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Abstract 

Fluid flow in concentric or eccentric annular ducts have been studied for decades due to large application in medical 

sciences and engineering areas. This paper aims to study fully developed fluid flow in straight ducts of concentric 

annular geometries (circular with circular core, elliptical with circular core, elliptical with elliptical core, and circular 

with elliptical core) using the Galerkin-based Integral method (GBI method). The choice of method was due to the fact 

that in the literature it is not applied in ducts of cross-sections of the annular shape with variations between circular and 

elliptical. Results of different hydrodynamics parameters such as velocity distribution, Hagenbach factor, Poiseuille 

number, and hydrodynamic entrance length, are presented and analyzed. In different cases, the predicted hydrodynamic 

parameters are compared with results reported in the literature and a good concordance was obtained. 

Keywords: Fully developed flow; Non-circular duct; Galerkin-based integral method; Circular; Elliptical. 

 

Resumo 

O fluxo de fluidos em dutos anulares concêntricos ou excêntricos tem sido estudado há décadas devido à grande 

aplicação nas ciências médicas e nas áreas de engenharia. Este trabalho tem como objetivo estudar o escoamento de 

fluidos completamente desenvolvido em dutos retos de geometrias anulares concêntricas (circular com núcleo circular, 

elíptico com núcleo elíptico, elíptico com núcleo elíptico e circular com núcleo elíptico) usando o método Integral 

baseado em Galerkin (método GBI). A escolha do método se deu pelo fato de que na literatura não se encontra aplicado 

em dutos de seções transversais da forma anulares com variações entre circular e elíptica. Resultados de diferentes 

parâmetros hidrodinâmicos, como distribuição de velocidade, fator de Hagenbach, número de Poiseuille e comprimento 

de entrada hidrodinâmica, são apresentados e analisados, tanto em tabelas como em forma de gráficos. Em diferentes 

casos, os parâmetros hidrodinâmicos previstos são comparados com os resultados relatados na literatura e uma boa 

concordância foi obtida. 

Palavras-chave: Fluxo completamente desenvolvido; Duto não circular; Método integral baseado em Galerkin; 

Circular; Elíptico. 
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Resumen 

El flujo de fluidos en conductos anulares concéntricos o excéntricos se ha estudiado durante décadas debido a su amplia 

aplicación en las ciencias médicas y la ingeniería. Este trabajo tiene como objetivo estudiar el flujo de fluido 

desarrollado íntegramente en conductos rectos de geometrías anulares concéntricas (circular con núcleo circular, elíptica 

con núcleo elíptico, elíptica con núcleo elíptico y circular con núcleo elíptico) utilizando el método Integral basado en 

Galerkin (método GBI). La elección del método se debió a que en la literatura no se aplica en conductos de sección 

transversal de forma anular con variaciones entre circulares y elípticas. Los resultados de diferentes parámetros 

hidrodinámicos, como la distribución de velocidades, el factor de Hagenbach, el número de Poiseuille y la longitud de 

entrada hidrodinámica, se presentan y analizan, tanto en tablas como en forma de gráficos. En diferentes casos, los 

parámetros hidrodinámicos predichos se comparan con los resultados reportados en la literatura y se obtuvo una buena 

concordancia. 

Palabras clave: Flujo completamente desarrollado; Conducto no circular; Método integral basado en Galerkin; 

Circular; Elíptico. 

 

1. Introduction 

Researches related to internal fluid flow in curved and straight ducts is crucial at different fields of medical sciences 

and engineering. For decades, the studies focus in incompressible and laminar flow in singly ducts with circular, rectangular, 

elliptical, polygonal, and triangular cross-sections, and many others geometries (Cadé et al., 2010; Manoj et al., 2013; Lasode et 

al., 2013; Lekner, 2007; Etaig & Hashem, 2020; Das & Tahmouresi, 2016; Velusamy & Garg, 1993), and in doubly-connected 

ducts (concentric or eccentric) with different configurations (Lundgren et al., 1964; Sparrow & Lin, 1964; Alegria et al., 2012; 

McComas, 1967; Shah & London, 1978; Solanki et al., 1986; Moharana & Khandekar, 2013; Lee & Kuo, 1998; Park & Lee, 

2002; Shivakumar, 1993; Ferroudji et al., 2019; Liu, 1974; Sugino, 1962; Heaton et al., 1962; Gulraiz & Gray, 2020; Escudier 

et al., 1995; Nouar, et al., 1995; Khalil eta al., 2008; Muzychka & Yovanovich, 2009; Colmanetti, 2016; Pinto, 2016; Uner et 

al., 1988; Alves et al., 2014; Lee & Lee, 2001). Such effort has been given to predict Newtonian fluid flow in ducts with 

considerable progress. 

Several solution techniques have been developed, over the years, to obtain information about hydrodynamic parameters 

that characterize the flow in ducts with different cross-section geometries. 

Alegria et al. (2012), presented an analytical and numerical study for the isothermal flow of Herschel-Bulkley 

viscoplastic fluid using three duct configurations of elliptical cross-sections: elliptical duct, concentric annular elliptical and 

circular eccentric. This study aimed to analyze the effect of geometric and rheological parameters of the fluid with pressure drop. 

