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Abstract 

This work aimed to evaluate a microsprinkler irrigation system using photovoltaic energy without energy storage. The 

influence of photovoltaic pumping on irrigation was evaluated from the Emission Uniformity, Shewhart control charts 

and Process Capacity. The experiment consisted of two amorphous photovoltaic panels connected in parallel, directly 

connected to a water pump, where the flow of the pumping system was carried out through a ½” tube (main line), to 

the irrigation system composed of four microsprinklers. The voltage and current parameters were collected, and the 

power of the photovoltaic system was calculated, while for the irrigation system the pressures of the four 

microsprinklers were measured to later calculate the flow rate of the irrigation system. The experiment was conducted 

at the State University of Western Paraná, UNIOESTE, where 25 days of collection were carried out, in the open, at 

four different times, from 10:00 am to 11:00 am, from 11:05 am to 12:05 pm, from 2:00 pm to 3:00 pm and from 3:05 

pm to 4:05 pm . Power generation presented a low coefficient of variation throughout the day, which resulted in flow 

and pressure stability, culminating in an Emission Uniformity (UE) value qualified as excellent (93.66%) according to 

the ASAE. The values of energy generation, flow, pressure, and emission uniformity presented a Process Capacity 

(CP) value above 1.33, defining the process as capable and adequate throughout the analyzed period. 

Keywords: Control chart; Micro irrigation; Process capacity; Solar energy; Sustainability; Uniformity. 

 

Resumo  

Este trabalho teve como objetivo avaliar um sistema de irrigação por microaspersão utilizando energia fotovoltaica 

sem armazenamento de energia. A influência do bombeamento fotovoltaico na irrigação foi avaliada a partir da 

Uniformidade de Emissão, gráficos de controle de Shewhart e Capacidade de Processo (Pc). O experimento consistiu 

em dois painéis fotovoltaicos amorfos conectados em paralelo, diretamente conectados a uma bomba d'água, onde a 

vazão do sistema de bombeamento foi realizada através de um tubo de ½” (linha principal), até o sistema de irrigação 

composto por quatro microaspersores. Os parâmetros de tensão e corrente foram coletados e a potência do sistema 

fotovoltaico foi calculada, já para o sistema de irrigação as pressões dos quatro microaspersores foram medidas para 

posteriormente calcular a vazão do sistema de irrigação. O experimento foi conduzido na Universidade Estadual do 

Oeste do Paraná, UNIOESTE, onde foram realizados 25 dias de coleta, a céu aberto, em quatro horários distintos, das 

10h às 11h, das 11h05 às 12h05, das 14h00 às 15h00 e das 15h05 às 16h05. A geração de energia apresentou baixo 
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coeficiente de variação ao longo do dia, o que resultou em estabilidade de vazão e pressão, culminando em um valor 

de Uniformidade de Emissão (UE) qualificado como excelente (93,66%) de acordo com a ASAE. Os valores geração 

de energia, vazão, pressão e uniformidade de emissão apresentaram valor de Capacidade do Processo (CP) acima de 

1,33 definindo o processo como capaz e adequado ao longo do período analisado. 

Palavras-chave: Capacidade do processo; Energia solar; Gráfico de controle; Microirrigação; Sustentabilidade; 

Uniformidade. 

 

Resumen  

Este trabajo tuvo como objetivo evaluar un sistema de riego por microaspersión que utiliza energía fotovoltaica sin 

almacenamiento de energía. La influencia del bombeo fotovoltaico en el riego se evaluó a partir de la Uniformidad de 

Emisiones, los gráficos de control de Shewhart y la Capacidad del Proceso. El experimento consistió en dos paneles 

fotovoltaicos amorfos conectados en paralelo, directamente conectados a una bomba de agua, donde el flujo del 

sistema de bombeo se realizó a través de un tubo de ½ ”(línea principal), al sistema de riego compuesto por cuatro 

microaspersores. Se recogieron los parámetros de voltaje y corriente y se calculó la potencia del sistema fotovoltaico 

mientras que para el sistema de riego se midieron las presiones de los cuatro microaspersores para luego calcular el 

caudal del sistema de riego. El experimento se realizó en la Universidad Estatal del Oeste de Paraná, UNIOESTE, 

donde se realizaron 25 días de recolección, al aire libre, en cuatro horarios diferentes, de 10:00 a.m. a 11:00 a.m., de 

11:05 a.m. a 12 p.m. : 05 pm, de 2:00 pm a 3:00 pm y de 3:05 pm a 4:05 pm. La generación de energía presentó un 

bajo coeficiente de variación a lo largo del día, lo que resultó en estabilidad de flujo y presión, culminando en un valor 

de Uniformidad de Emisión (UE) calificado como excelente (93,66%) según la ASAE. Los valores de uniformidad de 

generación, flujo, presión y emisión de energía presentaron un valor de Capacidad de Proceso (CP) superior a 1,33, 

definiendo el proceso como capaz y adecuado durante todo el período analizado. 

