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Abstract 

This paper presents a low power near real-time pattern recognition technique based on Mathematical Morphology-

MM implemented on FPGA (Field Programmable Gate Array). The key to the success of this approach concerns the 

advantages of machine learning paradigm applied to the translation invariant template-matching operators from MM. 

The paper shows that compositions of simple elementary operators from Mathematical Morphology based on ELUTs 

(Elementary Look-Up Tables) are very suitable to embed in FPGA hardware. The paper also shows the development 

techniques regarding all mathematical modeling for computer simulation and system generating models applied for 

hardware implementation using FPGA chip. In general, image processing on FPGAs requires low-level description of 

desired operations through Hardware Description Language-HDL, which uses high complexity to describe image 

operations at pixel level. However, this work presents a reconfiguring pattern recognition device implemented directly 

in FPGA from mathematical modeling simulation under Matlab/Simulink/System Generator environment. This 

strategy has reduced the hardware development complexity. The device will be useful mainly when applied on remote 

sensing tasks for aerospace missions using passive or active sensors. 

Keywords: Intelligent satellites; Nanosatellites; Artificial intelligence in hardware; Computer vision; Machine 

learning; Mathematical morphology; Pattern recognition; Real time systems; Aerospace applications; Remote sensing. 

 

Resumo  

Esse trabalho apresenta uma técnica de reconhecimento de padrões baseada em Morfologia Matemática-MM, 

implementada em FPGA (Field Programmable Gate Array). A estratégia para o êxito dessa abordagem consiste na 

utilização das vantagens do paradigma de aprendizagem de máquina aplicado em operadores morfológicos de 

casamento de padrões invariantes à translação. Esse artigo mostra que a composição de simples operadores 

elementares da MM baseados em ELUTS (Elementary Look-Up Tables) são adequados para aplicações embarcadas 

em FPGA. Esse artigo também mostra as técnicas de desenvolvimento do sistema de reconhecimento de padrões, 

desde a modelagem matemática dos operadores morfológicos até a implementação do dispositivo eletrônico usando o 

software System Generator. Em geral, as operações para o processamento de imagens em FPGAs são implementadas 

em baixo nível de abstração das linguagens de descrição de hardware-HDL. Isto gera alta complexidade na 

implementação de operações em imagens ao nível de pixel. No entanto, esse trabalho apresenta um dispositivo 

reconfigurável aplicado ao reconhecimento de padrões implementado em FPGA, a partir da simulação da modelagem 

matemática usando o ambiente de software Matlab/Simulink/System Generator. Essa estratégia reduz a complexidade 

do desenvolvimento em hardware. O dispositivo apresentado deverá ser útil principalmente quando aplicado em 

tarefas de sensoriamento remoto para missões aeroespaciais através de sensores passivos ou ativos. 

Palavras-chave: Satélites inteligentes; Nanosatélites; Inteligência artificial em hardware; Visão computacional; 

Aprendizagem de máquina; Morfologia matemática; Reconhecimento de padrões; Inteligência artificial em tempo real; 

Aplicações aeroespaciais; Sensoriamento remoto. 

 

 

http://dx.doi.org/10.33448/rsd-v10i12.19181
mailto:francisco.silva@inpe.br


Research, Society and Development, v. 10, n. 12, e83101219181, 2021 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v10i12.19181 
 

 

2 

Resumen  

El presente trabajo presenta una técnica de reconocimiento de patrones en tiempo real basada en Morfología 

