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Abstract  

The objectives of this study were to characterize titanium (Ti) surfaces treated by ion implantation by immersion in 

oxygen plasma (O-PIII) at different temperatures, correlating these implanted layers with therapeutic effects and with 

osteogenesis, as well as the formation of monotypic biofilms microbial. The groups were divided into: a) Ti (pre-

treatment) b) Ti O-PIII at 400 ° C. c) Ti O-PIII at 500 ° C. d) Ti O-PIII at 600 ° C. The properties and surface 

characteristics were evaluated according to the roughness, texture, corrosion resistance, formation of new phases and 

the identification of chemical compounds present. Cellular analyzes investigated cell interaction, viability, total protein 

content, alkaline phosphatase and quantification of mineralized nodules using MG-63 cells. The formation of monotypic 

microbial biofilms, including P. aeruginosa, S. aureus, S. mutans and C. albicans were evaluated. The increase in surface 

roughness, corrosion resistance and oxygen content, leading to the formation of TiO2-rutile with more intense peaks and 

in greater numbers according to the increase in the substrate temperature, ionic implanted Ti samples was observed. 

There was also a significant increase in cell viability, total protein production, alkaline phosphatase activity and 

formation of mineralization nodules for the group treated with O-PIII at 600ºC compared to other groups, in addition to 

a reduction of microorganisms in the groups treated with O- PIII. Therefore, treatment with O-PIII at 600ºC in Ti grade 

IV showed favorable results for its use. 

Keywords: Osteogenesis; Biocompatibility; O-PIII; Biofilm; Titanium alloy. 

 

Resumo  

Os objetivos deste estudo foram caracterizar superfícies de titânio (Ti) tratadas por implantação de íons por imersão em 

plasma de oxigênio (O-PIII) em distintas temperaturas, correlacionando tais camadas implantadas com efeitos 
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terapêuticos e com osteogênese, bem como a formação de biofilmes monotípicos microbianos. Os grupos foram 

divididos em: a) Ti (pré-tratamento) b) Ti O-PIII a 400 ° C. c) Ti O-PIII a 500 ° C. d) Ti O-PIII a 600 ° C. As 

propriedades e características superficiais foram avaliadas de acordo com a rugosidade, textura, resistência à corrosão, 

formação de novas fases e a identificação de compostos químicos presentes. As análises celulares investigaram a 

interação celular, viabilidade, conteúdo de proteína total, fosfatase alcalina e quantificação de nódulos mineralizados 

usando células MG-63. A formação de biofilmes microbianos monotípicos, incluindo P. aeruginosa, S. aureus, S. 

mutans e C. albicans foram avaliadas. O aumento da rugosidade superficial, da resistência à corrosão e do teor de 

oxigênio, levando à formação de TiO2-rutilo com picos mais intensos e em maior número de acordo com o aumento da 

temperatura do substrato amostras de Ti implantadas iônicas foi observado. Houve também aumento significativo na 

viabilidade celular, produção de proteína total, atividade da fosfatase alcalina e formação de nódulos de mineralização 

para o grupo tratado com O-PIII a 600ºC em comparação com outros grupos, além de redução de microrganismos nos 

grupos tratados com O-PIII. Portanto, o tratamento com O-PIII a 600ºC em Ti grau IV apresentou resultados favoráveis 

para sua utilização. 

Palavras-chave: Osteogênese; Biocompatibilidade; O-PIII; Biofilme; Liga de titânio. 

 

Resumen  

Los objetivos de este estudio fueron caracterizar superficies de titanio (Ti) tratadas mediante implantación de iones por 

inmersión en plasma de oxígeno (O-PIII) a diferentes temperaturas, correlacionando estas capas implantadas con efectos 

terapéuticos y con osteogénesis, así como la formación de biofilms monotípicos microbianos. Los grupos se dividieron 

en: a) Ti (pretratamiento) b) Ti O-PIII a 400 ° C c) Ti O-PIII a 500 ° C d) Ti O-PIII a 600 ° C. Las propiedades y se 

evaluaron las características superficiales según rugosidad, textura, resistencia a la corrosión, formación de nuevas fases 

e identificación de compuestos químicos presentes. Los análisis celulares investigaron la interacción celular, la 

viabilidad, el contenido total de proteínas, la fosfatasa alcalina y la cuantificación de nódulos mineralizados utilizando 

células MG-63. Se evaluó la formación de biofilms microbianos monotípicos, incluidas P. aeruginosa, S. aureus, S. 

mutans y C. albicans. Se observó el aumento de la rugosidad superficial, la resistencia a la corrosión y el contenido de 

oxígeno, lo que dio lugar a la formación de TiO2-rutilo con picos más intensos y en mayor número según el aumento de 

la temperatura del sustrato, se observaron muestras de Ti implantado iónico. También hubo un aumento significativo 

de la viabilidad celular, producción total de proteínas, actividad de la fosfatasa alcalina y formación de nódulos de 

mineralización para el grupo tratado con O-PIII a 600 ° C en comparación con otros grupos, además de una reducción 

de microorganismos en los grupos tratados con O - PIII. Por tanto, el tratamiento con O-PIII a 600ºC em Ti grado IV 

mostró resultados favorables para su uso. 