Palabras clave: Capacidad de proceso; Energía solar; Gráficos de control; Micro riego; Sustentabilidad; 

Uniformidad. 

 

1. Introduction 

Increases in the need of water resources demands to serve all sectors, whether urban, industrial, or even agricultural, 

in the irrigation sector, stimulate research aimed at qualitative and rational use (Silva et al. 2013). 

 Furthermore, population growth requires increasing amounts and promotes competition for water between agriculture 

and other sectors of the economy (Alves et al. 2015). Thus, technicians and government office to guide the adoption of 

strategies to minimize water consumption guiding farmers. 

Irrigation is the segment that consumes the most water among the large users of water resources. In some regions, 

consumption by irrigation can exceed 70% of the total amount used (Dalri et al. 2015). 

Therefore, in order to minimize consumption and improve efficiency, the use of a localized irrigation system is 

essential, since it has greater uniformity in distribution, application efficiency and water productivity (Douh et al. 2013). Thus, 

localized irrigation applies water with high uniformity, close to the soil surface directly in the plant root zone in small 

quantities, but with high frequency, keeping the soil close to the root zone, close to the field capacity (Oliveira et al. 2016). 

Although works are being developed in photovoltaic irrigation, such as Chandel et al. (2015), Chandel et al. (2017), 

López-Luque, et al. (2017), Zvala et al. (2020), there is a lack of critical analyzes regarding the quality of uniformity of the 

irrigation system, since for Reis et al. (2006), evaluating the performance of an irrigation system is a fundamental step before 

implementing any irrigation management strategy. Therefore, the uniformity coefficients are essential to define the viability of 

the irrigation system, since high uniformity means less water consumption (Ludwig, 2012). 

Thus, the use of a quality irrigation system, emphasizing uniformity with energy for pumping from renewable energy 

sources, leads to problem-solving in areas without electricity or prolonged droughts (Reca et al. 2016). 

Therefore, the autonomous pumping system for irrigation stands out for being applied in small to large scales of 

energy production, revealing itself as a favorable environmental alternative with reduced initial installation values as it does 

not require a battery bank. that it is an attractive alternative for irrigation and drinking water supply in urban and rural regions 

of countries with enormous potential for solar energy where a considerable part of the rural population lives in remote areas 
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(Shepovalova et al. 2020). 

Since the photovoltaic panel is connected directly to the direct current water pump, the terminal voltage and current 

are equal to the voltage and current of the photovoltaic matrix, in which the pump speed varies with the level of solar radiation 

incident on the photovoltaic generator (López-Luque et al. 2017), making the system complex in terms of operation since the 

pumping will be carried out only in times of solar radiation incidence. However, it is noteworthy that both the plant water 

requirement and the increase in radiation levels are synchronous (Yahyaoui et al. 2016).  

Thus, this work aimed to evaluate the performance of a microsprinkler irrigation system with autonomous 

photovoltaic pumping, analyzing the generated energy, pressure, and flow of the photovoltaic irrigation system at different 

times in order to diagnose the interference of radiation variation throughout of the day in the generated energy and 

consequently in emission uniformity. 

 

2. Methodology  

The experiment was implemented at the State University of West Paraná - UNIOESTE, Cascavel campus, with 

Latitude 24 ° 58 'South (S), Longitude 53 ° 44' West (W) and altitude of 753 meters, with average daily solar irradiation for 

4.95 kWh m-2 day-1, obtained from the Cresesb website, in the energy potential, solar potential tab and inserting the coordinates 

of the installation site of the photovoltaic system (Cresesb, 2019) shown in Figure 1, characterizing the region with potential 

for photovoltaic energy production. The tests were carried out in the experimental area of Unioeste, campus of rattlesnake, 

where the installation site of the irrigation system has a flat topography composed of grass. The area has trees and undergrowth 

in the vicinity of the installation of the micro sprinkler irrigation system. 