Alves et al. (2014), presented a hybrid analytical-numerical solution for the isothermal hydrodynamic problem of the 

fully developed laminar flow in circular concentric annular ducts using the Generalized Integral Transform Technique (GITT). 

In this work, the authors applied a conform transform, together with the GITT and presented results for Poiseuille number, 

Hagenbach factor, and velocity profiles. 

The Galerkin-based integral (GBI) method has well-known applicability in flow analysis in straight ducts with arbitrary 

geometry (Lee & Kuo, 1998; Lee & Lee, 2001; dos Santos Júnior et al., 2020; Santos Júnior, 2018; Haji-Sheikh & Beck, 1990; 

Lakshminarayanan & Haji-Sheik, 1992). However, it can also be used in other engineering areas (Franco et al., 2016; Pessôa et 

al., 2017; Santos et al., 2015; Santos et al., 2012; Lima et al., 2004; Franco et al., 2019; Franco et al., 2020; Lima et al., 2014).  

Dos Santos Júnior et al. (2020), present a theoretical study applied to fully developed internal laminar flow through a 

corrugated cylindrical duct, using the Galerkin-based integral method. As an application, the authors have used the proposed 

formulation to predict heavy oil flow at different operating conditions considering temperature-dependent viscosities ranging 

from 1715 to 13000 cP. In this research are reported many fluid dynamics parameters, such as the Fanning friction factor, 

Reynolds number, shear stress, and pressure gradient. 
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Given the real importance, the range of work, the applicability of annular ducts and also the shortage of results in the 

analysis of fluid flow in ducts with annular elliptical geometry, this work aims to study the fluid dynamic behavior of 

incompressible and Newtonian fluid in non-conventional geometries using the Galerkin-based Integral Method. Four geometries 

were used: circular with circular core, elliptical with circular core, elliptical with elliptical core, and circular with elliptical core.  

Although the fluid flow theory is well understood very few studies have attempted to predict fluid flow in duct with 

annular geometry using the GBI method. Thus, it is clear, the innovative contribution of this research: fluid flow in non-

conventional and annular geometries not yet fully understood and several physical situations remain unsolved. In essence, this 

is purely quantitative research, according to Pereira et al. (2018). 

 

2. Methodology 

For an appropriated mathematical formulation related to fluid flow in ducts, the following assumptions are given: 

a) Single-phase and laminar flow; 

b) Steady-state flow regime; 

c) Hydrodynamically developed flow; 

d) Incompressible and Newtonian fluid with constant thermo-physical properties; 

e) The cross-section area of the duct is constant along the z-axis; 

f) Smooth wall duct (Null roughness); 

g) Radial and angular velocity components are everywhere zero; 

h) Body force effect is neglected; 

 

The Geometry and base functions 

For mathematical analysis we choose the cylindrical coordinate system (𝑟, 𝜃, 𝑧). The concentric annular geometries to 

be analyzed will be: circular with core circular and elliptical with core elliptical. For these geometries we will use the following 

parameterizations: 

𝑐1(𝜃) = ±√
𝑎1

2𝑝1
2

𝑝1
2 cos2(𝜃) + 𝑎1

2 sin2(𝜃)
 (1) 

and 

𝑐2(𝜃) = ±√
𝑎2

2𝑝2
2

𝑝2
2 cos2(𝜃) + 𝑎2

2 sin2(𝜃)
 (2) 

where 𝑎𝑖 and 𝑝𝑖 , with 𝑖 = 1,2, are the axes of the ellipse, when 𝑎𝑖 ≠ 𝑝𝑖  and the radius of the circumference when 𝑎𝑖 = 𝑝𝑖 , with 

0 ≤ 𝜃 ≤ 2𝜋, as illustrated in Figure 1. This way, it is possible to obtain large varieties of geometries for the duct combining only 

these parameters. 
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Figure 1: Curves 𝑐1(𝜃) and 𝑐2(𝜃) with 𝑎1 = 𝑝1 = 1, 𝑎2 = 0.5 and 𝑝2 = 0.3. 

 

 

Source: Authors (2020) 

 

Thus, considering the cross-section given by the curves 𝑐1(𝜃) and 𝑐2(𝜃), the cross-section area of the duct is given by: 

𝐴𝑐 =
1

2
[∫ 𝑐1(𝜃)2𝑑𝜃

2𝜋

0

− ∫ 𝑐2(𝜃)2𝑑𝜃
2𝜋

0

] (3) 

For the perimeter of the cross-section of the duct, it was applied the formal definition of arc length as follows: 

𝑃 = ∫ √𝑐1(𝜃)2 + (
𝑑

𝑑𝜃
𝑐1(𝜃))

2
2𝜋

0

+ ∫ √𝑐2(𝜃)2 + (
𝑑

𝑑𝜃
𝑐2(𝜃))

2
2𝜋

0

 (4) 

In this study, it was considered the geometries cited before and shown in Figure 2. The fluid flows in the annular region: 

 

Figure 2: Geometries a) G1-circular with core circular, (𝑎1 = 𝑝1) > (𝑎2 = 𝑝2); b) G2-elliptic with core circular, (𝑎1 > 𝑝1) >

(𝑎2 = 𝑝2);  c) G3-elliptic with core elliptic, (𝑎1 > 𝑝1) > (𝑎2 > 𝑝2) and d) G4-circular with core elliptic, (𝑎1 = 𝑝1) > (𝑎2 >

𝑝2). 

