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Abstract 

The relevance in studying climatological phenomena is based on the influence that variables of this nature exert on the 

world. Among the most observed variables, temperature stands out, whose effect of its variation may cause significant 

impacts, such as the proliferation of biological species, agricultural production, population health, etc. Probability 

distributions have been studied to verify the best fit to describe and/or predict the behavior of climate variables and, in 

this context, the present study evaluated, among six probability distributions, the best fit to describe a historical 

temperature series. minimum monthly mean. The series used in this study encompass a period of 38 years (1980 to 

2018) separated by month from the weather station of the Manaus - AM station (OMM: 82331) obtained from 

INMET, totaling 459 observations. Difference-Sign and Turning Point tests were used to verify data independence and 

the maximum likelihood method to estimate the parameters. Kolmogorov-Smirnov, Anderson-Darling, Cramér-von 

Mises, Akaike Information Criterion and quantile-quantile plots were used to select the best fit distribution. Log-

Normal, Gama, Weibull, Gumbel type II, Benini and Rice distributions were evaluated, with the best performing Rice, 

Log-Normal and Gumbel II distributions being highlighted. 

Keywords: Distribution adjustment; Temperature data; Rice distribution; Log-Normal distribution; Gumbel II 

distribution. 

Resumo  

A relevância em estudar fenômenos climatológicos baseia-se na influência que variáveis dessa natureza exercem no 

mundo. Entre as variáveis mais observadas, destaca-se a temperatura, cujo efeito de sua variação pode vir a causar 

impactos significativos, como na proliferação de espécies biológicas, produção agrícola, saúde da população, etc. 

Distribuições de probabilidade vêm sendo estudadas para verificar o melhor ajuste para descrever e/ou prever o 

comportamento de variáveis climáticas e, sob esse contexto, o presente estudo avaliou, dentre seis distribuições de 

probabilidade, a de melhor ajuste para descrever uma série histórica de temperatura mínima média mensal. As séries 

utilizadas neste estudo englobam um período de 38 anos (1980 a 2018) separados por mês, da estação meteorológica 

da estação Manaus - AM (OMM: 82331) obtidas no INMET, totalizando 459 observações. Foram utilizados os testes 

Difference-Sign e Turning Point para verificar independência dos dados e o método da máxima verossimilhança para 

estimar os parâmetros. Para selecionar a distribuição de melhor ajuste foram utilizados os testes de Kolmogorov-

Smirnov, Anderson-Darling, Cramér-von Mises, Critério de Informação de Akaike e gráficos quantil-quantil. Foram 

avaliadas as distribuições Log-Normal, Gama, Weibull, Gumbel tipo II, Benini e Rice, destacando-se as distribuições 

Rice, Log-Normal e Gumbel II como as de melhor desempenho. 
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Palavras-chave: Ajuste de distribuições; Dados de temperatura; Distribuição rice; Distribuição Log-Normal; 

Distribuição Gumbel II. 

 

Resumen  

La relevancia del estudio de los fenómenos climatológicos se basa en la influencia que tienen en el mundo variables 

de esta naturaleza. Entre las variables más observadas destaca la temperatura, cuyo efecto de su variación puede 

ocasionar impactos significativos, como en la proliferación de especies biológicas, producción agrícola, salud de la 

población, etc. Se han estudiado las distribuciones de probabilidad para verificar el mejor ajuste para describir y/o 

predecir el comportamiento de las variables climáticas y, en este contexto, el presente estudio evaluó, entre seis 

distribuciones de probabilidad, el mejor ajuste para describir un promedio mensual mínimo de una serie histórica de 

temperaturas. La serie utilizada en este estudio cubre un período de 38 años (1980 a 2018) separados por meses, de la 

estación meteorológica de la estación Manaus - AM (OMM: 82331) obtenida del INMET, totalizando 459 

observaciones. Se utilizaron pruebas de signo de diferencia y punto de inflexión para verificar la independencia de los 

datos y el método de máxima verosimilitud para estimar los parámetros. Para seleccionar la distribución de mejor 

ajuste, se utilizaron los gráficos de Kolmogorov-Smirnov, Anderson-Darling, Cramér-von Mises, Akaike Information 

Criterion y cuantiles-cuantiles. Se evaluaron las distribuciones Log-Normal, Gama, Weibull, Gumbel tipo II, Benini y 

Rice, destacándose las distribuciones Rice, Log-Normal y Gumbel II como las de mejor desempeño.  