 

Figure 1. Availability of global horizontal irradiance in Cascavel, Paraná. 

 

Source: Image adapted from the Pereira et al. (2017). 
 

There were no controlled variables in the experiment since the analysis was made in order to clarify whether the 

variability of the energy supply system would affect the uniformity of emission throughout the day. 

The direct photovoltaic pumping system for micro sprinkler irrigation consists of a photovoltaic matrix, direct current 

hydraulic pump and micro sprinkler irrigation system. 

To carry out the irrigation tests, four different times were used, close to the times defined by Andrade et al. (2017), 

which establishes the interval from 10:00 am to 2:00 pm, with greater potential for photovoltaic generation. 
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In the energy part, two photovoltaic modules of the Solarterra brand of amorphous silicon were used, with a 

maximum power of 40 Wp each, connected in parallel to raise the system current, directly connected to the water pump. 

For the collection of irradiation values, a pyrometer installed close to the panels and on the same inclination was used, 

connected to a datalogger that collected the data. Current and voltage were also measured and stored by a datalogger, storing 

60 values of radiation, current and voltage every hour. 

From the collected values of the current and voltage, the generated energy (W h-1) of the photovoltaic system was 

calculated using Equation 1. 

 

                                                  Generated Energy = V * C * Time                                                                     (1) 

 

Where V:Voltage (volt), C: Current (ampere), Time: Collection time (hours). 

 

With the power data, the energy values produced in watts hour can be calculated, being equal to the power value, 

since the test was performed for 1 h. 

A water pump, Solarjack brand, model SDS-D-228, with a nominal power of 79 W and a flow of 234 L h-1 was used. 

As for the irrigation system, a rotating emitter was used, with a nominal pressure of 10 to 30 Bar, for a flow established from 

36 L h-1 to 62 L h-1. 

The pump was installed inside the water tank, working only at times of solar radiation incidence, performing the 

discharge for the irrigation system formed by four micro sprinklers, framing the system within the characteristics of the 

photovoltaic irrigation opportunity. The micro sprinklers were spaced 2 x 2 meters, with pressure gauges installed on each 

emitter in order to establish the pressure at each water outlet point (Figure 2). 

 

Figure 1. Diagram of the irrigation system with photovoltaic panel connected directly to the pumping system. 

 

Source: Authors. 

 

To calculate the flow of each emitter in the system (Equation 2), the equation was first defined from the linear 

regression established with data provided by the micro sprinkler manufacturer, reaching an determination coefficient (R²) of 

100. 

 

Micro sprinkler flow rate (L h-1) = 1.3 * Pressure (Bar) + 23                                                 (2) 

 

The micro sprinklers were numbered according to their position, the first at the beginning of the pipe and the last at 

the end of the line. Twenty-eight evaluations were carried out for each proposed time, defined as time 1, 10:00 am to 11:00 am; 
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time 2, 11:05 am to 12:05 pm; time 3, 2:00 pm to 3:00 pm; time 4, 3:05 pm to 4:05 pm.  Also seeking to define the feasibility 

of expanding the schedule defined by Andrade et al. (2017), increasing the hours within the photovoltaic irrigation opportunity. 

Thus, the emission uniformity (EU) values were calculated for each of the 25 days of collection since the proposal is 

defined by analyzing the interference of the irradiation variation in the photovoltaic panels in the emission of the micro 

sprinklers along the day. 

In addition to the emission uniformity (EU) for each of these times, the standard deviation, coefficient of variation, 

variance, maximum, minimum, and normality were calculated using the Kolmogorov method. 

Coefficient of Variation (Equation 3), according to the ASAE (2003), is a measure of the flow variability of a random 

sample of a given manufacturing model and emitter size, and it is produced by the manufacturer and before any operation or 

aging in the field. 

                                                                                               (3) 

 

                                                                                        (4) 

 

Where : The mean discharge of emitter in the sample, s: The standard deviation of discharge of emitter in the 

sample, xi: the discharge of the emitter, n: the number of the emitter in the sample.  

The classification of the coefficient of variation (Cv) defined by the American Society of Agricultural and Biological 

Enginners (3, 2008) in the design and installation of the micro irrigation system is shown in Table 1. 

 

Table 1. Recommended classification of manufacturer's coefficient of variation (Cv). 