Matemática-MM implementada en FPGA (Field Programmable Gate Array). La estrategia para la efectividad de este 

enfoque tiene que ver con las ventajas del paradigma de aprendizaje automática aplicada al modelo de 

correspondencia con la invariancia traslacional de operadores elementales da MM. El artículo muestra que las 

composiciones de operadores elementales simples de morfología matemática basadas en ELUT (tablas de consulta 

elementales) son adecuadas para integrarse en dispositivos FPGA. Este artículo también muestra técnicas de 

desarrollo de sistemas de reconocimiento de patrones, desde el modelado matemático de operadores morfológicos 

hasta la implementación del dispositivo electrónico utilizando el software System Generator. En general, las 

operaciones para el procesamiento de imágenes en FPGAs se implementan a un bajo nivel de abstracción de los 

lenguajes de descripción del hardware-HDL. Esto crea una gran complejidad en la implementación de operaciones en 

imágenes a nivel de píxeles. Sin embargo, este trabajo presenta un dispositivo reconfigurable de reconocimiento de 

patrones implementado directamente en FPGA a partir de simulación de modelado matemático en el software 

Matlab/Simulink/System Generator. Esta estrategia ha reducido la complejidad del desarrollo de hardware. El 

dispositivo será útil principalmente cuando se aplique en tareas de teledetección para misiones aeroespaciales 

utilizando sensores pasivos o activos. 

Palabras clave: Satélites inteligentes; Nanosatélites; Inteligencia artificial en hardware; Visión artificial; Aprendizaje 

automática; Morfología matemática; Reconocimiento de patrones; Inteligencia artificial en tiempo real; Aplicaciones 

aeroespaciales; Detección remota.  
 

1. Introduction   

Space missions for deep space exploration or remote sensing using small satellites faces major difficulties regards 

energy consumption and communication downlinks for big volumes of data. These difficulties imposes severe restrictions 

regards automatic decisions on board satellites (Silva & Lucena, 2005a; Silva & Lucena, 2005b; Giuffrida et al., 2020; 

Rapuano et al., 2021; Furano et al., 2020; Nagel et al., 2020), mainly if they demand digital signal processing from high spatial 

and spectral resolution sensors (Silva & Lucena, 2005a; Silva & Lucena, 2005b; Giuffrida et al., 2020; Zhou & Kafatos, 2002; 

Felipe et al., 2006; Thompson et al., 2012; Fuchs et al., 2014; Chien et al., 2014).    

One of the most promising proposals to overcome these difficulties is the development of new low power embedded 

intelligent devices that can provide smart compression method for images and/or that can recognize patterns near real-time 

using low power consumption on the spacecraft. These intelligent devices also are great promise for more efficiently use 

regards high-resolution sensors with the restrictions of size, energy consumption and communication bandwidth in space links 

(Rapuano et al., 2021; Furano et al., 2020; Giuffrida et al., 2020; Felipe et al., 2006; Dawood et al., 2002; Chien et al., 2004; 

Silva & Lucena, 2005a; Silva & Lucena, 2005b).  

However embedded or standalone real-time image processing systems that require low power are not easily 

implemented using classical processors and sequential processing paradigm (Rapuano et al., 2021; Furano et al., 2020; 

Giuffrida et al., 2020; Arechiga et al., 2018; Brugger et al. 2015; Astua et al., 2014; Blake et al., 2009; Kalomiros & Lygouras, 

2008; Akil & Zahirazami, 1998). Related works from specialized literature (Rapuano et al., 2021; Dinelli et al., 2020; Guo et 

al., 2018; Arechiga et al., 2018; Hentati et al., 2014; Hagiwara et al., 2011; Pell et al., 2013; Zakerhaghighi & Naji, 2013; 

Bekker et al., 2010; Kalomiros & Lygouras, 2008; Johnston et al., 2004) tried several image processing implementations using 

FPGA (Field Programmable Gate Array) to build low-power systems for real-time applications. 

In the specialized literature there are also other important papers with contributions from Mathematical Morphology-

MM and machine learning hybridization techniques (Nogueira et al., 2021; Franchi et al., 2020; Jouni et al., 2020; Shen et al., 

2019; Mellouli et al., 2019; Hao et al., 2019). However, none of these works has implemented in hardware any morphological 

operators based on Elementary Look-Up Tables–ELUTs paradigm as proposed in Silva (1998) and summarized at Section 2.  

