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Abstract 

Cybersickness results from the visual vestibule conflict, that is, the incoherence between the sensations related to real 

movement, in the virtual environment, and the visual stimuli. In response to the virtual environment, one can observe 

discomforts such as nausea, difficulty in concentrating, and headaches, among others. There are no studies in the 

literature that analyze the inhibition control of light stimuli in individuals sensitive to Cybersickness. Therefore, this 

study looked at the control of light stimulus inhibition in Cybersickness. The Sickness Susceptibility Questionnaire was 

used to divide the subjects into experimental and control groups, and quantify the signs and symptoms, comparing them 

before and after 3D virtual immersion and. Participants in both groups were examined with EEGq for absolute theta 

band power in the dorsolateral prefrontal cortex and ventrolateral prefrontal cortex during the light stimulus inhibition 

task before and after participants watched the 3D video. The partial results showed that there was an increase in the 
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absolute theta band power in both groups comparing the moments before and after, as well as a significant difference 

in the experimental group compared to the control, for the same moment. Thus, it was observed that individuals who 

were exposed to 3D virtual reality and developed Cybersikness, showed greater absolute theta band power in the areas 

studied. 

Keywords: Cybersikness; Inhibitory control; No-Go; EEG; Absolute theta power. 

 

Resumo 

O cybersickness resulta do conflito do vestíbulo visual, ou seja, da incoerência entre as sensações relacionadas ao 

movimento real, no ambiente virtual, e os estímulos visuais. Em resposta ao ambiente virtual, podem-se observar 

desconfortos como náuseas, dificuldade de concentração e dores de cabeça, entre outros. Não existem estudos na 

literatura que analisem o controle da inibição de estímulos luminosos em indivíduos sensíveis à Cibersickness. Portanto, 

este estudo avaliou o controle da inibição do estímulo de luz no Cybersickness. O Sickness Susceptibility Questionnaire 

foi utilizado para dividir os sujeitos em grupos experimental e controle e quantificar os sinais e sintomas, comparando-

os antes e após a imersão virtual 3D. Os participantes em ambos os grupos foram examinados com EEGq para a potência 

da banda theta absoluta no córtex pré-frontal dorsolateral e córtex pré-frontal ventrolateral durante a tarefa de inibição 

do estímulo de luz antes e depois que os participantes assistiram ao vídeo 3D. Os resultados parciais mostraram que 

houve aumento da potência absoluta da banda theta nos dois grupos na comparação dos momentos antes e depois, bem 

como diferença significativa no grupo experimental em relação ao controle, para o mesmo momento. Assim, observou-

se que indivíduos que foram expostos à realidade virtual 3D e desenvolveram Cybersikness, apresentaram maior 

potência absoluta da banda theta nas áreas estudadas. 

Palavras-chave: Cybersikness; Controle inibitório; No-Go; EEG; Poder theta absoluto. 

 

Resumen 

El cibersickness es el resultado del conflicto del vestíbulo visual, es decir, la incoherencia entre las sensaciones 

relacionadas con el movimiento real, en el entorno virtual, y los estímulos visuales. En respuesta al entorno virtual, se 

pueden observar molestias como náuseas, dificultad para concentrarse y dolores de cabeza, entre otros. No existen 

estudios en la literatura que analicen el control de la inhibición de los estímulos lumínicos en individuos sensibles al 

Cybersickness. Por lo tanto, este estudio analizó el control de la inhibición del estímulo lumínico en el Cybersickness. 

Se utilizó el Cuestionario de Susceptibilidad a la Enfermedad para dividir a los sujetos en grupos experimentales y de 

control, y cuantificar los signos y síntomas, comparándolos antes y después de la inmersión virtual 3D. Los participantes 

de ambos grupos fueron examinados con EEGq para determinar el poder absoluto de la banda theta en la corteza 

prefrontal dorsolateral y la corteza prefrontal ventrolateral durante la tarea de inhibición del estímulo de luz antes y 

después de que los participantes vieran el video en 3D. Los resultados parciales mostraron que hubo un aumento en la 

potencia absoluta de la banda theta en ambos grupos comparando los momentos antes y después, así como una diferencia 

significativa en el grupo experimental en comparación con el control, para el mismo momento. Así, se observó que los 

individuos que fueron expuestos a la realidad virtual 3D y desarrollaron Cybersikness, mostraron un mayor poder 

absoluto de banda theta en las áreas estudiadas. 

Palabras clave: Cybersikness; Control inhibitorio; No-Go; EEG; Poder theta absoluto. 

 

1. Introduction 

The virtual environments use as a treatment, in the field of research, has been advancing rapidly by allowing the study 

of situations, reactions, and/or pathologies in a safe environment minimizing or eliminating possible risks (Pennel & Charron, 

2015; Garret et al., 2018; Levac et al., 2019; Litleskare et al., 2020; Birenboim et al., 2021). The intact vestibular apparatus of 

healthy individuals may exhibit symptoms related to kinetosis, according to provoking stimulus in quantity and quality, although 

there are individual differences regarding the susceptibility degree (Schmal, 2013; Byagowi et al., 2014).  Kinesthesia or Motion 

Sickness is conceptualized as a sensory conflict between the vestibular, proprioceptive, and visual systems during movement, 

whether real or virtual. For example, when the individual experiences trip in cars, buses, ships, or even in virtual environments 

that occur trips simulation (França & Branco-Barreiro, 2013; Koch et al., 2018; Leung & Hon, 2019). This conflict is 

characterized by triggering a cascade of signs and symptoms, such as nausea, vomiting, cold sweating, pallor, burping, 

drowsiness, fatigue, oculomotor disorders, among others (Gavgani et al., 2016; Golding, 2016).  