Emitter type Cv Range Classification 

Point- source 

< 0.05 

005 to 0.07 

0.07 to 0.11 

0.11 to 0.15 

> 0,15 

Excellent 

Average 

Marginal 

Poor 

Unacceptable 

Line - source 

< 0.10 

0.10 to 0.20 

> 0.20 

Good 

Average 

Marginal to unacceptable 

Source: American Society of Agricultural Engineers - ASAE (2003) 

 

Emission uniformity (EU), established by ASAE (2003), is the specifically equation for micro sprinkler irrigation 

systems since it estimates uniformity in terms of the coefficient of variation and pressure in the emitter. 
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n
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Where EU: Emission Uniformity (%), n: for a point-source emitter on a perennial crop the number of emitter per 

plant, for a line-source emitter on an annual or perennial row crop, either the lateral rooting diameter of the plants divided by 

the same unit length of lateral line used to calculate CV or 1, which is greater, CV: the manufacturer's coefficient of variation 

for point or line-source emitters, qm: the minimum flow rate of the emitter for the minimum pressure in the subunit (L h -1), qa: 

the average flow rate of the emitter for the subunit (L h-1). 

The interpretation of the calculated values can be referenced from Table 2, highlighting the importance of defining 

characteristics such as spacing, topography, slope and type of emitter that were used in the design. 

. 

Table 2. Recommended ranges of design emission uniformity (EU). 

Emitter type Spacing (m) Topography (%) Slope (%) EU range (%) 

Point source on perennial crops 

 
> 4 

Uniform 

steep or undulating 

< 2 

> 2 

90 to 95 

85 to 90 

Point source on perennial or 

semi-permanent crops 

 

< 4 
Uniform 

steep or undulating 

< 2 

> 2 

85 to 90 

80 to 90 

Line source on annual or 

perennial crops 
All 

Uniform 

steep or undulating 

< 2 

> 2 

80 to 90 

70 to 85 

Source: American Society of Agricultural Engineers - ASAE (2003). 

 

Shewhart control charts were generated for the individual means in order to verify whether the results were under 

statistical control. It should be noted that when the values are plotted within the limits, both lower and upper, the process is 

considered under control and no action is necessary; on the other hand, if the point is outside the limits it is interpreted as 

evidence that the process is out of control, therefore requiring investigation and corrective action (Montgomery, 2009). 

The upper control limit (UCL) and the lower control line (LCL) values were calculated from Equation 6 and 7. 

 

                                                                                            (6) 

 

                                                                                                                (7) 

Where : Average of the averages, : Average data amplitudes, d2: 1.128 for n = 2, considering individual averages, 

according to the table described by Montgomery (2009). 

Finally, the value of the process capacity index was calculated, since they are used to determine if a process is capable 

of meeting a tolerance range, and they must be analyzed later to test for approximation to normal distribution and with process 

under statistical control. For this purpose, Equation 8 was used. 

 

                                                                                    (8) 

 

Where USL: Upper specification limit, LSL: Lower specification limit, : Standard deviation estimator. 
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According to Montgomery (2009) the process is capable if the specification limits previously established by standards 

are adequately greater than the control range. 

Still according to the author, the capacity of the process is classified considering that, if the value of Cp > 1.33, the 

process is capable or adequate, according to the specifications, however if the value is 1 < Cp < 1.33, the process is acceptable 

and if Cp  < 1, the process is inefficient or inadequate. 

Through Minitab (2012) the process capacity was calculated using bilateral limits according to the ASAE (2003) 

classification for emission uniformity and the nominal values for the pressure, flow, and power of the photovoltaic panel. 

The values of coefficient of variation, standard deviation, variance, maximum, minimum, and p-value of the analyzed 

parameters were also calculated to define the descriptive statistics. Was also established the regression between emission 

uniformity, coefficient of variation of emission uniformity, power of the panel and average flow of the micro sprinklers 

seeking to establish correlations between parameters. 

 

3. Results and Discussion  

3.1 Descriptive data statistics 

Table 3 presents the descriptive statistics for the variables of emission uniformity, power of the photovoltaic panel, 

system pressure, wind speed and flow rate of the sprinklers, in which the values of mean, coefficient of variation, standard 

deviation, variance, maximum and minimum, and p-value are counted. 

 

Table 3. Descriptive statistics of the collected data. 