Palabras clave: Ajuste de distribuciones; Datos de temperatura; Distribución rice; Distribución Log-Normal; 

Distribución de Gumbel II. 

 

1. Introduction  

The relevance of studying climatological phenomena is based on the influence that variables of this nature have in 

different areas of knowledge or even in everyday life. Among the most observed variables, the temperature stands out, whose 

effect of its variation can cause significant impacts, such as in the proliferation of animal and vegetable species, agricultural 

production, population health, etc. From this perspective, analyzes of historical series of climatic variables have been carried 

out in order to describe and/or predict the behavior of these variables, as studies by (Astolpho (2003); Berlato & Althaus 

(2010); Araújo et al. (2010); Assis et al. (2013); Gomes et al. (2015); Silva et al. (2013); Assis et al. (2018); Ximenes et al. 

(2020); de Mendoza Borges et al. (2020); Aguirre et al. (2020) and Santiago et al. (2020)) whose objective was to verify the 

best fit to describe climatological measures in cities in Brazil. 

According to Fisch (1998), the region that presents the greatest vulnerability to climatic changes in Brazil is the 

Amazon and the Northeast, where they constitute what could be called climatic change hot spots, being associated with a high 

probability of higher average temperature increase (around five degrees centigrade, until the end of the century) than predicted 

for the rest of the Brazilian territory. According to Gomes (2015), the reasons for Manaus being more vulnerable to climate 

change in Brazil are due to global climate variations from natural causes, as well as changes in land use, for example, within 

the Amazon region itself. , that is, for anthropic cause. 

According to Fisch (1998), the city of Manaus is located in the heart of the Amazon, classified as one of the most humid 

regions in the whole country. The city's climate is humid tropical, contained by high temperatures, high humidity and torrential 

rain. The author mentioned above also mentions that researchers have been elaborating models, through the processing of 

supercomputers of series of information of all kinds, linked to climatic situations, to try to predict future trends of climate 

change, in different scenarios. 

Alexander et al. (2006) carried out a research, considering more than 1,400 meteorological stations and verified the 

occurrence in the increase of the minimum temperatures in 70.0% of the analyzed continental regions, including South 

America. It highlights Guarienti et al. (2004) that one of the justifications of studying the behavior of minimum temperature is 

the fact that the production of wheat in the country is strongly linked to this climatic variable. 

Araújo et al. (2010) point out that verifying the probability distribution of variables associated with meteorological 

phenomena has the potential to assist in the execution of planning associated with agricultural activities, forecasting the 
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climatic behavior of a given region of the country, among others. Catalunya et al. (2002) highlights that the temperature of a 

region can be estimated in probabilistic terms, through the use of probability distributions adjusted to historical data series. 

Also according to Catalunha et al. (2002), the probability density functions are associated with the behavior of the 

data, in which these functions are characterized by having the ability to adjust for small or large databases, in addition to 

having specificities regarding the number of parameters, behavior such as: asymmetry, shape of bathtub and among others. 

Still in the same context, the present study aims to evaluate, among six probability distributions, which offers the best fit to the 

historical series of minimum monthly average temperature in the city of Manaus, in Amazonas. 

