0.2 13 0.993 1 11 928 39.157 Housing complexes 

0.2 13 0.397 1 23 564 39.157 Housing complexes 

0.2 13 0.523 1 11.1 876 39.1571 Housing complexes 

0.2 13 1.223 1 31.6 934 34.4151 Housing complexes 

0.2 13 1.14 1 18.2 1299 34.4151 Housing complexes 

0.2 13 0.91 20 37 387 42.149 Housing complexes 

0.2 13 1.108 20 37 311 44.2047 Housing complexes 

0.35 25 0.815 0.9 13.3 2184 31.893 Laboratory Complex 

0.35 25 0.951 3 10.3 1276 31.893 Laboratory Complex 

0.4 25 1.158 1.8 11.1 1610 39.157 Arogya Hospital 

0.3 20 1.5 0.5 19.25 1482 36.08 Kalmuni-Ampara 

0.3 20 1.5 0.2 19 1231 36.08 Kalmuni-Ampara 

0.3 50 0.5 1 19 1557 36.08 Kalmuni-Ampara 
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0.3 50 0.5 0.5 19 1589 36.08 Kalmuni-Ampara 

0.3 30 1 0.5 19.5 1630 36.08 Kalmuni-Ampara 

0.3 30 1 0.2 19.1 1905 36.08 Kalmuni-Ampara 

0.3 30 1 0.5 16.25 1508 36.08 Kalmuni-Ampara 

0.35 35 0.45 3 6 920 30.57 Factory Building 

0.35 35 0.5 1 6.1 1530 30.57 Factory Building 

0.355 30 1 1 12 1508 36.08 Water Supply Project 

0.355 30 1 0.5 15 1879 36.08 Water Supply Project 

0.355 50 1 0.5 15 961 36.08 Canal Road Project 

0.4 32 1.6 0.2 24 2432 36.08 VIBC Hall 

0.38 50 1.2 23 30.4 1880 25 Rio de Janeiro - RJ 

0.38 50 1 13 30.9 2160 25 Rio de Janeiro - RJ 

0.38 50 1.2 7 32.2 2320 25 Rio de Janeiro - RJ 

0.42 42 1.6 7 26.8 1512 25 Rio de Janeiro - RJ 

0.5 50 2 26 32 2580 25 Rio de Janeiro - RJ 

0.38 50 0.6 3 28.6 2006 25 Rio de Janeiro - RJ 

0.42 50 1.5 3 31.9 2600 25 Rio de Janeiro - RJ 

0.6 50 2.6 6 34.3 4290 25 Rio de Janeiro - RJ 

0.5 50 1.8 5 31.7 3200 25 Rio de Janeiro - RJ 

0.6 50 2.2 6 31.9 3210 25 Rio de Janeiro - RJ 

0.6 70 1.6 5 27.7 2900 25 Rio de Janeiro - RJ 

0.5 70 1.4 5 31.3 4280 25 Rio de Janeiro - RJ 

0.5 50 1.8 3 24.8 3450 25 Rio de Janeiro - RJ 

0.7 70 1.6 8 26.3 3168 25 Rio de Janeiro - RJ 

0.5 70 1.2 3 22.8 3220 25 Rio de Janeiro - RJ 

0.7 70 1.6 2 23 3256 25 Rio de Janeiro - RJ 

0.38 50 1.2 3 23 1900 25 Rio de Janeiro - RJ 

0.6 50 2.5 5 26.4 4370 25 Rio de Janeiro - RJ 

0.7 70 1.5 5 30.1 3850 25 Rio de Janeiro - RJ 

0.38 70 0.6 2 31.1 1955 25 Rio de Janeiro - RJ 

0.5 50 1.2 4 32.9 3200 25 Rio de Janeiro - RJ 

0.42 50 1.2 2 29.2 2048 25 Rio de Janeiro - RJ 

0.5 70 1.5 4 30.2 2190 25 Rio de Janeiro - RJ 

0.6 70 2 3 26.3 4100 25 Rio de Janeiro - RJ 

0.5 70 1.2 5 26.8 2750 25 Rio de Janeiro - RJ 

0.6 50 2.4 3 22.2 2800 25 Rio de Janeiro - RJ 

0.38 50 1.5 5 22.7 1500 25 Rio de Janeiro - RJ 

0.38 50 1.5 3 40 2660 25 Rio de Janeiro - RJ 

0.5 50 1.6 5 30 2950 25 Rio de Janeiro - RJ 

0.5 50 1.5 3 29.1 3580 25 Rio de Janeiro - RJ 

0.5 70 1.2 5 35.2 2800 25 Rio de Janeiro - RJ 

0.26 50 0.4 20 18.9 700 25 Cubatão-SP 

0.26 50 0.4 10 21.12 960 25 Cubatão-SP 

0.26 18 1 0.6 10.5 450 25 Sumaré-SP 

0.26 18 1 10 11.2 450 25 Sumaré-SP 