Palabras clave: Osteogénesis; Biocompatibilidad; O-PIII; Biofilms; Aleación de titanio. 

 

1. Introduction  

Titanium (Ti) stands out as a material of interest for orthopedics and dentistry due to a range of outstanding 

characteristics such as biocompatibility, easy manipulation, high corrosion resistance, high modulus of elasticity, accessible 

acquisition and affordability (Gimmel’farb, &Abrarov 1980, Thelen et al.,2004; Simdabe, 2014). Ti implants should remain in 

the human body for a long time and bear the same loads as the surrounding bone, so it is important that these implants not only 

allow osseointegration, but also present mechanical characteristics similar to bone tissue. Although the widespread use of Ti for 

the implant area, intense investigation efforts have been carried out in order to optimize the properties of the implanted surfaces 

for a rapid and adequate biofixation (Kohavi et al.,2013). When Ti is exposed to atmospheric air, a thin passivating layer of 

native Ti oxide is formed, which facilitates biocompatibility (Yamagami et al.,2014). However, it can be rapidly destroyed by 

relative movements and friction between the implant and the tissue (Mandl et al., 2001). Because of these frictions, Ti particles 

can be locally deposited and further transported to gingiva, lung and spleen, possibly causing sequelae (Mandl et al., 2001, 

Guglielmotti et al., 2015, Heringa et al., 2018). Long-term effects may cause distinct issues, such as loss of the implant itself, 

often resulting in prosthetic corrective surgeries. In this context, it is essential to evaluate interactions between osteoblastic cells 

and the biomaterial. 

Among several surface treatment proposed for Ti implants (Munoz-Castro et al.,2009, Valencia-Alvarado et al., 2010, 

Xiao et al., 2012) oxygen ion implantation represents an effective tool, capable of changing morphology, composition and 

crystalline phase, as well as mechanical and tribological properties (Oliveira et al., 2011, Savonov et al., 2011; Da Silva et al., 

2006, Peláez-Abellán et al., 2012). In addition, it has been previously demonstrated that O-PIII treatment improves 
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osseointegration in rat femurs after 3 months of incubation when compared to untreated Ti implants (Mandl et al., 2001; Mandl 

et al., 2002). Yang et al. (2015) demonstrated that O-PIII treated Ti provides better protein adsorption, adhesion, migration, 

proliferation, mineralization and differentiation of hMSCs (mesenchymal stem cells), indicating that an appropriate treatment 

with O-PIII may improve the biocompatibility and functionality of Ti surface.  

Several characteristics of the implants, including surface composition, topography, hydrophobicity, load, microstructure 

and flexibility influence bacterial adhesion and biofilm formation (Morais et al., 2013, Do Prado et al., 2013). Implant-related 

infections are considered the most serious complication common to the risk of surgical infection, which increases when foreign 

material is implanted. Biomaterial-associated infections are challenging to treat, since bacteria in the biofilm are protected by 

the host immune system. Moreover, ineffective antibiotics represent another consistent obstacle (Zhao et al., 2015). Highly 

resistant bacterial strains, contamination of the surgical area and the surrounding tissue endanger the health of the patients, 

affecting the osseointegration (Zhao et al., 2015, Zaatreh et al., 2016).  

The objectives of this study were the characterization of O-PIII-treated Ti surfaces, the association between the materials 

and osteogenesis (in vitro) and the formation of monotypic microbial biofilms on the surface of the materials. 

 

2. Methods 

2.1 Samples preparation and characterization 

A Grade-4 Ti ingot was machined into disks (12.7 mm in diameter and 3 mm thick) and used as the substrate. Prior to 

oxygen PIII treatment, the specimens were ultrasonically cleaned with acetone for 20 min, and then dried in air.  

Samples were treated in a high temperature PIII reactor (Oliveira et al., 2010) by performing the heating of the substrates 

at controlled temperatures simultaneously with the ion implantation. Thus, three set of samples were immersed in oxygen plasma 

for 1 h, being individually treated under the same operational conditions: at 3x10-3 Torr, with pulses of 7.7 kV / 30 µs / 420 Hz. 