 

 

a)                                                                 b) 
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c)                                                             d) 

Source: Authors (2020). 

 

Considering the parameterization in polar coordinates, 𝑐1(𝜃) and 𝑐2(𝜃), we define the following functions: 

𝑔(𝑟, 𝜃) = (𝑐1(𝜃)2 − 𝑟2)(𝑐2(𝜃)2 − 𝑟2),    with 0 ≤ 𝜃 ≤ 2𝜋 (5) 

Thus, the set of bases functions will be as follows: 

{𝑓𝑖} = {𝑔(𝑟, 𝜃), 𝑔(𝑟, 𝜃)𝑟, 𝑔(𝑟, 𝜃)𝜃, 𝑔(𝑟, 𝜃)𝑟𝜃, … , 𝑔(𝑟, 𝜃)𝑟𝑛𝜃𝑚} (6) 

Putting Equation (5) into equation (6), we can write base functions as follows: 

𝑓𝑖(𝑟, 𝜃) = 𝑔(𝑟, 𝜃)𝑟𝑛𝜃𝑚  with 𝑛, 𝑚 = 0, 1,2, … , 𝑁 (7) 

where the subscript 𝑖 represents the 𝑖-th term of the set of base functions in Equation (6). 

 

Linear momentum equation and solution methodology 

Now, considering the hypotheses cited before, the linear momentum equation written in the cylindrical coordinate 

system, is given as follows: 

𝜕2𝑢

𝜕𝑟2
+

1

𝑟

𝜕𝑢

𝜕𝑟
+

1

𝑟2

𝜕2𝑢

𝜕𝜃2
=

1

𝜇

𝑑𝑝

𝑑𝑧
 (8) 

where, 𝑢(𝑟, 𝜃) is the velocity component along the z-axis and annulled in the boundary Γ (𝑢(𝑟, 𝜃) = 0 , ∀ 𝑧, no slip condition), 

𝑑𝑝

𝑑𝑧
 is the pressure gradient, and μ is the dynamic velocity of the fluid. Since transversal velocity components are zero so, 

𝑑𝑢

𝑑𝑧
= 0 

(from mass conservation equation), and transversal pressure gradient are zero. Thus, 𝑢(𝑟, 𝜃) does not depend on the axial 

coordinate 𝑧, and longitudinal pressure gradient becomes constant. The dimensionless form of Equation (8) for a 

hydrodynamically fully developed flow, yield: 

𝜕2𝑊

𝜕𝑅2
+

1

𝑅

𝜕𝑊

𝜕𝑅
+

1

𝑅2

𝜕2𝑊

𝜕𝜃2
= −1 (9) 

with 𝑊 = 0 in Γ. In Equation (9) were considered the following dimensionless parameters: 

𝑅 =
𝑟

𝐿
 (10) 
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 𝑊(𝑅, 𝜃) = −
𝑢(𝑅, 𝜃)

𝐿2

𝜇
𝑑𝑝
𝑑𝑧

 
(11) 

where 𝐿 is the characteristic length. 

Since the mean velocity of the fluid is given by: 

𝑢𝑚 =
1

𝐴𝑐

∫ 𝑢𝑑𝐴𝑐
𝐴𝑐

 (12) 

the normalized dimensionless mean velocity can be written as follows: 

𝑈 =
𝑢

𝑢𝑚

=
𝑊

𝑊𝑚

 (13) 

where 𝑊𝑚 is the dimensionless mean velocity of the fluid. 

In this research, the solution of the momentum equation was obtained by using Galerkin-based integral method (GBI 

method). This method isn´t new, but never have been applied to predict fluid flow in ducts with non-conventional cross-section 

ducts. 

By the GBI method, the solution is approximated as a linear combination of a set of base functions. Thus, for the 

Equation (9), we can written: 

𝑊 = ∑ 𝑑𝑖𝑓𝑖(𝑅, 𝜃)

𝑛

𝑖=1

 (14) 

The functions 𝑓1, 𝑓2, … ,  𝑓𝑛 are linearly independent functions and satisfy the same homogeneous boundary conditions 

of 𝑊. 

Applying the GBI method in Equation (9) and replacing W as in the Equation (14), we obtain the following matrix 

system: 

𝐴𝐷 = 𝐵 (15) 

where 

𝑎𝑖𝑗 =
1

𝐴𝑐

∫ (
𝜕2𝑓𝑗

𝜕𝑅2
+

1

𝑅

𝜕𝑓𝑗

𝜕𝑅
+

1

𝑅2

𝜕2𝑓𝑗

𝜕𝜃2
) 𝑓𝑖𝑑𝐴𝑐  

𝐴𝑐

=
1

Ac

∫ 𝑓𝑖∇
2𝑓𝑗

𝐴𝑐

𝑑𝐴𝑐 (16) 

and 

𝑏𝑖 = −
1

𝐴𝑐

∫ 𝑓𝑖𝑑𝐴𝑐
𝐴𝑐

 (17) 

Since that 

𝐷 = 𝐴−1𝐵 (18) 

we obtain the coefficients 𝑑1, 𝑑2, . . . , 𝑑𝑛 of Equation (14). 