Analyze EU (%) Generated energy (Wh) Pressure (Bar) Wind (m s-1) Flow rate (L h-1) 

Mean 93.660 59.800 22.007 0.9275 43.831 

Coeff. of Variation 0.023 0.059 0.054 0.265 0.053 

Standard deviation 2.198 3.582 1.186 0.243 2.34 

Variance 4.830 12.828 1.407 0.059 14.828 

Maximum 96.051 67.936 23.919 1.269 51.822 

Minimum 89.516 51.092 20 0.392 42.471 

p-value 0.07 0.083 0.15 0.044* 0.15 

*Kolmogorov normality test, at 5% significance. Source: Authors. 

 

As shown in the table, the EU value (93.66%) reached a value in agreement with the ASAE (2003), as well as a low 

coefficient of variation value (2.3%). 

The average energy generated from the photovoltaic panel was below the ideal operating values of the pump (79 Wh), 

reducing the nominal flow from 234 L h-1 to 174.22 L h-1, that is, with a decrease of 25.316% of power required by the pump, 

there was a reduction of 25.547% in the flow to the irrigation system. Emphasizing that despite variations in collection times 

that imply considerable amplitude in solar radiation, the standard deviation of panel power (3.582) remained low. 

Therefore, despite the energy supply values below the rated power of the water pump, the stabilization of energy over 

the collection periods resulted in low coefficient of variation values for the pressure, flow and emission uniformity parameters, 

resulting in in high emission uniformity.  It is noteworthy that the flow and pressure parameters remained within the nominal 

values.  
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For the climatic factor of the wind, it is noted that the average speed did not exceed 1 m s-1, and even its maximum 

value did not approach what Zhang et al. (2013) define as necessary to interfere in the micro sprinkler irrigation system (1.8 - 

2.0 m s-1) the high CV value (24.3%), which is consistent with the study of sprinkler irrigation by Frigo et al. (2013) in which 

they obtained CV values that ranged from 5.35 to 57.79%. This variable was the only one that did not show normality at 5% 

significance. This fact is justified because there are high variations in agricultural studies in the field (Pimentel Gomes, 2000), 

regarding the wind speed parameter, supplanting the question of data normality. 

 

3.2 Equation fit 

To verify the association between the emission uniformity, coefficient of variation, flow and power of the 

photovoltaic panel, the equations were obtained from the data means. For that, the determination coefficient (R2) was adopted 

for the expressions with the best fit, presented in Table 4. 

 

Table 4. Regression between emission uniformity, coefficient of variation of emission uniformity, power of the panel and 

average flow of the micro sprinklers. 

Expression R² 

1) UE = 106,1 * CV2 - 68,40 * CV + 100,1 99.40 

2) UE = -0,079 * Flow rate2 + 7,783 * Flow rate - 94,46 79.70 

3) Flow rate = -2,856 * CV + 48,71 76.60 

4) Flow rate = 0,774 * Generated energy2 - 1,970 65.40 

5) UE = -0,044 * Generated energy 2 + 5,831 * Generated energy 2 - 96,99 62.40 

Source: Authors. 

 

The results show the existence of a strong polynomial correlation in expression 1, relating emission uniformity and 

coefficient of variation. 

In expression 2, relating EU to the flow. And a linear correlation in expression 3, relating the flow of microsprinklers 

and the coefficient of variation of emission uniformity. 

From these equations, it can be defined that, as the flow increases, the EU increases, and the CV decreases. 

Expressions 4 and 5 reached the level of 65.40 and 62.40% of R² showing a satisfactory correlation between the 

studied parameters, where expression 4 relates the flow of microsprinklers with the energy generated from the photovoltaic 

panel. Expression 5 relates the energy generated with the EU. 

Through the expressions, it can be seen that for the increase in energy generated by the photovoltaic panel there is an 

increase in flow and, consequently, an increase in the EU values. 

A similar response was obtained in a research using microsprinkler irrigation and a photovoltaic panel, where 

Andrade et al. (2017) where the authors obtained greater precipitation when the values of energy supplied to the pumping 

system increased. 

Contextualizing the expressions and their correlation coefficients, it can be assertively affirmed that for the highest 

power values of the photovoltaic panel, greater flow rates occur, and therefore a lower coefficient of variation, culminating in 

greater Emission Uniformity. 
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3.3 Shewhart control chart  

To identify whether the process was under statistical control, Shewhart control charts were proposed for individual 

EU measurements in order to identify the variation in uniformity during the 25 tests. The acceptable limit of 90% was also 

indicated in the chart, according to the classification proposed by ASAE (2003). A control chart was also proposed in relation 

to flow, power and pressure, in order to justify the variability that occurred in the EU chart. 