Substrate temperature was the distinct parameter between the three groups (Group 1: Ti O-PIII at 400°C; Group 2: Ti O-PIII at 

500°C; Group 3: Ti O-PIII at 600°C). Group 4 corresponds to untreated titanium. 

Quantitative analysis of oxygen content present on the surface of the samples was performed by EDS (Energy dispersive 

X-ray spectrometry, Bruker, model XFlash Detector 410-M). The formation of new phases was confirmed by X-ray diffraction 

(XRD) with a diffractometer (Panalytical, model X'PERT POWER), CuK α radiation source (λ = 1,5406 Å), angular range at 2θ 

varied from 35º to 90º. Measurements were performed at room temperature, in continuous scan mode, with a speed of 1.2º per 

minute and an angular step of 0.02º. Voltage and electric current used were 45 kV and 40 mA, respectively. The identification 

of the diffracted peaks was done with the help of X’Pert Highscore software, provided by PANalytical BV, taking into account 

the JCPDS (Joint Committee on Powder Diffraction Standards) database. 

The topography of the samples was evaluated by Atomic Force Microscopy using a Veeco equipment, model 

MULTIMODE V. An area of 2 x 2 μm of each sample was probed, using the Flex-Axiom MFA system.  

Corrosion resistance of the samples and the effects of O-PIII treatments, in relation to the chemical treatment, was 

evaluated at chemical level, through the EIS (Electrochemical Impedance Spectroscopy) test.  

For electrochemical analysis a three electrode cell was used, with Ag/AgCl as the reference electrode, a platinum wire 

as the counter electrode and the Ti sample as the working electrode. Tests were performed in simulated body fluid (SBF) solution. 

EIS analyzes were performed with a 10 mV disturbance signal amplitude, in the range between 105 and 10-2 Hz. Measurements 

were calculated after 0, 2, 4, 8, 12 h of submersion. Autolab (Metrohm, 302N) was used to evaluate the samples. In order to 

verify possible microstructural changes resulting from the corrosion tests, the corroded surfaces were examined by scanning 

electron microscopy (SEM, FEI Inspect S50 model). 
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2.2 In vitro cellular analyzes  

MG-63 cell line (Human Osteoblasts) from the cell bank of the Paul Ehrlich Scientific Technical Association 

(APABCAM, Rio de Janeiro, Brazil) was used. Cells were cultivated with Dulbecco's Modified Eagle's Medium (DMEM) 

(Cultilab, Campinas, Brazil) supplemented with 10% Fetal Bovine Serum (FBS) (Cultilab, Campinas, Brazil), penicillin (100 U 

/ mL) and streptomycin (100 μg / mL) (Cultilab, Campinas, Brazil). All tests were developed in accordance with ISO-10993-5 

and described by Andrade et al. (2015) and Prado et al. (2018). 

Cell interaction with the materials was evaluated by SEM after seven days of incubation (n = 02). Cells were fixed with 

paraformaldehyde (4%) at room temperature, dehydrated through an ascending series of ethanol (70%, 90% and 100%) and, 

prior to the analysis, all samples were coated with a thin layer of gold, using a sputter-coating system (Emitech, model SC7620). 

The equipment used was the Inspect S50 model of the FEI brand (Thermo Fisher Scientific, Massachusetts, USA). 

Cells were incubated in contact with the materials for 3 days, thereafter cell viability was quantified by exposing the 

cells to the toxic agent by incubation with the MTT dye (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (Sigma-

Aldrich, Saint Louis, USA) at a concentration of 0.5 mg / mL. After 1 h of incubation, at 37 ºC and 5% CO2, the organic solvent 

DMSO (Dimethylsulfoxide) (Sigma-Aldrich, Saint Louis, USA) was added to solubilize the formazan crystals. For each 

experimental group, n = 05 was determined. Colorimetric microplate reader was used at wavelength 570 nm (Biotek, model 

ELx808cse).  

After being platted and cultivated for 10 days (n = 05 per group), total protein content was calculated, according to the 

modified method of Lowry et al. (1951). For protein extraction, sodium surfactant lauryl sulfate (Sigma-Aldrich, Saint Louis, 

USA) at 0.1% was used. The solution was mixed with Lowry reagent (Sigma-Aldrich, Saint Louis, USA), at room temperature. 

Then, Folin-Ciocalteau reagent (Sigma-Aldrich, Saint Louis, USA) was added to the mixture. A spectrophotometer (Micronal, 

model AJX 1900) at 680 nm was used to calculate the absorbance and the total protein content was measured from a standard 

curve from bovine albumin pre-determined and expressed as µg / ml unit. 