Besides most of these devices implemented by FPGA hardware have used RTL schematics (Xilinx-RTL, 2011), 

Verilog or VHDL programing methodology to generate HDL codes (D'AMORE, 2005) as entry method to build configuration 
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files (bitstream) for hardware definition. The classical methodology used in these previous works requires hard effort to build 

scripts for hardware description in place of the use of functional models for description of tasks. 

On the other hand, a signal-processing paradigm based on Look-Up Tables-LUTs is advantageous over FPGA 

architecture, considering LUTs are common blocks found in all modern FPGA chips. Due to their simplicity in terms of 

mathematical operations, in this work morphological operators for pattern recognition tasks as proposed by Silva (1998) have 

resulted in a first FPGA hardware device based in elementary operators from MM using LUTs paradigm applied to near real 

time patterns recognition tasks.  

These operators are the mathematical basis to build adaptive controlled threshold template matching (Silva, 1998) 

without traditional convolution operations. These operators allowed the development of several different applications as 

described in previous works (Silva & Banon, 1999; Rempel & Silva, 2001; Silva & Silva, 2004; Souza et al., 2012; Souza et al., 

2013; Filho et al., 2014; Filho et al., 2015). The present work proposes a new standalone device for near real time pattern 

recognition based on Mathematical Morphology-MM operators defined by ELUTs, taking advantages from an adaptive engine 

applied to morphological operators adapted from previous works (Silva, 1998; Silva, 2006; Filho et al., 2014). In this work, the 

device performs near real-time signal processing in pattern recognition on satellite images.   

These morphological operators are part of the formalism of gray levels MM developed using ELUTs (Heijmans, 1991; 

Banon, 1995; Khosravi & Schafer, 1996; Banon & Faria, 1997; Banon, 2000; Banon, 1995; Silva, 1998). In this work, the 

hybridization of the MM and machine learning is a combination of the scheme proposed by Silva (1998) and Silva (2006) 

added to a learning engine adapted from Filho et al. (2014) presented at Sections 2 and 3.  

Before the implementation in hardware, the mathematical model has been exhaustively tested on Matlab/Simulink 

(Matlab-Simulink, 2015) environment in different applications. The main results were show up in previous pattern recognition 

works (Silva, 1998; Silva & Banon, 1999; Silva & Silva, 2004; Filho et al., 2014; Filho et al., 2015) and in image/video 

compression tasks (Souza et al., 2012; Souza et al., 2013). However the present work shows the first hardware implementation 

of the morphological operators based on ELUTs using templates generated using machine learning scheme adapted from Silva 

(1998) and Silva (2006) and implemented on simulated form in previous works (Filho et al., 2014; Filho et al., 2015).  

The main idea of this new approach is to use a training set to obtain a representative pattern for template matching 

with digital images and this representative pattern, implemented in FPGA hardware. In this work, the training set consisted of 

elements of the same target with small imaging variations like different remote sensing satellites imaging from revisiting of the 

same ROI (Region of interest). This strategy enables the morphological operators to use previously trained templates to 

perform exact or inexact and controlled template matching tasks, which are relevant for the hit or miss detection of patterns in 

real cases on satellite images as developed in Section 3.  

The major contributions of this work are a simple and low power FPGA embedded pattern recognition scheme from 

simulated mathematical modeling for hardware design. The work shows a new hardware implementation of morphological 

operators based on ELUTs and the first results. The implementation methodology, presented at Section 2, is a very successful 

adaptation of the techniques developed in Silva et al. (2015). The device can do near real time pattern recognition for exact 

matching or inexact matching defined by similarity levels parameters. The processing scheme shows details for each image 

transformation and respective partial results of output images on each of the main FPGA blocks. The work also presents 

hardware specifications of the device, power consumption and performance during a pattern recognition task in a satellite 

image. Therefore, it can also be useful as reference to define different FPGA chips applied to similar tasks. 