 

2. Material and Methods 

The city of Manaus, in Amazonas, located in the Northern Region of Brazil, latitude 03o06’07’’ and longitude 

60o01’30’’ with a tropical climate, has an area of 11.401.092 km2, with an estimated population of 2.145.444 inhabitants and 

density of 188.18 hab./km2 (IBGE, 2018), <www.ibge.gov.br>. The climate of Manaus is considered to be a tropical humid 

monsoon (type Am according to the Koppen-Geiger climate classification), with an annual average compensated temperature 

of 27ºC and relatively high air humidity, with a rainfall index of around 2.300 millimeters per year. The seasons are relatively 

well defined when it comes to rain: winter is relatively dry, and summer is rainy. Due to the proximity of the Equator, the heat 

is constant from the local climate. There are no cold days in winter, and very intense polar air masses in the south-central part 

of the country and the southwest of the Amazon rarely have any effect on the city. According to data from the National 

Institute of Meteorology (INMET), <https://portal.inmet.gov.br/>, since 1961 the lowest temperature recorded in Manaus was 

12.1ºC on July 9, 1989, and the highest reached 39ºC on September 21, 2015. 

This quantitative research is characterized by the use of quantification, both in the collection as in the treatment of 

information, using statistical techniques (Richardson (1999); Pereira et al. (2018)). The monthly series of average minimum 

temperature used in this study covers a period of 38 years (1980 to 2018) separated by month, from the weather station of the 

Manaus - AM station (OMM: 82331), compiled from the historical series of average minimum temperature obtained in 

INMET. To verify data independence, Difference-Sign and Turning Point Test were applied. Parameter estimates were 

obtained using the maximum likelihood method. The Kolmogorov-Smirnov (KS), Anderson-Darling (AD) and Cramér-von 

Mises (CVM) tests were used as a criterion to verify the model that best fit the data, as well as the Akaike Information 

Criterion (AIC). Quantile-quantile plots were also used as a criterion of adequacy and distribution selection with the best fit. 

The distributions evaluated are all implemented in software R version 4.0.2 (R Core Team, 2020), namely: Log-Normal, 

Gama, Weibull, Gumbel type II, Benini and Rice. The R libraries used were: iki.dataclim (Orlowsky, 2014), for homogeneity 

tests; randtests (Mateus & Caeiro, 2014), for randomness tests; fitdistrplus (Dellignette-Muller & Dutang, 2015), for 

adjustments; stats (R Core Team, 2020), and goftest (Faraway et al., 2017) for fit quality; car (Fox & Weisberg, 2019) for 

quantile-quantile charts. 

 

2.1 Tests of independence 

Many statistical procedures require a random sample (Brockwell & Davis, 2016), such as those performed in this 

work. Such a condition is not always valid and can be tested using a statistical hypothesis test. Therefore, we must test the 

hypothesis that  is a sequence of independent and identically distributed random variables (i.i.d.) or not. 
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2.2 Difference-Sign Test 

This test counts number of points  Where the sequence  increase, i.e. where 

 or equivalently the number of times the differenced sequence,  is positive. Thus, we can define the 

statistic  as,  

 

For a sequence of i.i.d. random variables, we know that  and . A large positive 

(or negative) value of  indicates the presence of an increasing (or decreasing) trend in the data. 

 

2.3 Turning Point Test 

 The main idea of this test is the sequence  is random, three successive values, 

 are equally likely to occur in any of the six possible orders with equal probability. In Only four of 

these would there be a turning point, namely When the greatest or the least of the three points is in the Middle, i.e., 

 is a turning point if  and  or if  and . The probability 

of having a turning point in any set of these values is then 2/3 (Mateus & Caeiro, 2013). Let the statistic  representes the 

number of turning points of the sequence , 

 

 

For a sequence of i.i.d. random variables, the mean value and variance of  are  and 

, respectively. A large value of  indicates that the sequence is fluctuating more rapidly 

than expected for i.i.d. variables. On other hand a value  Much smaller than zero indicates a positive correlation 

between neighbouring observations. 

 

2.4  The distributions 

2.4.1 Log-Normal distribution 

Let X be a normally distributed random variable, so  has a Normal distribution. Likewise, if Y has a 

Normal distribution, then the exponential function of Y, , has a Log-Normal distribution with f.d.p 

 

, 

 

with mean and variance  and  (Johnson et al., 1995). 

Its cumulative distribution function is 
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. 

2.4.2 Gama distribution 

The Gama distribution (Shea, 1988) with parameters shape =  and scale =  has density 

 where  and . 

with mean and variance  

 and , 

and cumulative distribution function given by 

. 