After ten days of cell culture, alkaline phosphatase activity was analyzed and, for each experimental group, n = 05 was 

considered. Thymolphthalein monophosphate and diethanolamine buffer (0.3 M and pH 10.1) substrates were added in glass 

tubes. To this solution, an aliquot of the lysates from each well was added, samples were maintained at 37 °C. Then, Na2CO3 

(0.09 M) and NaOH (0.25 M) solutions were added to the tubes. Absorbance was calculated on a spectrophotometer (Micronal, 

model AJX 1900), at 590 nm. 

After a period of fourteen days of incubation (n = 05 for each experimental group), mineralized nodules were quantified. 

Hank's solution (H6136 - Sigma-Aldrich, Saint Louis, USA) was used for cell culture nutrition, in addition to Alizarin S red dye 

(Sigma-Aldrich, Saint Louis, USA), at a concentration of 2 mg /ml, responsible for staining calcified areas. After one day, acetic 

acid (10%) solvent was added, contents were transferred to centrifuge micro tubes (Sigma-Aldrich, Saint Louis, USA) and 

vortexed (Vortex, model QL 901). Samples were then centrifuged for 20 minutes and the supernatants were transferred to 96-

well plate (Thermo Fisher Scientific, Rochester, NY, USA). Reading was performed using a microplate reader (Biotek, model 

ELx808 IU), under the wavelength of 405 nm.  

 

2.3 Microbial biofilm formation analysis  

Strains were used as reference (ATCC - American Type Culture Collection) of Pseudomonas aeruginosa (ATCC 

15442), Staphylococcus aureus (ATCC 6538), Streptococcus mutans (ATCC 3I5688) and Candida albicans (ATCC 18804). BHI 

(Brain heart infusion) medium (Himedia, Mumbai, Maharashtra, India) was used for culturing the microorganisms, except for 

S. mutans, which requires saccharated BHI liquid medium. For monotypic biofilms formation, samples were distributed in 24-

well microplates (TPP Techno Plastic Products, Trasadigen, Switzerland) (n=5 for each experimental group) (Ti, Ti O-PIII at 
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500° C and Ti O-PIII at 600ºC, and the control group: empty well). Each microbial suspension was standardized in culture 

medium (BHI or saccharated BHI).  

After a one-day incubation period, MTT (3- (4,5-dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide) (Sigma-

Aldrich, Saint Louis, USA) dye was added at a concentration of 0.5 mg / ml. After incubation under light protection, the solution 

was removed, DMSO (Sigma-Aldrich, Saint Louis, USA was added and kept under stirring, in an orbital table. aliquots of 100 

μl of each well were transferred To 96-well plate (Thermo Fisher Scientific, Rochester, NY, USA). Absorbance reading was 

performed by a microplate reader (Biotek, model ELx808cse), at a wavelength of 570 nm.  

These procedures were performed as described by Mello et al. (2019).  

 

2.4 Statistical analysis  

Quantitative data of the results were statistically analyzed by GraphPad Prism 6 software, using one-way ANOVA and 

Tukey's multiple comparison tests. The level of significance adopted was the conventional value of 5%, 0.1% or 0.001%. 

 

3. Results  

3.1 Surface characterization  

According to Figure 1, Ti group (pretreatment) presented, comparatively, low amount of O on their surface (6.94% O), 

while O-PIII-treated Ti groups at 400ºC, 500ºC and 600ºC presented the mean values of 26.31%, 45.66% and 56.61% of O, 

respectively, demonstrating that the higher the temperature reached in the PIII treatment, the greater the atomic percentage of O 

on the surface. In fact, the reactivity of the metal for oxygen uptake is increased with the temperature. The mechanism involves 

the dissolution of oxygen in the metal and its absorption. In addition, the oxygen ions implanted on Ti surface can reach deeper 

layers at higher temperatures due to diffusion process. The oxidation at high temperatures also promotes the development of 

crystalline phases.   

 

Figure 1 - Surface analysis by dispersive energy spectroscopy in the following groups: Ti, Ti O-PIII at 400ºC, Ti O-PIII at 500ºC 

and Ti O-PIII at 600ºC. Dispersive energy spectroscopy. ** p <0.05, *** p <0.001 and **** p <0.0001 compared to Ti * group 

(ANOVA and Tukey test). Asterisks indicates a statistical difference. 

 

 

Source:Authors. 
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Figure 2 shows the presence of TiO2 (rutile phase) peaks in the O-PIII-treated groups at 500ºC and 600ºC, characterized 

mainly at the angle of 27.5º, considering the most intense peak of this phase. The presence of this peak was not identified in Ti 

(pretreatment) and Ti O-PIII groups at 400°C. In fact, a consequence of the increase of the substrate temperature during PIII is 

the facilitation for the formation of the rutile phase, as observed in figure 2, due to the increase of the ratio of O to Ti.   The 

presence of Ti-α had also been observed in all groups. 