http://dx.doi.org/10.33448/rsd-v10i1.11526


Research, Society and Development, v. 10, n. 1, e12210111526, 2021 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v10i1.11526 
 

 

9 

0.26 20 0.6 0.6 9.25 600 25 Jaguaré-SP 

0.26 22 0.7 0.4 3.3 600 25 Via Anhanguera - SP 

0.33 50 0.5 10 21.1 1000 25 Cubatão-SP 

0.33 50 0.6 20 39.9 800 25 Santos-SP 

0.33 25 0.7 0.7 9.9 600 25 Via Anhanguera - SP 

0.33 22 0.7 0.9 11.5 720 25 S. Bernardo do Campo-SP 

0.33 25 1 15 23 900 25 Santa Cruz-RJ 

0.42 50 0.8 1 21.35 1950 25 S. Sebastião-SP 

0.42 50 1 15 12 1350 25 Volta Redonda-RJ 

0.42 35 1.5 0.3 9.7 1350 25 S. Caetano do Sul-SP 

0.42 50 1 0.3 21.15 1050 25 Duque de Caias-RJ 

0.42 38 1 10 14.97 980 25 Sumaré-SP 

0.42 50 1 40 23.15 1350 25 Santa Cruz-RJ 

0.5 50 1 15 23 1915 25 Caju-RJ 

0.5 50 1 18 21.8 1500 25 S. José dos Campos-SP 

0.5 35 2 48 18 2000 25 Angra dos Reis-RJ 

0.5 35 2 50 15.4 2140 25 Angra dos Reis-RJ 

0.5 35 2 35 13.1 2200 25 Angra dos Reis-RJ 

0.5 50 1 15 15.8 1560 25 Duque de Caias-RJ 

0.5 70 1.2 10 26.5 1800 25 Santos-SP 

0.5 70 1.2 25 34 1800 25 Santos-SP 

0.5 70 1.2 20 34 1800 25 Santos-SP 

0.5 40 1 20 14 1950 25 Ipatinga-MG 

0.5 65 1 30 29.5 1950 25 Santa Cruz-RJ 

0.5 50 1 15 27.4 1950 25 Santa Cruz-RJ 

0.5 50 1 20 38.85 1950 25 Santa Cruz-RJ 

0.5 65 1 20 28.75 1950 25 Santa Cruz-RJ 

0.5 35 2 0.5 26.4 2100 25 Barueri-SP 

0.5 46.1 1 0.9 19.9 2100 25 Barueri-SP 

0.5 52.7 1 0.9 16.5 2100 25 Barueri-SP 

0.5 50 1 0.9 20.2 2100 25 Barueri-SP 

0.5 35 2 20 9.4 2100 25 Barueri-SP 

0.5 35 2 10 18.7 2100 25 Barueri-SP 

0.5 35 2 7 28.4 1950 25 S. Caetano do Sul-SP 

0.5 35 1.8 30 11.7 2600 25 Barcarena-PA 

0.6 45 2 10 9.3 2550 25 Duque de Caxias – RJ 

0.6 35 2 26 21.4 2920 25 Duque de Caxias -RJ 

0.6 63 1.2 10 29.8 2660 25 Duque de Caias-RJ 

0.6 45 2 14 27.1 2800 25 Santa Cruz -RJ 

0.6 63 1 22 28.7 3500 25 Av. dos Autonomistas – SP 

0.6 45 2 15 29 2550 25 Av. dos Autonomistas – SP 

0.6 35 2 15 35.5 2550 25 Santa Cruz – RJ 

0.6 35 1.8 10 21.25 2550 25 - 

0.7 45 2 10 30.1 3450 25 São Paulo – SP 

Source: Adapted from Lobo (2005), Jayaweera (2009) and SCAC (2013). 
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The variables hammer weight (W), hammer drop height (H), pile length (L), pile diameter (D), modulus of elasticity 

(Ep) and the permanent penetration of a pile caused by the application of the last hammer blow (S) have been used as inputs 

values in a multilayer perceptron neural network to estimate their load capacity. In each training of the neural network were 

used percentages of 70% to 80% of the data, with the rest being left to test / validation of the topology. The results obtained, as 

well as the topology of the networks and their parameters will be presented in graphs and tables.  