Section 2 presents the functional design of fixed-point codification of the patterns recognition morphological 

operators in hardware. It shows the functional blocks details to build MM elementary operators based on ELUTs embedded in 

FPGA using System Generator (Xilinx-SG, 2014). Details of the mathematical modeling methodology on FPGA using System 

http://dx.doi.org/10.33448/rsd-v10i12.19181
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Generator (Xilinx-SG, 2014) and Matlab/Simulink environment (Matlab-Simulink, 2015) are in Silva et al. (2015).  Section 3 

shows the results for the device processing a Landsat satellite image with resources and performance from Xilinx Kintex 7 

FPGA (XILINX-KC705, 2014). Final considerations are at Section 4. 

 

2. Methodology  

Before developing the device presented in this article, the authors followed steps:  

a) Analysis of performance and energy consumption for the near real time pattern recognition tasks applied to 

aerospace missions, using the results of the previous studies and the references quoted at Introduction 

Section;  

b) Study of low-power devices with potential to build near real-time pattern recognition artifacts, using the 

results of the references quoted at Introduction Section; 

c) Research on robust mathematical modeling for pattern recognition hardware device implementations, using 

the results of the references quoted at Introduction Section; 

d) Research on hardware devices suitable to meet the near real-time image processing requirements from (a) 

and (b), using the results of the references quoted at Introduction Section;  

e) Research on techniques for implementing of the mathematical formalism (Silva, 1998) in FPGA hardware 

(Silva et al., 2015); and  

f) Design of a low power device for near real time pattern recognition tasks in digital images, subject of this 

work.  

However, the focus of the current work are items (e) and (f), concerning the techniques for mathematical modeling 

implementation of morphological operators applied to near real time pattern recognition embedded in FPGA. As seen in Silva 

et al. (2015) the System Generator (Xilinx-SG, 2014) provides functional mathematical modeling and automatic FPGA code 

generation from Matlab/Simulink environment (Matlab-Simulink, 2015). Therefore, the techniques presented in Silva et al. 

(2015) were adapted for implementation of the morphological operators on FPGA. This approach permits design of a complete 

digital system like a functional scheme from mathematical formalisms implemented on System Generator as shown in the 

Figures 1, 2, 3, 4, 5, 6 and 11. In a second stage, this functional scheme automatically generates a configuration script as a 

bitstream file. Finally, the bitstream in the form of uploaded codes configures the Kintex 7 (KC705) hardware from 

Xilinx/Avnet (XILINX-KC705, 2014).  

Figure 1 shows the developing scheme of morphological operator composition using System Generator (Xilinx-SG, 

2014) running under Matlab/Simulink environment (Matlab-Simulink, 2015). This same configuration generates the final 

bitstream uploaded into FPGA.  

 

Figure 1. The composition of the operators (Silva, 1998), from equations (6) and (7), on System Generator environment. 

 

Source: Authors. 

 

The 𝜙  operator (equation (6)) executes the summation of the intersections between erosion and anti-dilation 

operations, as shown in Figure 2. 
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Figure 2. System Generator scheme to make 𝜙. 

 

Source: Authors. 

 

In this work mathematical representations are used with gray levels images, for domain 𝐷 (pixels positions set) and 

𝐾𝑚  scale gray levels. The set of mappings from 𝐷 to 𝐾𝑚  is denoted as 𝐾𝑚
𝐷 . Therefore, the digital images in 𝐷 domain are 

represented by 𝐾𝑚
𝐷. In the specific case 𝐾𝑚

𝑊 denotes the set of mappings from a window 𝑊 to 𝐾𝑚 (Banon, 1995; Silva, 1998). 

If 𝑓 ∈ 𝐾𝑚
𝐷 , and 𝑚 is equal to 1, so 𝑓 is a binary image, otherwise, 𝑓 is a gray level image.  

In Figure 2, the blocks "fw1", "fw2" and "image" are memory buffers that store the "g" image, and the 𝑓𝑊
− and 𝑓𝑊

+ 

patterns are obtained using equations (1) and (2) presented below.  