The dimensionless mean velocity is given by: 

𝑊𝑚 =
1

𝐴𝑐

∫ 𝑊𝑑𝐴𝑐 = ∑ 𝑑𝑗

1

𝐴𝑐

∫ 𝑓𝑗𝑑𝐴𝑐 = − ∑ 𝑑𝑗𝑏𝑗

𝑛

𝑗=1

 
𝐴𝑐

𝑛

𝑗=1𝐴𝑐

 (19) 
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The Fanning friction factor, 𝑓, is defined by: 

𝑓 =
𝜏𝑤

𝜌
𝑢𝑚

2

2

 
(20) 

where 𝜏𝑤 = −
𝑑ℎ

4

𝑑𝑝

𝑑𝑧
 represents the shear stress with 𝑑ℎ =

4𝐴𝑐

𝑃
 the hydraulic diameter. 

The Reynolds number is defined as: 

𝑅𝑒 =
𝜌𝑑ℎ𝑢𝑚

𝜇
 (21) 

A parameter of great interest in fluid mechanics is the Poiseuille number. It is defined as the product of the Reynolds 

number and the friction factor, as follows: 

𝑓𝑅𝑒 =
𝐷ℎ

2

2𝑊𝑚

 (22) 

with, 𝐷ℎ =
𝑑ℎ

𝐿
 is the dimensionless hydraulic diameter.  

The number of increments in the pressure drop or Hagenbach factor, K (∞), according to reference Shah & London 

(1978), is defined as: 

𝐾(∞) =
2

𝐴𝑐

∫ (𝑈3 − 𝑈2)𝑑𝐴𝑐
𝐴𝑐

 (23) 

or, 

𝐾(∞) = 2[𝐾𝑒(∞) − 𝐾𝑑(∞)] (24) 

where 𝐾𝑒(∞) and 𝐾𝑑(∞), are respectively the kinetic energy correction factor and the momentum flux correction factor, given 

by:  

𝐾𝑒(∞) =
1

𝐴𝑐

∫ 𝑈3𝑑𝐴𝑐
𝐴𝑐

 (25) 

and 

𝐾𝑑(∞) =
1

𝐴𝑐

∫ 𝑈2𝑑𝐴𝑐
𝐴𝑐

 (26) 

The dimensionless hydro-dynamic entry length, 𝐿ℎ𝑧
+ , according to Shah & London (1978), is given by: 

𝐿ℎ𝑧
+ =

𝑈𝑚𝑎𝑥
3 − 1 − 𝐾(∞)

4𝑓𝑅𝑒
 (27) 

where 𝑈𝑚𝑎𝑥  =
𝑊𝑚𝑎𝑥

𝑊𝑚
 is the maximum normalized dimensionless velocity, 𝑊𝑚𝑎𝑥  is the maximum dimensionless velocity. 

 

Numerical Computation 

For obtain the numerical results, a computational code in the software Maple Student Edition was developed. Following, 

the flowchart shows the calculation procedure using the GBI method: 
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Figure 3: Flowchart of the solution procedure. 

                

Source: Authors (2020). 

3. Results and Discussion 

In this section, we present the numerical results obtained for different hydrodynamic parameters (Poiseuille number, 

Hagenbach factor and dimensionless entry length) obtained for different aspects ratio of the geometries presented in Figure 2. In 

the simulations, we consider the characteristic length 𝐿 = 1 corresponding to the radius of the outer circumference or half of the 

major axis of the outer ellipse. 

G1 geometry 

For G1 geometry, (Figure 2a), consider the aspect ratio given by 𝛽 =
𝑝2

𝑝1
, with 𝑎1 = 𝑝1 = 1 and 𝑎2 = 𝑝2, as illustrated 

in Figure 4a. Figure 4b illustrates the velocity field of the fluid inside the duct over the entire cross-section. It can be verified 

that velocity is zero at the wall and increasing towards the central region of the annular. This behavior occurs because of the no-

slip condition established in the simulations. The friction effect is transmitted for all layers of fluid that are adjacent (formation 

of the hydrodynamic boundary layer). 
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Figure 4: a) Geometrical profile, and b) Normalized dimensionless velocity profile of the G1 geometry (surface curve; 𝑎1 = 𝑝1 =

1, 𝑎2 = 𝑝2 = 0.5). 

                   

                   a)                                             b) 

Source: Authors (2020). 

 

In Table 1, we present the values of the hydrodynamics parameters obtained of the simulations. We take the aspect ratio 

𝛽 =
𝑝2

𝑝1
  ranging from 0.01 to 0.9. From the analysis of this table, we can see that increased values of the aspect ratio β, the 

Poiseuille number has increased. In contrast, all others parameters have been reduced. When 𝛽 → 0, we have the parameterization 

and the value of the Poiseuille number, 𝑓𝑅𝑒 = 16, of the circular duct. On the other hand, as the 𝛽 > 1, the system becomes two 

parallel flat plates with almost null thickness. Furthermore, in Table 1 velocities peaks are observed clearly. 
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Table 1. Several hydrodynamics parameters obtained for G1 geometry. 