2.4.3 Weibull distribution 

The distribution Weibull (Weibull et al., 1951), with parameters of shape  and scale , has density give by 

, 

with mean and variance of a Weibull distribution 

 and , 

cumulative distribution function given by  

, for , and  for . 

2.4.4 Gumbel II distribution 

The density distribution Gumbel-II (Gumbel, 1954) for a response  is 

, 

for . The cumulative distribution function is  

. 

The mean and variance of  given by  

 when  e 
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 when . 

2.4.5 Benini distribution  

     The Benini distribution (Benini, 1905) has a probability density function that can be written as 

 for , and shape parameter . 

The cumulative distribution function for  is  

. 

2.4.6 Rice distribution 

The Rice distribution (Rice, 1945) has a density function 

, 

where  and  is the modified Bessel function of the first zero order type. The hope and variance of are 

given by 

, where  and 

. 

The cumulative distribution function given by 

, 

where  is function  of Marcum given by 

. 

2.5 The goodness of fit test  

The Akaike information criterion (AIC) provides a means for selecting models and, in this case, as a criterion for 

selecting the model with the best fit for the data studied here. The Kolmogorov-Smirnov, Anderson-Darling and Cramér-von 

Mises tests are often used as adherence tests, but they are also resources to measure the quality of the fit of a distribution to the 

analyzed data, considering that the higher the p-value (greater adherence), better fit the data to the evaluated model. Similarly, 

quantile-quantile plots are commonly used to compare a data set against a theoretical model. This can provide an assessment of 

the “good fit” that is graphical, rather than reducing to a numerical summary. 
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2.5.1 Akaike Information Criterion 

The Akaike information criterion was developed by Akaike (1974) from the Kullback-Leibler distance to test whether 

a given model is adequate. Let k be the number of parameters estimated in the model and  the maximum value of the 

likelihood function for the model. So the AIC value of the model is 

. 

Among the models evaluated, the model that points to the lowest AIC value is considered to be the best fit. 

 

2.5.2 Kolmogorov-Smirnov test 

The Kolmogorov – Smirnov test (Durbin, 1973) is a non-parametric test on the equality of continuous and one-

dimensional probability distributions that can be used to compare a sample with a reference probability distribution (one-

sample K – S test). The Kolmogorov – Smirnov statistic quantifies the distance between the empirical distribution function of 

the sample and the cumulative distribution function of the reference distribution. The empirical distribution function  for  

observations  independent and identically distributed is defined as 

, 

where  is the indicator function, equal to 1 if  and equal to 0, otherwise. As for the set of distances, we 

have to  it is the supreme of the set of distances. By the Glivenko-Cantelli theorem, if the sample comes from the 

distribution  , so , converge to 0 almost certainly on the edge when  tends to infinity. 

. 

 

2.5.3 Anderson-Darling test  

The Anderson-Darling test (Anderson & Darling, 1952) assesses whether a sample comes from a specified 

distribution. It makes use of the fact that, when given a hypothetical underlying distribution and assuming that the data arise 

from that distribution, the cumulative distribution function of the data can be assumed to follow a uniform distribution. The 

data can be tested for uniformity with a distance test. The formula for test statistic A to assess whether data  

(note that the data must be put in order) comes from an accumulated distribution function  is 

 

where 

. 

The test statistic can then be compared with the critical values of the theoretical distribution. In this case, no 

parameters are estimated in relation to the cumulative F distribution function. 
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2.5.4 Cramér-von Mises test 

The Cramér-von Mises criterion is a criterion used to judge the fit quality of an accumulated distribution function  

compared to a given empirical distribution function  (Braun (1980); CSöRgő & Faraway (1996)). Let  

observed values, in ascending order. So the statistic is 

 

 

If this value is greater than the tabulated value, then the hypothesis that the data came from the F distribution in 

question can be rejected. 