 

Figure 2 - Surface analysis by X-ray diffraction in the following groups: Ti, Ti O-PIII at 400ºC, Ti O-PIII at 500ºC and Ti O-

PIII at 600ºC. Ti (    ) and TiO2 rule (     ). 

 

Source:Authors. 

  

Ti (pretreatment) group exhibited relatively flat surfaces with traces of machining marks, as shown in Figure 3 (a). O-

PIII-treated samples exhibited nanometric structures on the surface, indicating a nanostructured TiO2 layer (in the form of round 

grains), as shown in Fig. 3 (b, c and d). According to our results, the higher the temperature reached in the O-PIII-treatment, a 

more numerous of such structures is observed. Figure 4 shows the roughness (RMS – Root mean square) and surface area profile 

values, confirming that increasing the O-PIII temperature, higher the RMS and the surface area. Figure 5 shows that Ti 

(pretreatment) sample, compared to the other O-PIII-treated Ti samples, had the lowest impedance in all evaluated frequencies, 

of almost one order of magnitude lower. This is an indication that the oxygen enriched modified surface layer produced via O-

PIII protects the metal surface from corrosion in SBF medium. O-PIII-treated Ti sample at 600ºC was the one with highest 

impedance at medium frequency. At low frequencies, impedance was not differentiated between samples.  
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Figure 3 - Surface analysis by atomic force microscopy (MFA-3D) in the following groups: a) Ti. b) Ti O-PIII at 400°C. c) Ti 

O-PIII at 500°C. d) Ti O-PIII at 600°C. 

 

Source:Authors. 

 

Figure 4 - Impedance module after 12 h of immersion, in the following groups: Ti, Ti O-PIII at 400ºC, Ti O-PIII at 500ºC and 

Ti O-PIII at 600ºC. Surface roughness (     ) and Surface area increase(     ). 

 

Source:Authors. 
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Figure 5 - Impedance evaluated frequencies Ti (pretreatment) sample (     ) compared to the other O-PIII-treated Ti sample in 

the following groups: Ti O-PIII at 400ºC(     ), Ti O-PIII at 500ºC(     ) and Ti O-PIII at 600ºC(     ). 

 

Source:Authors. 
  

Additional investigation about the corrosion of the surfaces was performed by examining the topography of the surfaces. 

Figure 6 (a) demonstrates a well-defined corrosion site on the surface of Ti sample (pretreatment) as a consequence of SBF 

exposure. In Figure 6 (b, c and d), no specific corrosive sites were identified, only specific areas were observed, due to the 

production process of the samples. 

 

Figure 6 - Photomicrographs obtained by scanning electron microscopy (SEM) of the following groups: a) Ti. b) Ti O-PIII at 

400°C. c) Ti O-PIII at 500°C. d) Ti O-PIII at 600°C. (15,000 x). Arrow: Corrosion point on the sample surface (       ). 

 

 

Source:Authors. 
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3.2 In vitro cell assays  

The cell morphology can be seen in Figure 7 (a) for untreated Ti sample and in Figure 7 (b, c, d) for O-PIII samples 

treated at 400°C, 500°C and 600°C, respectively. In general, all samples allowed cell spreading. We suggest that samples 

submitted to O-PIII treatment had more evident cell adhesion, as cell prolongations were better observed in these treated groups. 

 

Figure 7 - Photomicrograph obtained by SEM of MG-63 cells, surface interaction: a) Ti. b) Ti O-PIII at 400°C. c) Ti O-PIII at 

500°C. d) Ti O-PIII at 600°C (2000 x). Arrows: More evident cellular spreading and projection. 

 

Source:Authors. 
  

Concerning the cellular viability, no statistical difference is observed in Figure 8(a) among O-PIII Ti samples treated 

at 400ºC and 500ºC with the Ti group (pretreatment). However, MG-63 viability was statistically increased (p <0.05) in the 

group submitted to O-PIII treatment at 600ºC, compared to the other groups. Figure 8 also demonstrates that none of the Ti 

groups submitted to O-PIII treatment was statistically cytotoxic compared to the Ti group (pretreatment). 

Concerning the total protein content, Figure 8 (b) demonstrates that groups submitted to O-PIII treatment at 400ºC and 

500ºC had no alterations in protein expression when compared with the Ti group (pretreatment). However, O-PIII-treated Ti 

group at 600ºC had protein expression statistically increased (p <0.0001), when compared to all groups. 

After evaluating the surface characterization and MG-63 assays (Figure 1 to 8) carried out so far, O-PIII-treated group 

at 400ºC was not considered for the following assays as it did not present significant results in the current study. 