𝜷 =
𝒑𝟐

𝒑𝟏

 𝒇𝑹𝒆 𝑾𝒎 𝑼𝒎𝒂𝒙 𝑲(∞) 𝑳𝒉𝒛
+  𝑫𝒉 

0.01 22.3431 0.0839 1.6325 0.8792 0.008417 1.980 

0.05 22.5540 0.0800 1.6014 0.8567 0.007844 1.900 

0.10 22.5777 0.0717 1.5590 0.8208 0.006752 1.800 

0.15 22.8479 0.0632 1.5400 0.7794 0.006482 1.700 

       

0.20 23.1033 0.0554 1.5312 0.7575 0.006352 1.600 

0.25 23.3058 0.0482 1.5251 0.7397 0.006289 1.500 

0.30 23.4623 0.0417 1.5203 0.7275 0.006220 1.400 

0.35 23.5835 0.0358 1.5162 0.7178 0.006160 1.300 

0.40 23.6784 0.0304 1.5128 0.7109 0.006100 1.200 

       

0.45 23.7532 0.0254 1.5099 0.7054 0.006048 1.100 

0.50 23.8127 0.0209 1.5076 0.7009 0.006006 1.000 

0.55 23.8596 0.0169 1.5057 0.6975 0.005970 0.900 

0.60 23.8970 0.0133 1.5042 0.6944 0.005946 0.800 

0.65 23.9264 0.0102 1.5030 0.6886 0.005962 0.700 

       

0.70 23.9494 0.0075 1.5020 0.6865 0.005945 0.600 

0.75 23.9670 0.0052 1.5013 0.6861 0.006027 0.500 

0.80 23.9801 0.0033 1.5007 0.6856 0.005807 0.400 

0.85 23.9896 0.0018 1.5003 0.6847 0.005849 0.300 

0.90 23.9950 0.0008 1.5001 0.6741 0.005981 0.200 

Source: Authors (2020). 

 

To assure the accuracy of the values presented in Table 1, the number of base functions ranged from 𝑁 = 5 to 𝑁 = 15. 

When the aspect ratio tends to be 𝛽 = 1, more base functions are needed to better approximates the values predicted by 

simulations with that reported in the literature. The proposed model and the solution procedure were validated with previous 

works reported in the literature. Figure 5-7 show these results. From the analysis of there figures, we can see that on excellent 

agreement was obtained, except for small number of the aspect ratio, where some discrepancy are seen.  
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Figure 5: Poiseuille number for different aspect ratios compared to the literature data (G1 geometry). 

 

Source: Authors (2020). 
 

Figure 6: Hagenbach factor for different aspect ratios compared to the literature data (G1 geometry). 

 

Source: Authors (2020). 
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Figure 7: Dimensionless hydrodynamic entry length for different aspect ratios compared to the literature data (G1 geometry). 

 

Source: Authors (2020). 
 

It was observed a large computational effort in obtaining the hydrodynamic parameters when the aspect ratio is close 

to 0 and 1. 

 

G2 Geometry 

For G2 geometry, Figure 2(b), two aspect ratios are considered: the first concerns to 𝑐1(𝜃), with 𝛽1 =
𝑝1

𝑎1
, 𝑎1 = 1, and 

𝑝1 = 0.9, 0.7 and 0.5; the second concerns to the relationship between the curve 𝑐2(𝜃) and 𝑐1(𝜃), that is, 𝛽 =
𝑝2

𝑝1
 and 𝑎2 = 𝑝2 as 

the curve 𝑐2(𝜃) is a circumference. 

Figure 8, illustrates the velocity field of the fluid inside the duct. Similarly, to the concentric circular ducts, it is verified 

that velocity is null at both wall and increasing towards the central region of the annular. However, it can be observed non-

symmetrical values of the velocity. Since that body force does not has any effect in this parameter, it is exclusively due to 

differences in the thickness between the internal and external walls of the ducts.  For small thickness values, lower velocity is 

obtained. 

Also, it is notable that the fluid velocity is very sensitive to the shape of the duct. A peak of maximum velocity is clearly 

observed, and its magnitude is different for each geometry. The peak location in the cross-section of the duct varies accordingly 

with the established geometry. For G2 geometry, maximum and minimum velocities of 2.7116 and 0.2456, respectively, were 

obtained. 
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Figure 8: a) Geometrical profile, and b) Normalized dimensionless velocity profile for the G2 geometry. (surface curves: 𝑎1 =

1, 𝑝1 = 0.7, 𝑎2 = 𝑝2 = 0.56).  

                        

                                                          a)                                                                                              b)  

Source: Authors (2020). 
 

In Table 2, we present the values of the parameters obtained in the simulations. 

 

Table 2: G2 geometry: Values of hydrodynamics parameters interest for G2 geometry. 

𝜷𝟏 =
𝒑𝟏

𝒂𝟏

 𝜷 =
𝒑𝟐

𝒑𝟏

 𝒇𝑹𝒆 𝑾𝒎 𝑼𝒎𝒂𝒙 𝑲(∞) 𝑳𝒉𝒛
+  𝑫𝒉 

0.90 0.50 23.5801 0.02103 1.8600 0.8628 0.01693 0.996 

0.90 0.55 23.5359 0.01706 1.8855 0.8914 0.01767 0.906 

0.90 0.60 23.4717 0.01419 1.9115 0.9235 0.01843 0.816 

0.90 0.66 23.3074 0.01040 1.9625 0.9940 0.01992 0.708 

0.90 0.70 23.1806 0.00874 1.9950 1.0465 0.02085 0.637 

0.90 0.80 22.4452 0.00464 2.1356 1.3216 0.02494 0.457 

0.90 0.90 20.1246 0.00190 2.3818 2.0044 0.03315 0.277 

0.90 0.95 16.8244 0.00112 2.4576 - - 0.187 

        