 

2.5.5 Quantile-Quantile plot 

A probability plot or a quantile-quantile plot (Q-Q) is a graphical presentation designed by Wilk & Gnanadesikan 

(1968) to compare a set of data to a particular probability distribution or to compare it with another set of data. When 

comparing observations to a hypothetical distribution, take a random sample  of some unknown 

distribution with cumulative distribution function  and be   the ordered observations. Depending on 

the particular formula used for the empirical distribution function, the i-th order statistic is an estimate of the  , 

,..., quantile. Suppose that the order statistic is an estimate of the   quantile, i.e 

, 

so 

. 

If we knew the shape of the true F distribution function, then the plot of  versus  would form approximately 

a straight line based on . A probability plot is a plot of  versus , where  denotes the 

cumulative distribution function associated with the hypothetical distribution. The probability graph should fall approximately 

on the line  if . If  and  differ only by a change in location and scale, if , then 

the plot should fall more or less on the line . 

The amount in  it is called the plot position for the probability plot. This 

particular formula for the plotting position is attractive because it can be shown that for any continuous distribution 

 (Nelson (1982); Stedinger et al. (1993)). That is, the i-th plot position defined as 

, is the expected value of the real distribution function evaluated in the order statistic  (Atkinson (1985); 

Fox (2016)). 
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3. Results and Discussion  

The randomness tests applied to the data under a 95% confidence level showed that only the Difference-Sign test 

rejected the hypothesis of randomness of the data in the months of February and December (p-value < 0.05). The Turning 

Point Test did not reject randomness at any time (p-value > 0.05), also at a 95% significance level. The summary measures for 

the monthly average minimum temperature data are presented in Table 1. The series boxplots can be seen in Figure 1. 

 

Table 1. Randomness tests. 

Months Difference-Sign Turning Point Test 

1-January 0.584 0.897 

2-February           <0.001 0.237 

3-March 0.405 0.693 

4-April 0.782 0.693 

5-May 0.273 0.517 

6-June 0.100 0.364 

7-July 0.782 1.000 

8-August 0.782 0.430 

9-September 0.405 0.237 

10-October 0.405 1.000 

11-November 0.574 0.790 

12-December 0.013 0.693 

Source: Authors. 

 

Figure 1. Boxplot for the monthly historical series of minimum temperature from 01/01/1980 to 12/31/2018 of the Manaus 

meteorological station. 

 

Source: Authors. 

When analyzing the boxplots, there is a varied behavior between the series, with months showing symmetry, as in 

March, and others, asymmetry on the right, as evidenced in September. Already then, there are indications that the probability 

distribution selected to describe the month of March may not be the most suitable to describe the data of average minimum 

temperature for the month of September, for example, and this distinction is due to the distinct behavior between the series. 

Except in the months of June, July and August, all months presented at least one outlier, that is, at least one month of the 
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observed years, except for those already mentioned, indicated a temperature very different from the others recorded. The 

descriptive measures of the data set can be seen in Table 2. 

 

Table 2. Descriptive measurements of the monthly historical series of minimum temperature from 

01/01/1980 to 06/01/2019 of the Manaus meteorological station. 

Months n Mean Standard deviation Median Minimum Maximum 

1-January 39 23.386 1.097 23.174 20.768 26.723 

2-February 38 23.412 0.982 23.387 20.796 25.383 

3-March 38 23.494 0.907 23.469 20.613 25.448 

4-April 39 23.500 0.872 23.487 20.867 25.303 

5-May 39 23.696 0.906 23.574 20.935 25.810 

6-June 39 23.452 1.044 23.237 20.983 25.483 

7-July 38 23.386 1.001 23.342 21.174 25.203 

8-August 38 23.762 1.157 23.634 21.590 26.252 

9-September 38 24.098 1.183 23.870 21.887 27.543 

10-October 38 24.285 1.111 24.173 22.026 27.219 

11-November 37 24.091 1.072 23.873 21.970 26.363 

12-December 38 23.797 0.943 23.569 21.723 26.458 

Source: Authors. 

 

Assuming that all distributions could adequately describe the monthly minimum temperature data, the parameters for each one 

were estimated. The graphs of estimated curves of the distributions on monthly histograms can be seen in Figure 2. 