Concerning the alkaline phosphatase activity shown in Figure 8 (c), Ti (pretreatment) and O-PIII-treated Ti at 500ºC 

groups did not present significant differences. However, the group submitted to O-PIII treatment at 600ºC statistically increased 

(p <0.05) alkaline phosphatase activity when compared to the Ti group (pretreatment). No statistical changes were observed 

when compared to the O-PIII-treated Ti group at 500°C. 

According to Figure 8 (d), O-PIII-treated Ti group at 600ºC had a statistical increase (p <0.0001) in the amount of 

mineralization nodules compared to Ti (pretreatment) and O-PIII-treated Ti group at 500°C. However, Ti (pretreatment) group 

and O-PIII-treated Ti group at 500°C had no statistical difference when compared to each other. 

 

  

http://dx.doi.org/10.33448/rsd-v10i6.15644


Research, Society and Development, v. 10, n. 6, e37210615644, 2021 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v10i6.15644 
 

 

10 

Figure 8 - Cellular analysis with the following groups: Ti, Ti O-PIII at 400ºC, Ti O-PIII at 500ºC and Ti O-PIII at 600ºC. a) Cell 

Viability. b) Total protein content. c) Alkaline phosphatase activity. d) Quantification of mineralization nodules. ** p <0.05 and 

**** p <0.0001 compared to the * (ANOVA and Tukey test). Asterisks indicates a statistical difference. 

 

Source:Authors. 
 

3.3 Formation of Microbial Biofilms  

As observed in Figure 9 (a), in Ti (pretreatment) and O-PIII-treated Ti samples at 500ºC and 600ºC, the monotypic 

biofilm formation of P. aeruginosa was statistically decreased (p <0.001, p <0.001 and p<0.00001, respectively) compared to the 

control group. However, the group treated with O-PIII at 600°C statistically decreased the amount of P. aeruginosa when 

compared to the O-PIII-treated group at 500°C and Ti (pretreatment).  

In Figure 9 (b), only the group treated with O-PIII at 600ºC presented a statistical decrease (p <0.001) compared to the 

control group, regarding monotypic biofilm formation of S. aureus. However, Ti (pretreatment) and O-PIII-treated Ti groups at 

500ºC and 600ºC did not show significant changes in the amount of S. aureus when compared between themselves.  

In Figure 9 (c), groups submitted to O-PIII treatment at 500ºC and 600ºC showed a statistical decrease (p <0.001) in the 

quantification of S. mutans, compared to Ti (pretreatment) and control groups, however, these groups had no alterations when 

compared to each other.  

In Figure 9 (d), O-PIII-treated at 500ºC and 600ºC groups presented statistical decrease (p <0.001) in the amount of C. 

albicans compared to Ti (pretreatment) and control groups, however, these groups had no significant differences when compared 

to each other. 
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Figure 9 - Quantification of monotypic microbial biofilms in the following groups: Control, Ti, Ti O-PIII at 500ºC and Ti O-

PIII at 600ºC. a) P. aeruginosa. b) S. aureus. c) S. mutans. d) C. albicans. *** p <0.001 and **** p <0.0001 compared to the * 

(ANOVA and Tukey test). Asterisks indicates a statistical difference. 

 

Source:Authors. 
 

4. Discussion  

Treatment with plasma immersion ion implantation (PIII) is responsible for modifying complex surfaces not altering 

sample size, moreover, it is possible to work with PIII in a wide temperature range, allowing the formation of structures and 

phases without balancing (Rossi et al., 2004, Gupta, 2011)  .The advantages of PIII implantation system consist in the fact that 

the period of treatment do not depend on sample size and does not require special sample manipulation, even when surfaces are 

irregular (Ueda et al., 2007).  

Atmospheric oxygen has strong affinity for Ti, forming a passive layer of oxide on its surface, which serves as a 

protective layer against corrosion. The thickness of this oxide layer may undergo some changes according to environmental 

conditions and treatment (Hansen et al., 2015). Recently, Mohan et al. (2017) evaluated chemical compositions of surface 

composed by Ni, Ti and O on NiTi alloy substrates subjected to O-PIII technique. They observed an increase in oxygen 

percentage in the substrates of the studied alloys, and their spectra showed the presence of nickel, Ti and oxygen on these 

surfaces, indicating that enriching the surface with the oxygen treatment is essential for the formation of stoichiometric TiO2. 

These results corroborate our study, in which the formation of a greater amount of oxygen in the samples of Ti treated with O-

PIII at 400ºC, 500ºC and 600ºC was observed. Moreover, we demonstrated that the higher the temperature used in the treatment, 

the higher the presence of oxygen on the surface.  