0.70 0.50 22.4135 0.02043 2.5385 1.9374 0.03911 0.957 

0.70 0.60 21.2617 0.01582 2.5894 2.1806 0.04144 0.820 

0.70 0.70 19.6758 0.01185 2.6522 2.4930 0.04499 0.683 

0.70 0.80 17.3430 0.00857 2.7116 2.8409 0.05062 0.545 

0.70 0.90 13.7944 0.00602 2.7209 3.0495 0.06078 0.408 

        

0.50 0.50 22.4373 0.01636 3.1094 3.3835 0.05889 0.857 

0.50 0.60 20.0391 0.01462 3.0831 3.4993 0.06245 0.766 

0.50 0.70 17.5198 0.01294 3.0477 3.5839 0.06713 0.673 

0.50 0.80 14.7887 0.01104 2.1356 3.5816 0.06906 0.581 

0.50 0.90 11.8077 0.01006 2.8620 - - 0.487 

Source: Authors (2020). 
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By analyzing the results reported in Table 2, one can verify that the values of Poiseuille number and 𝑊𝑚 increase with 

a decreases in the parameters 𝛽, and meanwhile 𝑈𝑚𝑎𝑥 , 𝐾(∞) and 𝐿ℎ𝑧
+  have increased as 𝛽 increased. This behavior occurs for 

any fixed value of the  𝛽1 aspect ratio. For the values shown in Table 2, there were variations in the number of chosen base 

functions ranging from 𝑁 = 3 to 𝑁 = 15. We state that results and discussions with the same geometry are presented in previous 

works (Moharana & Khandekar, 2013), when the behavior of the normalized dimensionless velocity profile is observed 

geometrically using other methodologies. 

Figure 9-13 illustrate the behavior of the hydrodynamic parameter as a function of the 𝛽 parameter. Figures 9 and 10 

show the results reported in Table 2, and some numerical values for 𝑓𝑅𝑒 found in the literature are used for comparison purpose. 

Analyzing the figures, we can see that a good agreement was except for the smaller parameter 𝛽, which can be attributed to the 

fact that a larger number of base functions, consequently a longer computational time, are necessary for the convergence of the 

values. This increase in base functions can significantly difficult the calculation of the inverse matrix 𝐴−1 that makes up the 

matrixial system in Equation (18).  

 

Figure 9: Poiseuille number for different aspect ratios compared to the literature data (G2 geometry, 𝛽1 = 0.9). 

 

Source: Authors (2020). 

 

Figure 10: Poiseuille number for different aspect ratios compared to the literature data (G2 geometry, 𝛽1 = 0.7). 

 

Source: Authors (2020). 
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Figure 11: Poiseuille number for different aspect ratios (G2 geometry, 𝛽1 = 0.5). 

 

Source: Authors (2020). 

 

In Figures 12 and 13, we present the graphs presented in Table 2 for the values of 𝐾(∞) and 𝐿ℎ𝑍
+ . From the analysis of 

these figures we can observe an increase in the parameters with increased 𝛽 parameter (fixed 𝛽1 values) and decreasing with 

increased 𝛽1 parameter (fixed 𝛽 values). 

 

Figure 12: Hagenbach factor for different aspect ratios (G2 geometry). 

 

Source: Authors (2020). 

 

Figure 13: Dimensionless hydrodynamic entry length for different aspect ratios (G2 geometry). 

 

Source: Authors (2020). 
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G3 Geometry 

For the G3 geometry (Figure 2c), here we considered confocal ellipses, with two aspect ratios: the first concerns to 

𝑐1(𝜃), with 𝛽1 =
𝑝1

𝑎1
, 𝑎1 = 1, and the second concerns to relationship between the curves 𝑐2(𝜃) and 𝑐1(𝜃), that is, 𝛽 =

𝑝2

𝑝1
.  Since 

that the ellipses are confocal, we have the following relationship 𝑎1
2 − 𝑝1

2 = 𝑎2
2 − 𝑝2

2. 

Figure 14 shows the velocity profile of the fluid in a cross-section area of the duct. From the analysis of this figure, we 

can see an almost similar behavior find to G2 geometry, however for this case smaller variations in the velocity with the angular 

coordinate are seen. 

 

Figure 14: a) Geometrical profile, and b) Normalized dimensionless velocity profile for the G2 geometry (surface curve with 

𝛽1 = 0.9 and 𝛽 = 0.7). 

      

a)       b) 

Source: Authors (2020). 
 

In Table 3, we present the values of the hydrodynamic parameters obtained in the simulations. By analyzing the results 

reported in Table 3, one can verify that the values of Poiseuille number, 𝑈𝑚𝑎𝑥  and 𝐿ℎ𝑧
+  increase with the increased 𝛽 parameter, 

and meanwhile 𝑊𝑚 and 𝐾(∞), parameter have decreased as 𝛽 increased. This behavior occurs for any fixed value of the 𝛽1 

aspect ratio. However, for fixed value of the 𝛽 parameter, Poiseuille number and 𝑊𝑚 have increased as 𝛽1 increased. 
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Table 3. Several hydrodynamics parameters obtained for G3 geometry. 