 

Figure 2. Adjusted curves on histogram for the monthly historical series of average minimum temperature in Manaus 

meteorological station. 

 

Source: Authors. 
 

From the graphical point of view, it can be seen that the Rice distribution has the worst performance to describe the 

data for the month of March, with extremely different estimates for the parameters  and , when compared 

to the estimates to describe the other months ( ) and ( ), whose curve cannot be 
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observed due to different limits for the x and y axes (x ranges from approximately 0 to 60 and y, from 0 to 0.04). The estimated 

curves generated by the Benini, Rice and Gumbell II distributions for the other months, as expected, approach the histogram 

only on occasions when the data have positive asymmetry. Except in January, the curves for the Gamma, Log-Normal and 

Rice distributions appear superimposed, pointing to similar adjustments. 

Considering the adherence of the distributions to the data, assessed by the Kolmogorov-Smirnov, Anderson-Darling 

and Cramér-von Mises tests, the three tests agree that the Gamma, Log-Normal, Gumbell II, Weibull and Rice distributions fit 

the data, except in the cases of January and June. The hypothesis that the data come from a Rice distribution is rejected by the 

three tests at the level of 5% significance (p-value <0.001) only for the month of January. 

As for the month of June, only the Kolmogorov-Smirnov test rejected the hypothesis that the data follow Weibull 

distribution (p-value = 0.098). The data for the months of June to December adhere to the Benini distribution according to the 

three tests, varying in the other months. For the quality of the fit, it was taken into account that the greater the adherence 

(greater p-value) the better the adjustment, according to the adherence tests, the results of which are found in Tables 3, 4 and 5. 
 

Table 3. P-value of the Kolmogorov-Smirnov test for the probability distributions evaluated. 

Months Gama Benini Log-Normal Gumbel II Weibull Rice 

1-January 0.654 0.023 0.685 0.315 0.280 <0.001 

2-February 0.883 0.038 0.862 0.317 0.577 0.918 

3-March 0.474 <0.001 0.453 0.073 0.427 0.497 

4-April 0.602 0.001 0.588 0.095 0.198 0.626 

5-May 0.631 0.001 0.619 0.118 0.346 0.649 

6-June 0.329 0.051 0.350 0.517 0.098 0.285 

7-July 0.901 0.587 0.919 0.895 0.331 0.869 

8-August 0.664 0.797 0.698 0.96 0.242 0.591 

9-September 0.495 0.263 0.526 0.474 0.223 0.436 

10-October 0.885 0.317 0.900 0.876 0.385 0.853 

11-November 0.583 0.286 0.604 0.681 0.162 0.545 

12-December 0.621 0.137 0.645 0.738 0.349 0.579 

Source: Authors 
 

Table 4. P-value of the Anderson-Darling test for the probability distributions evaluated. 

Months Gama Benini Log-Normal Gumbel II Weibull Rice 

1-January 0.697 0.053 0.701 0.211 0.193 <0.001 

2-February 0.971 0.039 0.966 0.272 0.692 0.977 

3-March 0.489 0.004 0.485 0.063 0.244 0.490 

4-April 0.488 0.005 0.479 0.060 0.261 0.501 

5-May 0.745 0.007 0.746 0.120 0.295 0.737 

6-June 0.468 0.101 0.489 0.486 0.163 0.426 

7-July 0.958 0.370 0.964 0.844 0.587 0.943 

8-August 0.746 0.862 0.776 0.975 0.272 0.682 

9-September 0.622 0.377 0.644 0.515 0.174 0.574 

10-October 0.875 0.487 0.897 0.880 0.245 0.824 

11-November 0.469 0.473 0.494 0.780 0.144 0.421 

12-December 0.778 0.214 0.802 0.710 0.174 0.725 

Source: Authors  
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Table 5. P-value of the Cramér-von Mises test for the probability distributions evaluated. 