Figure 3 shows the Shewhart control charts for EU, generated energy, pressure, and flow, of the 25 tests. 

 

Figure 3. Shewhart control chart for the emission uniformity (EU), generated energy, pressure, and flow rate variables. 

 

Source: Authors. 

 

In the chart referring to the EU there were no points outside the upper and lower limit, but it was considered out of 

statistical control according to Frigo (2014) for showing a positive trend with nine points above the average line. It should be 

noted that despite not being under statistical control, the chart stands out positively because all points are above the value 

considered by ASAE (2003), since the higher the emission uniformity, the better the irrigation system. 

Points 1, 2, 14, 15 and 20 presented the highest EU values, and for the same tests the flow was above the average. On 

the other hand, the lowest EU value was found at point 11 (91.19%), a test that also presented a lower flow value, being even 

below the lower specification limit. 

As for the power chart, there are points above and below the limits, characterizing the variable as out of statistical 

quality control, a characteristic that is also found for the pressure chart, since it showed 10 points below the average line 

(Ribeiro & Caten, 2012).  
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Therefore, because it is a research conducted outdoors with the interference of weathering and the energy supply is 

carried out directly to the pump, there were great variations in the process, which are more efficiently verified by the Shewhart 

charts. 

The use of Shewhart control charts was more efficient in evaluating the uniformity, for the tests performed in a field 

sprinkler irrigation system, since there were large variations caused by the influence of the wind (Frigo, 2014). 

Therefore, all variables showed a lack of statistical control both due to positive or negative trends, as well as to points 

outside the limits, where it is assumed that a plausible answer to the wide variability is the change in radiation throughout the 

tests, which interfere in the tension and current, changing the flow and pressure values of the irrigation system, affecting them 

both positively and negatively. 

It is also worth highlighting the visual similarity between the EU - Flow and Power - Pressure charts, confirming the 

values of both bivariate and multivariate regression calculations previously showed. 

 

3.4 Process Capacity Index  

Table 5 shows the calculated values of the process capacity (Pc), for the 25 tests indicating that for EU the lower and 

upper specification limit was determined according to the ASAE (2003), for the power the limits were defined according to the 

curve characteristic of the pump  to meet the flow parameters of the micro sprinklers (79 to 55 Wh), while for pressure (10 to 

30 Bar) and flow (62 to 36 L h-1) the limits were determined according to the nominal values. 

 

Table 5. Calculated values of process capacity index (Pc), for the 25 tests for the EU, power, pressure, and flow variables. 

Variable Mean Pc 

EU (%) 93.660 1.457 

Generated energy (Wh) 59.400 1.523 

Pressure (Bar) 22.013 5.347 

Flow rate (L h-1) 44.201 1.949 

Source: Authors. 

 

From the calculated results, it can be defined that all variables under analysis have the process capacity index (Pc) 

capable of reaching the nominal specification value according to the one proposed by Montgomery (2009), classifying the 

system as capable or appropriate. 

Similar results regarding the feasibility of using quality control were found by Justi et al. (2010), who stated, after 

studying the process capacity for assessing sprinkler irrigation, the increase in the process capacity index proportional to the 

increase in distribution uniformity, reaching a Pc of 3.00 for uniformity greater than 80%. 

Tamagi et al. (2016), when analyzing the uniformity of irrigation water distribution by compensating and non-

compensating sprinklers at different heights, found Pc values for the CUC, DUC and EU variables that varied from 1.43 to 

4.25, that is, capable according to the classification of Montgomery (2009).  
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4. Conclusion 

The classification of excellence in the analysis of the Coefficient of Variation was defined as a result of the variables 

of energy, pressure, and flow, which remained within the nominal specifications and presented low values of coefficient of 

variation. 

The Regressions pointed out that the higher the irradiation value, the better the emission uniformity. 

The preparation of the control charts allowed the recognize the existence of some non-random patterns to identify 

trends and concisely analyze the variables presented in this study, defining this presence or passage of clouds are 

characteristics that interfere in the uniformity of the irrigation process. 

Finally, the process capacity index values were presented as defining, since the variables analyzed presented values 

higher than those stipulated in the literature, able to maintain adequate levels of uniformity of emission throughout the 

irrigation period. 
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