𝜷𝟏 =
𝒑𝟏

𝒂𝟏

 𝜷 =
𝒑𝟐

𝒑𝟏

 𝒇𝑹𝒆 𝑾𝒎 𝑼𝒎𝒂𝒙 𝑲(∞) 𝑳𝒉𝒛
+  𝑫𝒉 

0.90 0.20 24.392 0.032586 1.55539 0.88232 0.00550 1.261 

0.90 0.30 23.887 0.026584 1.60701 0.85939 0.00756 1.127 

0.90 0.40 23.769 0.020269 1.62507 0.82414 0.00859 0.982 

0.90 0.50 23.758 0.014435 1.62741 0.79043 0.00902 0.828 

0.90 0.60 23.830 0.009393 1.62460 0.77334 0.00908 0.669 

0.90 0.70 23.842 0.005364 1.61640 0.74713 0.00907 0.506 

0.90 0.80 23.868 0.002412 1.61275 0.73121 0.00910 0.339 

0.90 0.90 23.889 0.000609 1.61867 - - 0.171 

        

0.80 0.40 23.697 0.014214 1.54402 0.92070 0.00488 0.821 

0.80 0.50 23.488 0.010243 1.59869 0.89533 0.00703 0.694 

0.80 0.60 23.445 0.006727 1.63581 0.87343 0.00855 0.562 

0.80 0.70 23.468 0.003860 1.66327 0.86236 0.00963 0.426 

0.80 0.80 23.525 0.001742 1.67559 0.84546 0.01022 0.286 

0.80 0.90 23.560 0.000442 1.69809 - - 0.144 

Source: Authors (2020). 

For the values presented in Table 3, we consider only few base functions (𝑁 = 3). This fact occurred because there are 

a very high computational efforts when considering a more significant number of base functions. Figures 15 and 16 illustrate a 

comparison between the results of the Poiseuille number as a function of the 𝛽 parameter, obtained in this research with the data 

reported in the literature. Despite of the use of small base functions number, we can see that a good concordance was obtained, 

except for the small 𝛽 parameter. 

 

Figure 15: Poiseuille number for different aspect ratios compared to the literature data (G3 geometry, 𝛽1 = 0.9). 

 

Source: Authors (2020). 
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Figure 16: Poiseuille number for different aspect ratios compared to the literature data (G3 geometry, 𝛽1 = 0.8). 

 

Source: Authors (2020). 

 

In Figures 17 and 18, we present the parameters 𝐾(∞) and 𝐿ℎ𝑍
+  as a function of the 𝛽 aspect ratio for two values of the 

𝛽1  parameters. 

 

Figure 17: Hagenbach factor for different aspect ratios (G3 geometry). 

 

Source: Authors (2020). 
 

Figure 18: Dimensionless hydrodynamic entry length for different aspect ratios (G3 geometry).  

 

Source: Authors (2020). 
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G4 Geometry 

Now, we consider the G4 geometry, that corresponds to circumference with concentric elliptical core, Figure 2(d). The 

following aspect ratios were considered: the first concerns the relationship between the major axis of 𝑐2(𝜃), with the radius of 

the circumference, that is, 𝛽1 =
𝑎2

𝑎1
, and the second concerns the relationship between the minor axis of 𝑐2(𝜃), with the radius of 

the circumference, 𝛽 =
𝑝2

𝑝1
. For convenience, here we consider 𝑎1 = 𝑝1 = 1. 

Figure 19 shows the dimensionless velocity profile inside the duct, for one specified geometrical condition. Similarly, 

to other cases, a peak of velocity is verified in the annular region. This behavior is in accordance with the reported data in the 

literature (Lima et al., 2004). 

 

 

 

Figure 19: a) Geometrical profile, and b) Normalized dimensionless velocity profile for the G4 geometry (surface curves  

𝛽1 = 0.6 and 𝛽2 = 0.3). 

   

a)       b) 

Source: Authors (2020). 

 

In Table 4, we present the values of the hydrodynamic parameters obtained in this research. From the analysis of this 

table, we can see that the Poiseuille number increase as 𝛽 is increased, for all fixed 𝛽1 values. All the other parameters have an 

increase until to reach a maximum value, followed by decreasing. This behavior was verified for all 𝛽1 fixed values. 
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Table 4. Several hydrodynamics parameters obtained for G4 geometry. 

𝜷𝟏 =
𝒂𝟐

𝒂𝟏

 𝜷 =
𝒑𝟐

𝒑𝟏

 𝒇𝑹𝒆 𝑾𝒎 𝑼𝒎𝒂𝒙 𝑲(∞) 𝑳𝒉𝒛
+  𝑫𝒉 

0.9 0.3 16.3018 0.024363 1.98597 1.3867 0.02388 0.891 

0.9 0.4 16.0168 0.018245 2.09858 1.6176 0.02788 0.764 

0.9 0.5 16.0768 0.012804 2.19436 1.8127 0.03113 0.642 

0.9 0.6 16.6246 0.008241 2.27267 1.9665 0.03306 0.523 

0.9 0.7 17.9548 0.004690 2.31469 2.0155 0.03261 0.410 

0.9 0.8 20.6846 0.002213 2.23048 1.6929 0.02758 0.303 

0.9 0.9 23.9944 0.000833 1.49502 0.6741 0.00598 0.200 

        