The formation of rutile phase TiO2 after Ti treatment has recently been reported in the literature by several studies 

(Rafieian et al., 2015, Guan, & Lou 2018, Sasahara et al., 2018). Yang et al. (2015) performed studies with the O-PIII treatment 

to create dense and thin layer of TiO2 on the surface of Ti for dental implants, they observed the formation of an oxide layer, 

mainly consisted of ruthenium TiO2. In our study, TiO2 (rutile phase) peaks observed in the groups treated with O-PIII at 500ºC 

and 600ºC, attested the efficacy of the treatment under these conditions, a consequence of the higher oxygen content. In contrast, 

Tóth et al. (2004) published that no crystalline oxide phase could be detected in TiAlV (titanium aluminum vanadium) alloy 
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after oxidation. These authors suggested that treatment under low temperature and the presence of aluminum oxide may have 

prevented crystallization.  

In this study, we observed that O-PIII-treated samples exhibited nanoporous surface structure, demonstrating a 

nanostructured TiO2 layer in the form of round grains, which is increased as the temperature increases in the treatment. The 

increase of the nanoscale roughness caused by O-PIII treatment had been previously reported (Hung et al., 2016, Wu et al., 

2018). Hung et al. (2016) analyzed the morphology of Ti surfaces pre- and post-treated with O-PIII and, as in our results, Ti had 

relatively flat surfaces only with parallel polishing traces, however O-PIII-treated Ti showed nanoporous surface structure, 

exhibiting a more uniform, denser, nanostructured TiO2 layer, with higher round grain magnification compared to Ti 

(pretreatment) samples. 

EIE is used for different purposes, ranging from electronic transport in semiconductor devices to the electrochemical 

kinetic processes of the most different natures, ie processes that occur in photovoltaic cells and corrosion systems (Bisquert et 

al., 2000, Gratzel, 2001). The measurement of corrosion resistance in this study showed that increasing surface treatment 

temperature resulted in greater inertia against corrosion in SBF medium. Consequently, the higher the temperature used in O-

PIII treatment, the higher the sample impedance. Pan et al. (1994) observed a dark pigmentation in Ti exposed for several weeks 

to phosphate buffered saline (PBS) with H2O2 additions, representing a suggestive point of corrosion caused by the treatment.  

Recently, a range of studies involving cell analysis on Ti surfaces have been reported in the literature (Gehrke et al., 

2018, Urenã et al., 2018, Kasnak et al., 2019) all of them designating Ti as a successful research tool, as cell interactions with 

the surface of the biomaterial can be evaluated in more detail. In our study, it was observed that all groups permitted cellular 

adhesion, moreover, O-PIII-treated samples had more evident cell adhered with more cellular projections. Soares et al. (2018) 

corroborate our results, describing that MG-63 cells also presented prolonged formats, surrounded by abundant cytoplasm, well-

defined and intact when in contact with Ti.  

Kiran et al. (2018) after evaluating the viability of MG-63 cells on different Ti surfaces, observed that all samples 

stimulated cell growth over a period, increasing viable cells; when samples were submitted to treatments with higher degree of 

morphological changes in the surfaces, a greater increase of cellular viability was described. Our results corroborate this previous 

study, showing a statistical increase in cell viability in Ti group submitted to O-PIII treatment at 600ºC, compared to the other 

groups.  

Total protein content is an important parameter in osteogenesis. In this study, it was observed that the group submitted 

to the highest treatment temperature (Ti O-PIII at 600ºC) had a higher amount of proteins when compared to the other groups. 

Cheg et al. (2018) identified that surfaces treated with hydrothermal oxidation of low temperature microwaves promoted positive 

influence on MG-63 DNA content, but did not alter alkaline phosphatase and osteoprotegerin. However, in the present study, Ti 

submitted to treatment with O-PIII at 600ºC increased alkaline phosphatase values.  

A study conducted by Baranowski et al. (2016) allowed us to consider that the assay performed with Alizarin S Red 

dye revealed an increase in calcium deposition in osteoblast populations cultured with bone sialoprotein with morphogenetic 

bone protein additive 7 (BMP-7) compared to the control group with no additives (proliferation medium). Our results, which 

were also performed with Alizarin S Red dye, showed that Ti group treated with O-PIII at 600ºC statistically increased the 

amount of mineralized matrix nodules compared to the other groups.  