 

 𝑓𝑊
−(𝑥) ≜ 𝑚𝑎𝑥(0, 𝑚𝑖𝑛 (𝑚,  𝑓𝑊(𝑥) + 𝑐1)),                                   (1) 

 𝑓𝑊
+(𝑥) ≜ 𝑚𝑎𝑥(0, 𝑚𝑖𝑛 (𝑚,  𝑓𝑊(𝑥) + 𝑐2)),                                      (2) 

 

where 𝑥 ∈ 𝑊, 𝑓𝑊 ∈ 𝐾𝑚
𝑊 (representative patterns), 𝑐1, 𝑐2 ∈ 𝒁 (the integer numbers set), 𝑐1 ≤ 𝑐2, and 𝑓𝑊

−, 𝑓𝑊
+ ∈ 𝐾𝑚

𝑊 define two 

slack images. These two slack images define the intervals around the 𝑓𝑊 pattern to perform an inexact matching. Of course if 

𝑐1= 𝑐2= 0 it will perform an exact matching condition.   

The blocks "erosion" and "anti-dilation", Figures 3 and 4, control access to buffers in which the images are stored and 

used in erosion and anti-dilation operations (equations (3) and (4)).  

 

휀𝑙
𝑖(𝑔)(𝑥)  ≜   {

1, 𝑖𝑓 𝑔(𝑥 + 𝑊𝑖) ≥ 𝑙
0,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,    

          (3) 

𝛿𝑙
𝑎𝑖(𝑔)(𝑥) ≜  {

1, 𝑖𝑓 𝑔(𝑥 + 𝑊𝑖) ≤ 𝑙
0,             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

          (4) 

 

where 𝑙 is an integer number in 𝐾𝑚 and 𝑖 = 1, . . . , 𝑛, and 𝑛 = #𝑊 (number of pixels of 𝑊), 𝑔 ∈ 𝐾𝑚
𝐷   and 𝑥 ∈ 𝐸, for 𝐸 = 𝐷 ⊖

𝑊 (⊖ represents a Minkowski subtraction (Banon & Barrera, 1998)). So the operator 휀𝑙
𝑖 is an erosion and the 𝛿𝑙

𝑎𝑖 is an anti-

dilation from 𝐾 𝑚
𝐷  to 𝐾 1

𝐸. 

Figures 3 and 4 show the respective block implementations of the equations (3) and (4). 

 

 

1

phi

image

fw2

fw1

erosion

anti-dilation

and
Accumulator

addr fw2

addr img

addr img

addr fw1

erosion

anti-dilation
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Figure 3. “Erosion” block. 

 

Source: Authors. 

 

Figure 4. “Anti-dilation” block. 

 

Source: Authors. 

 

The previous outputs, from erosion and anti-dilation blocks, are processed on “Accumulator” block (Figure 5), using 

equations (5) and (6).  

 

𝜆𝑖 ≜ 휀𝑓𝑊(𝑤𝑖)
−

𝑖 ∧ 𝛿
𝑓𝑊(𝑤𝑖)

+
𝑎𝑖 ,      (5) 

 

access control to fw1 buffer

access control to 'g' image buffer

3
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a

b

a + b
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a

b
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a

b
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2
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1

fw1

access control to 'g' image buffer

access control to fw2 buffer

3

addr_fw2

2
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1

addr_img
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img_j_for4
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img_j_for3
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img_j_for2
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img_j_for1
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img_j_for

a

b

a  b 
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a

b
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a

b
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a
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2
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where 휀𝑙
𝑖 is an erosion and the 𝛿𝑙

𝑎𝑖 is an anti-dilation from 𝐾 𝑚
𝐷  to 𝐾 1

𝐸, 𝑓𝑊
− and 𝑓𝑊

+ ∈ 𝐾𝑚
𝑊, from equations (1), (2), (3) and (4).  

The result from equation (5), for each pixel, is accumulated in "Accumulator" block (Figure 5) using the equation (6). 