To evaluate the quality of the predictions made by the proposed model, the results obtained have been compared with 

the actual results obtained through load tests. For this quantitative comparison, the following metrics have been chosen: 

Pearson correlation coefficient and mean squared error. 

Correlation identifies two groups of data with some relationship to each other, that is, if high (low) values of one of 

the variables implicated in high (or low) values of another variable. A correlation analysis provides a number that summarizes 

the degree of linear relationship between the two variables, which is called the correlation coefficient. The choice of the 

correlation coefficient (Equation 1) was because it is a metric widely used to evaluate comparisons such as the one this 

research wants to make (Benesty et al,2009).  

 

 

 

 

where X and Y are the compared variables. 

However, the linear correlation coefficient may lead to false conclusions when used in as an accuracy index of 

predictions or simulations. For example, simulated and observed values can be highly correlated, even in situations where 

simulations are overestimating or underestimating what is observed. 

Thus, a measure often used to evaluate the accuracy of numerical models is the Mean Squared Error (MSE). The MSE 

is defined as the mean of the difference between the estimator value and the squared parameter. 

The mean squared error is obtained by the expression presented in Equation 2 (Willmott & Matsuura, 2005). 

where is the measured value,  is the value obtained in the analyzed model and  is the number of samples. 

 

In other words, the choice of correlation was because this is widely used to evaluate comparisons of this type, while 

the use of the mean squared error is important because its a better way to verify the accuracy of the model. 

All simulations have been made by fixing the network topology in only one hidden layer and with sigmoid activation 

function. In some cases, the learning rate and the number of neurons of the hidden layer (nno) have been varied. The learning 

rate μ is a parameter that defines, mainly, the distance between the network output error and the minimum error that the 

problem admits. The number of neurons in each layer defines the nonlinearity of the data presented to the network. It is worth 

 

 

 

(

(1) 

 

 

 

 

(

(2) 
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remembering that the values chosen for such parameters are chosen empirically, which justifies the performance of several 

tests to verify which parameters best fit the problem under analysis. 

In the simulations performed the number of neurons in the input layer has always been equal to the number of inputs 

and in the output only one neuron has been considered.  From the total set of data, 202 values have been randomly chosen for 

network training and 30 for testing. 

 

3. Results and Discussion 

First models were tested using hammer weight, hammer drop height, pile length, pile diameter and permanent 

penetration per blow values as parameters, without including modulus of elasticity. The comparison of ANN results and load 

tests are presented in figures. Optimal weights obtained in each simulation are also presented. 

For a better understanding of the importance of weight matrices it is necessary to be in mind that the columns of w1, 

for example, refer to coefficient vectors of each input variable ordered as follows: hammer weight (W), hammer drop height 

(H), pile length (L), pile diameter (D), permanent penetration of the pile caused by the application of the last hammer blow (S) 

and bias (characteristic value of RNA models). 

The comparison of ANN results (when the learning rate μ=0.1000 and nno=8 was used) with the actual measured 

values is shown in Figure 1.  On this first attempt the MSE obtained was 2.0689x10^6 and the correlation achieved 0.9415. 

 

Figure 1. Comparison between actual values and ANN outputs (not including modulus of elasticity,  and  

). 

 

Source: Authors. 

 

Analyzing Figure 1 it can be noticed that the network obtained an excellent approximation of the values, except for 

sample 15, which showed a significant difference between the actual and estimated values.  
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The optimal weights obtained in this simulation were: 

 

and 

 

, 

 

where w1 is always the matrix of hidden layer weights and w2 always the output layer weight matrix.  

 

The weights obtained in the first simulation indicate that the variables whose coefficient values contribute most in 

absolute terms are: hammer weight (W) and hammer drop height (H) (first and second column of w1 respectively). 