Ren et al. (2014) stated that cell culture assays clearly show that micro/nanotexturide surface of TiAlNb (titanium 

aluminum niobium) stimulates fixation, dissemination, proliferation and increased cell alkaline phosphatase activity better than 

polished surfaces. In our study, it was observed that the surface changes of O-PIII treated Ti samples at 600ºC improved MG-

63properties, regarding adhesion, viability, protein expression, alkaline phosphatase activity and matrix mineralization.  
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Decontaminating microorganisms and their toxins on implant surfaces consists in a prerequisite for preventing peri-

implantitis, in addition to achieving therapeutic success of implants. It has been shown that Gram-positive S. aureus bacteria 

have high affinity to titanium substrates, particularly to those with a rough surface finish (Aguayo et al., 2015, Izquierdo-Barba 

et al., 2015). Giannelli et al. (2016) observed the effects of laser diode on S. aureus biofilm adherent to Ti oxide surface of dental 

implants. They observed that this treatment in pulsed and continuous modes induced statistical reduction of viable cell compared 

to untreated biofilm. In the present study, only Ti group submitted to O-PIII treatment at 600ºC statistically decreased cell 

viability compared to the control group, while the other groups did not demonstrate significant alterations in the quantification 

of S. aureus when compared between themselves. Although no statistical differences were observed, Ti and O-PIII-treated Ti at 

500ºC groups showed a trend to reduce cell viability.  

Fatani et al. (2017) after evaluating orthodontic stainless-steel brackets coated with TiO2 as anti-adherent and 

antibacterial tool for Streptococcus mutans, observed a decrease in biofilm formation in brackets coated with Ag + TiO2. Our 

results demonstrated that O-PIII treatment of Ti samples at 500ºC and 600ºC statistically reduced the amount of S. mutans 

compared to Ti (pretreatment) and control groups.   

Furthermore, we observed that, after one day of cultivation, the groups Ti and O-PIII-treated Ti at 500ºC and 600ºC 

showed a significant reduction of the quantification of P. aeruginosa in comparison with the control group. The group Ti O-PIII 

at 600ºC was the one with higher significant decrease compared to the other groups. Studies carried out by Nunes Filho et al. 

(2018) stated that the chemical composition of Ti surface interferes with the biofilm formation of Pseudomonas aeruginosa. 

After quantifying the adhesion of bacteria in Ti and TiN samples, the authors observed that TiN showed higher performance 

against bacterial adhesion and aggregates formation, and that Ti (pretreatment), after the first 3 h of incubation, led to less than 

20% of bacteria adhesion, while after 6 h this percentage increased. In TiN samples, after 3 h, about 80% of the bacteria were 

adhered and, after a period of 6 h of exposure to nitride surfaces, bacteria were unable to bind. These results indicate a correlation 

between the chemical state of Ti and the interference observed in the first steps of P. aeruginosa biofilm formation. Jeyachandran 

et al. (2007) suggested that chemical status and roughness represent the main influences on the interaction of bacteria with the 

surface of an implant.  

Previous studies have shown that Candida biofilms exhibit increased resistance to antifungal agents and, although 

several hypotheses have been suggested, none of them clearly elucidates the phenomenon of increased resistance. However, 

surface roughness has been shown to directly influence the adhesion of microorganisms to medical devices such as catheters and 

dental implants (Ramasay, & Lee 2016, Vargas Blanco et al., 2017). In a study carried out by Tsang et al. (2007) about biofilms 

of Candida albicans on Ti plates with different roughness, it was observed that, from sandblasting with 99.6% aluminum oxide 

of different grain sizes, there was no statistically significant difference in fungal adherence between groups. In contrast, herein, 

we observed that Ti groups submitted to O-PIII treatment at 500ºC and 600ºC showed a statistical decrease in the quantification 

of C. albicans compared to Ti (pretreatment) and control groups. 

 

5. Conclusion  

O-PIII treatment in Ti samples at different temperatures (400ºC, 500ºC and 600ºC) promoted an increase in surface 

roughness, corrosion resistance, oxygen presence and formation of TiO2-rutile, as the temperature used in the treatment 

increased.  

These modifications in surface properties resulted in MG-63 cells activity improvements when these cells are cultivated 

in contact with the materials, especially for O-PIII treatment at 600°C. O-PIII treatment also reduced viability of monotypic 

microbial biofilms (P. aeruginosa, S. aureus, S. mutans and C. albicans), regardless of the temperature used in Ti treatment.  

From these data obtained, it is suggested to use the O-PIII treatment at 600ºC in Ti grade IV, due to the increase in the 
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substrate temperature during this technique, it is to facilitate the formation of the rutile phase, improving the physical-chemical 

properties of the samples treated. In addition, it presented good results in cell analysis, as well as a decrease in the quantification 

of monotypic microbial biofilms, becoming a promising material for clinical application. Thus, for future works is recommended 

in vivo studies to analyze the influence of Ti O-PIII treatment at 600°C in commercial implants both in bone neoformation, as 

in the biomechanical test, in order to evaluate the force fixation the osseointegration. 
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