This Accumulator block performs the sum 𝜙 of sup-generating morphological operators 𝜆𝑖  (Banon & Faria, 1997). 

The 𝜙 operator from 𝐾 𝑚
𝐷  to 𝐾 1

𝐸 is a Template-Matching Operator-TMO (Banon & Faria, 1997) as summarized below: 

 

𝜙 ≜ ∑ 𝜆𝑖𝑛
𝑖=1 ,      (6) 

 

where the 𝜆𝑖  are 𝑛 operators from 𝐾 𝑚
𝐷  to 𝐾 1

𝐸. 

The result of the sup-generation operation for each pixel accumulated in "Accumulator" block executes the sum of 

sup-generating morphological operators and executes a kind of correlation measure. Figure 5 shows the "Accumulator" block 

implementation. 

 

Figure 5. “Accumulator” block. 

 

 

Source: Authors. 

 

Finally, Figure 6 shows how the 𝜓𝑙
• operator (equation (7)) finds the predefined similarity “l” greater than or equal to 

matching condition. 

 

𝜓𝑙
•(𝑓) ≜ {

1, 𝑖𝑓 ∃𝑥 ∈ 𝐸, 𝑓(𝑥) ≥ 𝑙
0,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,         

        (7) 

 

where 𝑙 ∈ 𝐾𝑚 and f is the output result from 𝜙 operator. The operator 𝜓𝑙
• from 𝐾 𝑛

𝐸 to 𝐾1 defines an especial erosion (Silva, 

1998) that can identifies values greater than or equal to 𝑙 (matching condition). 
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Figure 6. The System Generator composition for 𝜓𝑙
• operator (Silva, 1998) identifies the equal or predefined similarity values 

for matched condition. 

 

Source: Authors. 

 

A machine-learning engine called Thresholded Template-Matching Operator (TTMO) adapted from Silva (1998), 

Silva (2006) and Filho et al. (2014) generates the operator templates. Figure 7 shows the TTMO block diagram similar to the 

one shown in Filho et al. (2014), where in Adaptive Machine-AM: 𝑓𝑊𝑗 ∈  𝐾𝑚
𝑊 and 𝑗 = 1, . . . , 𝑁; in 𝜙: 𝑔 ∈ 𝐾𝑚

𝐷, 𝑓𝑊
− and 𝑓𝑊

+  ∈

 𝐾𝑚
𝑊; in 𝜓𝑙

•: 𝑔’ ∈ 𝐾𝑛
𝐸 and ℎ ∈ 𝐾1. The AM processes the N variants of a pattern contained in the training set, 𝜙 processes the g 

image and the representative 𝑓𝑊
− and 𝑓𝑊

+ pattern from AM, and h is the output result from 𝜓𝑙
• presented on Detection block to 

indicate if the pattern 𝑓𝑊 is present (on) or not (off) on image g (Figure 7). 

 

Figure 7. Blocks diagram of TTMO. 

 

 

 

 

 

 

Source: Adapted from Filho et al. (2014). 

 

The dashed part of Figure 7 is part of the training process of the representative pattern. This learning scheme takes 

advantage of an AM, which uses a training rule shown in Filho et al. (2014), applied to the training dataset. The Adaptive 

Machine does the following:   

 

Algorithm 1. Algorithm used by AM learning engine. 

 

 

 

 

 

 

 

Source: Adapted from Filho et al. (2014). 
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3. Results and Discussion 

This section shows some results of preliminary experiments using the implemented FPGA device applied to pattern 

recognition in a Landsat satellite image. Landsat TM images, acquired free from Instituto Nacional de Pesquisas Espaciais – 

INPE (www.dgi.inpe.br).  

For these first experiments, we used satellite images in ".jpg" format as shown in the Figure 8. Figure 8 shows a scene 

of Parintins-AM/Brazil, at the vicinity of Amazon River, located at Lat: -2.89303; Long: -57.47650. 