Figure 2 graphically presents the comparison obtained when the learning rate μ=0.5000 and nno=8 were used. In this 

case, there was an improvement in the MSE result (1.4357x10^6) and a worsening in the correlation (0.7849).   

 

Figure 2. Comparison between actual values and ANN outputs (not including modulus of elasticity,  and  

. 

 

Source: Authors. 
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In the second simulation, the greatest discrepancies between the actual values and those observed at the network 

output were observed for samples 22 and 24. For the other samples the network made a good prediction.  

The optimal weights obtained in this simulation were: 

 

 

and 

 

, 

with w1 and w2 having the same meanings described in the previous case.   

 

For the second simulation, the columns of the w1 weight matrix suggest that the values referring to the hammer 

weight coefficients, on average, had a greater contribution to the model obtained. 

The result of comparisons when the learning rate μ=0.9000 and nno=8 were used is shown in Figure 3. In this case the 

MSE was much worse than the values obtained in the previous two attempts, reaching 5.4141x10^6 while the correlation 

remained close to that of the second test, reaching 0.7758. 

 

Figure 3. Comparison between actual values and ANN outputs (  and  . 

 

Source: Authors. 
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Observing Figure 3, it may be highlighted that although the neural model performed good approximations, in one of 

the samples (number 21), the difference between the value of the measured load capacity and the network output is visibly 

unacceptable. 

The optimal weights obtained in this simulation were: 

 

 

and 

 

, 

 

Observing the weight matrices of the third simulation, a certain homogeneity is perceived in the relationship between 

the vectors that compose the coefficients, but as in first simulation the variables hammer weight (W) and hammer fall height 

(H) present a superiority in the values of their coefficients. 

In the following simulations the Modulus of Elasticity of the pile (in KN/m²) was introduced to the ANN input set. 

The results obtained when using the learning rate μ=0.1000 and nno=2 are shown in Figure 4. In this simulation the MSE was 

2.8504x10^6 and the correlation 0.9005.  

 

Figure 4. Comparison between actual values and ANN outputs (including modulus of elasticity,  and  ). 

 

Source: Authors. 
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The pattern verified in figures 1 to 3 is repeated when we observe Figure 4, that is, the neural network performs, in 

general, good approximations, but for some isolated samples the performance is unsatisfactory. In this simulation, in particular, 

the network fails to approach samples 2 and 12. 

The optimal weights obtained in this simulation were: 

 

 

 

and 

 

, 

 

The w1 weight matrix of the fourth simulation indicates that the second column has, on average, a higher value than 

the other ones, indicating once again the variable hammer drop height is, in fact, an important information in the prediction of 

load capacity. 

Figure 5 presents the comparison results when the learning rate μ=0.9000 and nno=4 were used. The MSE obtained in 

this simulation decreased to 0.8602x.10^6 while the correlation rose to 0.9637.  

 

Figure 5. Comparison between actual values and ANN outputs (  and  ). 

 

Source: Authors. 
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In Figure 5, the results presented demonstrate the best network performance among the simulations performed. In this 

figure, it is perceived that the approximation is well performed by the model for all samples, and this fact is ratified with the 

correlation and error values mentioned above. 

The optimal weights obtained in this simulation were: 

 

 

and 

 

, 

 

being, again, w1 the hidden layer weight matrix and w2 the output layer weight matrix, as previously described. 

The error and correlation values of the fifth simulation show that this network topology presented the best result and 

the weights obtained confirm what has already been observed in the previous simulations: coefficients of the hammer weight 

(W) and hammer drop height (H) variables present numerical superiority to the values of the other coefficients. 

Finally, the last simulation was performed using learning rate μ=0.5000 and nno=2 (Figure 6). The analysis metrics 

indicated in this case the values of MSE=1.3211x10^6 and correlation=0.9433. 

 

Figure 6. Comparison between actual values and ANN outputs (  and  ). 

 

Source: Authors. 
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In the last simulation performed, it was again realized that for some samples the network fails in the forecast (in this 

case for samples 21 and 22).  