Months Gama Benini Log-Normal Gumbel II Weibull Rice 

1-January 0.664 0.045 0.675 0.261 0.211 <0.001 

2-February 0.919 0.032 0.912 0.285 0.584 0.928 

3-March 0.462 0.003 0.463 0.086 0.203 0.453 

4-April 0.492 0.004 0.488 0.082 0.218 0.494 

5-May 0.695 0.005 0.701 0.160 0.264 0.675 

6-June 0.390 0.099 0.409 0.504 0.139 0.351 

7-July 0.939 0.371 0.949 0.906 0.515 0.918 

8-August 0.656 0.832 0.687 0.976 0.247 0.589 

9-September 0.482 0.325 0.503 0.509 0.163 0.439 

10-October 0.827 0.440 0.850 0.872 0.271 0.777 

11-November 0.480 0.466 0.505 0.799 0.148 0.432 

12-December 0.685 0.195 0.709 0.700 0.186 0.636 

Source: Authors. 

 

The results of the Akaike criterion can be seen in Table 6. 

 

Table 6. AIC values for the probability distributions assessed. 

Mês Gama Benini Log-Normal Gumbel II Weibull Rice 

1-January 120.640 130.380 120.570 128.610 130.830 274.030 

2-February 109.730 123.950 109.920 120.970 111.520 109.420 

3-March 103.820 127.680 104.090 120.370 106.180 103.370 

4-April 103.490 124.910 103.780 119.840 104.750 102.980 

5-May 106.200 127.960 106.370 120.620 110.900 105.960 

6-June 116.780 124.830 116.670 121.420 123.300 117.050 

7-July 110.890 116.090 110.900 115.790 114.210 110.930 

8-August 121.420 120.610 121.200 121.230 129.170 121.940 

9-September 122.920 123.540 122.640 124.240 133.970 123.570 

10-October 118.280 120.020 118.030 119.240 128.380 118.850 

11-November 112.650 113.340 112.440 112.920 120.380 113.120 

12-December 105.850 110.290 105.610 107.740 117.260 106.380 

Source: Authors. 

 

In inconclusive results, where there was a tie in relation to the tests, in the cases of May and June, the quantile-

quantile graph was decisive in favor of the Log-Normal distribution in both cases, against the Rice and Gumbel II distributions, 

respectively. In this case, it is preferable the distribution whose quantile-quantile graph has greater linearity and a greater 

number of points within the simulated confidence envelopes, which can be seen in Figure 3. 
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Figure 3. Quantile-quantile graphs for the quality of the adjustment for the months of May and June. 

 

 

Source: Authors. 

 

Table 7 contains the distributions selected as the best fit for the monthly minimum daily temperature data for the 

Manaus meteorological station according to the adopted criteria. 

 

Table 7. Best-fit distributions for monthly average minimum temperature data. 

Months Jan* Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Dist. LN RC RC RC LN LN LN GB LN LN GB LN 

*Note: LN, dist. Log-Normal; RC, dist Rice; GB, dist. Gumbel II. Source: Authors. 

 

Finally, the selected curves, according to the criteria presented for the evaluated distributions, according to the months 

to which they fit can be seen in Figure 4. 
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Figure 4. Curves adjusted on histogram for the monthly historical series of minimum temperature of the average 

meteorological station in Manaus. 

 

  

Source: Authors. 

 

4. Conclusion  

The Rice, Log-Normal and Gumbel type II distributions were the distributions selected as the best fit to describe the 

series of average minimum temperature of the Manaus station. It is emphasized here, as observed graphically and by the 

Kolmogorov-Smirnov, Anderson-Darling and Cramér-von Mises tests, that, in cases where the Log-Normal distribution 

emerges as the distribution with the most appropriate adjustment, the Gamma and Rice distributions could also be adopted with 

little difference between them (except in January), thus being recommended in the description of the behavior for mean 

minimum temperature data as potential competitors to those usually used. It is also important to highlight that, for studies of 

average minimum temperature data from other stations and/or another time interval, although the data sets are of the same 

nature, the behavior varies, also varying the distribution that can describe them, then it is up to the comparison of tests and 

distributions for a more adequate result. Therefore, future research can be carried out using other climatic variables, as well as 

in other states of Brazil, in order to investigate possible probabilistic models that describe such recurrences associated with 

climatic variables. 
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