The goal is to find in the 116 x 131 pixels image (Figure 8), a 48 x 26 pixels representative pattern (Figure 9), 

represented by the set 𝑓𝑊
− and  𝑓𝑊

+  target patterns, previously trained by the adaptive engine with the help of the training set. In 

this case, the training set consisted of models of pattern images selected from other passages of the satellite, different from 

those acquired in the passage shown in the Figure 8. 

 

Figure 8. Satellite image “.jpg” format. 

 

 

 

 

 

 

 

Source: Adapted from Landsat satellite image. 

 

Figure 9. Representative pattern (extended as zoom in from original pattern) compound by twelve samples of the same scene 

from imaging using different LandSat revisits. 

 

Source: Authors (from Algorithm 1). 

 

Figure 10 shows the signals generated in  𝜙  and  𝜓𝑙
•  Blocks. The first graph, named “Phi activities”, shows the 

serialized values of the sum of sup-generating morphological operator. When one of these values is greater than the predefined 

matching conditions, it means that the pattern image is included in the search image, as verified on the second graph, “Pattern 

detection”. The third graph “Led on/off” shows a signal that turn on/off one Led terminal from KC705 board (XILINX-KC705, 

2014) to indicate to the user if the pattern is present or not. The level of similarity between the ROI, blue polygon in Figure 8, 

and the representative pattern in Figure 9, used in this case for definition of matching condition, was equal to 86%.  
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Figure 10. Signals generated in 𝜙 and 𝜓𝑙
• operators from hardware implementation. 

 

Source: Authors (from FPGA device). 

 

Table 1 shows a summary of the resource use and power consumption of the model implemented in an FPGA chip 

KC7K325T-2FFG900C Kintex 7 (XILINX-KC705, 2014). The first line shows the amount of registers used mainly for 

temporary memory for images, templates and intermediary values between functional blocks as buffers. The second line shows 

the amount of total LUTs used for the morphological operators, access control and relational logic used in the accumulator 

block. 

 

Table 1. Resource utilization of system. 

 Kintex 7 (KC705) 

Number of Slice Registers 13064 from 407600 (3%) 

Number of Slice LUTs 13140 from 203800 (6%) 

Number of occupied Slices 3363 from 50950 (6%) 

Inference power consumption 416 mW 

Source: Authors (from System Generator-SG). 

 

For all processing, it is necessary to perform a scan in the input image to search the target pattern. The amount of 

clock cycles (cycles in equation (8)) required for the entire process to be completed is: 

 

                                            cycles = (𝑖𝑚𝑔𝑖 − 𝑤𝑖 + 1)(𝑖𝑚𝑔𝑗 − 𝑤𝑗 + 1)(𝑤𝑖𝑤𝑖 + 1),      (8) 

 

where 𝑖𝑚𝑔𝑖, 𝑖𝑚𝑔𝑗, 𝑤𝑖  e 𝑤𝑗  are the number of rows and columns of the image to be processed and of the pattern to be identified. 

The time required (inference time in equation (9)) for the proposed image processing applied on input image (Figure 8) 

to detect the pattern in Figure 9, assuming 200 MHz FPGA clock, was approximately 45.68 ms, using equations (8) and (9): 

 

                                   𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒 ≅  
𝑐𝑦𝑐𝑙𝑒𝑠

𝑐𝑙𝑜𝑐𝑘
≅  

9135186

200 𝑀𝐻𝑧
≅ 45,68 𝑚𝑠                   (9) 
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Figure 11 shows the processing details step by step for each image transformation and respective partial result with 

the output images in each of the main processing blocks. 

 

Figure 11. The complete scheme of the device tasks with the respective outputs in each block. 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Authors. 