0.8 0.3 18.7918 0.024662 2.06623 1.4818 0.02378 0.963 

0.8 0.4 18.9238 0.018695 2.08257 1.5520 0.02358 0.841 

0.8 0.5 19.6460 0.013320 2.14977 1.6211 0.02545 0.723 

0.8 0.6 20.9174 0.008908 2.14194 1.5035 0.02491 0.610 

0.8 0.7 22.6973 0.005565 1.98422 1.1054 0.02017 0.503 

0.8 0.8 23.9801 0.003336 1.50088 0.6856 0.00580 0.400 

        

0.7 0.3 20.7968 0.025970 1.98231 1.3075 0.01949 1.039331089 

0.7 0.4 21.3015 0.019993 2.01823 1.3158 0.02062 0.9229137996 

0.7 0.5 22.2142 0.014781 1.99644 1.1877 0.02023 0.8103859308 

0.7 0.6 23.3011 0.010593 1.84910 0.9044 0.01625 0.7026206992 

0.7 0.7 23.9494 0.007515 1.50208 0.6865 0.00594 0.6000000004 

        

0.6 0.3 23.5162 0.017320 1.89147 1.0911 0.01668 1.121299034 

0.6 0.4 22.8433 0.022326 1.88514 1.0049 0.01695 1.009958304 

0.6 0.5 23.8970 0.013390 1.19098 0.8188 - 0.9025637604 

0.6 0.6 22.9691 0.037783 1.50429 0.6944 0.00594 0.8000000000 

        

0.5 0.2 23.1427 0.037783 1.79527 0.9549 0.01380 1.317460316 

0.5 0.3 23.5595 0.031572 1.79615 0.8971 0.01435 1.208867566 

0.5 0.4 23.5595 0.025791 1.25806 0.7790 - 1.102391528 

0.5 0.5 23.8127 0.020997 1.50713 0.6996 0.00600 1.000000000 

Source: Authors (2020). 

 

For the values presented in Table 4, we consider nine base functions (𝑁 = 9). 
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Figure 20: Poiseuille number for different aspect ratios (G4 geometry). 

 

Source: Authors (2020). 
 

Figure 21: Hagenbach factor for different aspect ratios (G4 geometry). 

 

Source: Authors (2020). 
 

 

 

Figure 22: Dimensionless hydrodynamic entry length for different aspect ratios (G4 geometry). 

 

Source: Authors (2020). 
 

Figures 20-22 illustrate the behavior of the hydrodynamic parameter as a function of the 𝛽 geometrical parameters, for 

several 𝛽1 parameters. From the analysis of Figure 20, we can verify that an increase in the 𝛽 parameter provokes an increase in 

the Poiseuille number, for any fixed 𝛽1 parameter. On the other hand, for the fixed value of the 𝛽 parameter, a reduction in the 
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𝛽1 parameter provoked an increase in the 𝑓𝑅𝑒 hydrodynamic parameter. Furthermore, for lower 𝛽1 value, the Poiseuille number 

has an almost linear behavior, and for higher 𝛽1 value this parameter presents a minimum value for a specific 𝛽 value.  

By analyzing Figure 21, we can state that the behavior of the Hagenbach factor is in contrast with the Poiseuille number, 

increasing as the 𝛽1 parameter is increased, for a fixed 𝛽 value. Similar behavior was observed for the dimensionless 

hydrodynamic entry length. 

Based on the results reported in Table 4 and Figure 20 we state that they are in accordance with the results reported in 

Table 1 (G1 geometry), as 𝛽 → 1, that is equivalent to the case as 𝛽 → 𝛽1 and, thus, validating all procedures used in this 

research. 

 

4. Conclusions 

The Galerkin-based integral method in a two-dimensional approach is used for investigating the laminar flow fluid in 

doubly-connected ducts (circular with circular core, elliptical with circular core, elliptical with elliptical core, and circular with 

elliptical core). It is demonstrated that the velocity profile, Hagenbach factor, Poiseuille number, and fluid dynamic entry length, 

can be effectively predicted by this technique. The results, when compared with the literature data, showed good concordance, 

thus giving a robust applicability of the method and the parameterizations considered for the geometries studied here. 

Depending on the duct geometry, aspect ratio, and the number of base functions considered, we have variations in 

computational effort and accuracy in the obtained results. The study showed that, especially for elliptical core geometries, to use 

a smaller number of base functions is more advantageous. For smaller aspect ratio, for example, 0 < 𝛽 < 0.1 and even 0 < 𝛽 <

0.4, higher computational time and reduced accuracy were verified. Further, the obtained results show that the dimensionless 

velocity distribution presents a peak in the annular region which location is dependent on the duct shape (geometry and aspect 

ratio).  

Finally, the GBI method may be used to predict fluid flow behavior in a duct of different shapes, in which solutions or 

available data do not exist. 

In view of the applicability of the Galerkin-based integral method in unconventional geometries, the authors recommend 

to study fluid flow in duct of different geometries, in which solutions or available data do not exist, and in circular ducts with 

incrustations, which are originated of paraffin depositions in oil transportation, or solid particles in areas of basic sanitation.  
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