The optimal weights obtained in this simulation were: 

 

 

 

and 

 

, 

 

In the sixth and last simulation a fact draws attention. This fact refers to the coefficient value of the variable 

"permanent penetration of a pile caused by the application of the last hammer blow" which presents, in module, the highest 

value among the coefficients, but contributes in order to ponder with a negative sign to the main value. Despite the fact 

exposed, the numerical superiority of the coefficients of the variables hammer weight (W) and hammer drop height (H) 

remains, which confirms their importance. 

It is important to point out that, initially, it has been trained ANN with 8 neurons in the hidden layer and the results 

were generally satisfactory both in relation to the error and in relation to the correlation. On the other hand, when it has been 

decreased the number of neurons to 2, the test results were still satisfactory, as shown in the figures. This fact suggests that the 

approximation of load capacity values is a problem "close to linearity". 

When comparing the mean squared errors and correlations, it can be verified that the best result obtained by ANN was 

when the parameters used were the learning rate μ=0.5000 and nno=8. It is noteworthy that in this simulation correlation was 

not very high (0.78), but the main objective is the minimization of the mean squared error, and in this case, the study obtained 

the smallest error (1.4 x 10^6) when the model was performed without including the modulus of elasticity. 

When the information about the modulus of elasticity of the pile was added there was an improvement in the results. 

The correlation reached 0.96 and the MSE 0.8 x 10^6 when μ=0.9 and nno=4. This fact highlights the importance of knowing 

in advance the value of the modulus of elasticity for calculation of load capacity. 

In summary, it was noticed that the best result was obtained when using the model with 4 neurons in the hidden layer 

(nno=4), learning rate μ=0.9 and inclusion of the modulus of elasticity in the input parameters. With this topology, a 

correlation of    0.96 was obtained between the predicted load capacity values and the actual data, in addition the mean 

quadratic error was the lowest found in all simulations (0.8 x 10^6). It was also verified that the hammer drop height obtained, 

in general, the highest numerical values of weights (values in the second column of w1). 

Pessoa (2018) compared the results of five dynamic formulas (Jambu, Danish, Gates, WSDOT, FHWA) with the 

values of load tests and found WSDOT results as the best prediction, which presented MSE=3.21x10^6 and correlation 0.84. 

These results reinforce that ANN's estimates (especially when including modulus of elasticity, μ=0.9 and nno=4) are 

significantly better than such formulas, which although admittedly inaccurate are traditionally used in the geotechnical 

practice. 
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As the main proposal of this work is to present a computational model based on neural computing, an algorithm is 

presented in pseudocode (Table 2) that can be implemented in any programming language, including Excel, in order to enable 

anyone to use in practice the results presented here.  

 

Table 2. Algorithm in Pseudocode. 

Algorithm 1: Neural Model 

Inputs:  Vector v with the values of hammer weight, hammer drop height, pile weight, pile 

diameter, permanent penetration of a per blow and modulus of elasticity (All normalized). 

2. Multiplication of v  by w1 ; 

3. Multiplication result apply in sigmoid function 

4. Subtract a vector from 1 

5. Multiply by w2; 

6. Result of multiplication apply in sigmoid function; 

7. Undo normalization 

8. End 

Source: Authors. 

 

4. Conclusion 

The major achievement of the work was to get a model which results, considering the values obtained in the metrics 

of comparison, seem to be very good. In this way, the model shows potential to be adopted as a method of predicting the 

ultimate load capacity. 

As the main objective of this work is to present a computational model based on neural computing, all matrices of 

synaptic weights were made available, which allows the proposed model to be implemented in any language of programming, 

so that any user can use it in practice. 

Despite the good results obtained by ANN, it is worth mentioning that an important limitation for this type of model 

was the amount of data available for simulation. We believe that if the database were larger the study could further improve 

these results. However, the neuronal model presented, even with these limitations, presented encouraging results regarding the 

prediction of load capacity in foundations. 

So, in relation to the results obtained here, future studies should include a refinement of the model, through the 

expansion of the database used as input values. Also, it would be important to compare the accuracy of the proposed model and 

that of other prediction methods, such as the empirical and semi-empirical formulas and (mainly) the dynamic formulas 

(because they are based on the same input parameters). 

Besides it, although the results obtained by ANN training are very promising, it is worth investigating, as future 

studies, simulations using other learning algorithms, such as Momentum and Levemberg Maquart, and comparing them with 

the Downward Gradient.  
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