 

4. Final Considerations 

This work has shown a new hardware implementation for ELUTs based morphological operators developed for 

pattern recognition in future space missions. The final bitstream file generated directly from simulated mathematical modeling 

running on Matlab/Simulink environment (Matlab-Simulink, 2015) reduces the abstraction gap between the mathematical 

modeling and the finished hardware. The Matlab/Simulink environment to simulate the mathematical model and generates 

FPGA bitstreams using the System Generator toolbox (Xilinx-SG, 2014) worked efficiently, similar to the presented in Silva et 

al. (2015).  

As shown in Section 3, the device took only 6% of the resources of the FPGA Kintex7 without any sophisticated 

feature as DSP blocks, i.e. as seen in Table 1; the device only demanded LUTs and registers, so the whole scheme also can run 

in an on-orbit reconfigurable radiation tolerant FPGA chip as XQRKU060 Kintex (XILINX-RTK, 2021).  

It may be especially useful when applied on detection of environmental changes using small satellites like remote 

sensing nanosatellites, because this new high performance device can overcome the major limitation of size and low power 

restrictions from small satellite projects.    

In addition to the tasks of pattern recognition proposed in this paper, we expect that the same operators implemented 

in FPGA can also be adapted for image compression tasks from previous works (Souza et al., 2012; Souza et al., 2013) in a 

hardware version. It may be an option applied to a future generation of remote sensing satellites, UAVs and deep-space crafts. 

This first prototype version has prioritized the applicability of this mathematical modeling techniques and the 

bitstream generation directly from this simulated mathematical model applied to satellite imagens. The authors suggest a new 

version to be an option to solve template-matching tasks between previous aerial photography and satellite images and real 

time acquired images from unmanned aerial vehicle (UAV). The main idea is to take advantage of inexact template matching 

operators to find terrestrial references as waypoints obtained from previous aerial photography or satellite images. It can assist 

UAV navigation under GNSS jamming or GNSS failures. We hope this new device also may be a solution as embedded device 

to assist semi-automatic navigation tasks applied to UAVs missions as improvement to the ones shown in previous works 

(Castelli et al., 2016; Ramos et al., 2016; Lange et al., 2008; Chowdhary et al., 2013; Beul et al., 2015; Belmonte et al., 2019).  

Led(on) 
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In this first hardware implementation, the work presented only a simple set of morphological operators as a single 

canonical artificial neuron model (Silva, 1998) when compared to a full deep learning paradigm as the morphological artificial 

neural networks shown in previous works. (Nogueira et al., 2021; Franchi et al., 2020; Jouni et al., 2020; Shen et al., 2019; 

Mellouli et al., 2019; Hao et al., 2019). Currently the authors are working on the parallel graph analysis to find main 

bottlenecks for each operator to increase image access and multiplicity of operators used in order to explore both spatial and 

temporal parallelism forms (Downton & Crookes, 1998; Johnston et al., 2004). The authors intend to build this new one 

approach toward a full parallel model suitable for deep learning paradigm. However differently from the previous works 

(Nogueira et al., 2021; Gianni et al., 2020; Shen et al., 2019; Mellouli et al., 2019; Hao et al., 2019; Jouni et al., 2020) the 

authors intend to build a new morphological neural networks based on ELUTs.    

The full parallelism approach, implemented in hardware, may also be useful when embedded in the new generation of 

smart satellites for earth observation. However before trying a satellite embedded version, the authors intend it to perform 

efficient near-real time pattern recognition tasks in wildfire monitoring taking as reference the strategy presented in (Ban et al., 

2020). 

The device permits exact or inexact matching so it can be also useful for pattern recognition in digital signals from 

different kinds of sensors such as for example hyperspectral imaging sensors or active sensors as LIDAR, Radar, SAR or  

InSAR.  

For future applications using this device, the authors suggest testing the device to detect changes on earth surface such 

as for example due to forests under wildfire or deforestation, soil and water contamination, land degradation, soil erosion and 

landslides. 

For future research work, the authors suggest increasing the parallelism of the device to build new artificial neural 

networks models suitable for deep learning techniques or new paradigms of computer vision with a strong biological 

inspiration (Silva, 2005).  
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