The sensory conflict theory elucidates that kinetosis is caused by incompatibility between the movement perceived 

through vision and the signals received from the vestibular system, based on the previous movement experience (Ganança et al., 

2014). More specifically, Virtually Induced Movement Disorder (DMVI) adheres to the same concept as sensory conflict, 
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because in other words, this is kinetosis that occurs in the virtual environment. DMVI has typical symptoms like those of 

Kinetosis, although it presents vomiting more rarely (Golding, 2016; Gavgani et al., 2017). There are a few different 

nomenclatures for DMVI types, classifying them as Cybersickness, the DMVI in a virtual environment; DMVI during a video 

game, known as Gaming Illness and as Simulator Illness, when this DMVI occurs inside a simulator (Kennedy et al., 1997; 

Keshavarz et al., 2015). 

Cybersickness results from vestibule-visual conflict, due to the incoherence between the sensations related to real 

movement in the virtual environment and the visual stimulus (Malinska et al., 2015). Symptoms such as nausea and eye fatigue, 

arising from this conflict tend to cause impairment to individuals' experience in the virtual environment, as well as the execution 

of visual tasks performed by them (Chen et al., 2015). The Sickness Susceptibility Questionnaire (SSQ) is a tool that is used to 

quantify and distribute in domains, the symptoms that can be developed in a virtual environment and make it possible to make 

comparisons to define if the individual has developed Cybersickness (Carvalho et al., 2011; Chaumillon et al., 2017). 

Due to the symptoms of individuals who develop Cybersickness and its relation with the difficulty of developing visual 

tasks, tasks that involve the Saccadic Eye Movement (MOS) become relevant to be studied (Chen et al., 2015; Freitas et al., 

2018). MOS consists of a rapid eye movement that can be voluntary or reflex, responsible for capturing the image of interest and 

then projecting it onto the fovea. Abnormalities in MOS can be seen in a variety of disorders, such as those associated with the 

vestibular system, as well as psychopathologies. Furthermore, by evaluating MOS during inhibition of the light stimulus when 

using the No-Go paradigm, it is possible to analyze the control of this stimulus (Bittencourt et al. 2012; Velasques et al., 2013; 

Balconi et al., 2017; Buonocore et al., 2017). 

Some studies with electroencephalography (EEG) have analyzed the Cybersikness electroneurophysiology (Kim et al., 

2005; Chen et al., 2015; Koslucher et al., 2016), however, there are no studies in the literature that have analyzed EEG during 

the visual stimulus task of inhibition, thus justifying this study. Additively, in the study by Naqvi and colleagues (2015), 

individuals who watched 3-dimensional (3D) and 2-dimensional (2D) movies were compared concerning the symptoms that the 

virtual environment could induce. Both groups (2D and 3D) watched 10 minutes of a film aimed at inducing Cybersickness, the 

films simulated a car moving along a road. They used SSQ to quantify the symptoms.  

In this scene, the individuals who watched the 3D movie observed significantly greater symptoms compared to those in 

the 2D group. In the EEG we observed a positive correlation with the absolute theta band power (PAT) in the frontal region, due 

to its relationship with the Cybersikness symptoms expansion. Thus, the PAT analysis importance (Park et al., 2008; Naqvi et 

al., 2015) in these individuals is highlighted. The increased PAT (4.5 - 8) may be related to the sensory-motor activity 

coordination and visuospatial attention, as well as also, to the light stimulus inhibition control (Cartier et al., 2015; Bae et al., 

2016; Zhang et al. 2017). Therefore, this study aims to analyze the absolute theta band power in the light stimulus inhibition 

task, in individuals induced to Cybersickness. 

 

2. Materials and Methods 

2.1 Participants  

The sample contains 32 female participants, healthy, aged between 18 and 28 years, with a mean of 23.28 and standard 

deviation ± 3.22, right-handed based on the Edinburgh Manual Inventory (Seidman et al, 2013), selected through individual 

disclosure and/or invitation in the classrooms of the Federal University of Piauí (UFPI), Parnaíba’s Campus. The participants 

were clarified about the research purpose, objectives, procedures, and consulted regarding the acceptance to participate in the 

study. The research confidentiality and the right to withdraw from participation, at any time during the study, was assured. 

Finally, the participants were instructed to sign the Informed Consent Form (ICF). The study was carried out in the Brain 
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Mapping and Functionality Laboratory (LAMCEF) of UFPI and approved by the Research Ethics Committee of the Federal 

University of Piauí, No. 1.806.547. 

 

2.2 Inclusion Criteria 

We included female volunteers without uncorrected neurological, vestibular, and visual pathologies, who did not use 

psychoactive drugs or muscle relaxants and had not used products containing caffeine or central nervous system stimulants in 

the 12 hours before data collection and who had slept more than 6 hours the night before the experiment. For the Cybersikness 

Group (CG), participants with total severity score variation in the SSQ, comparing the moments before and after virtual 

immersion, above 15 and below or equal to this value were included to the Control Group (CG) (Kennedy et al., 2003). 

 

2.3 Experimental Procedure 

The experiment (Figure 1) started after a screening where personal data were collected, such as: name, gender, age, 

contact, use of medication, whether they had neurological and/or vestibular diseases and visual acuity. Soon after, the Edinburgh 

Manual Inventory was applied (Seidman et al, 2013). Then, the MSSQ (Golding, 1998) was used in order to observe the 

susceptibility of the individual to kinetosis, and the SSQ (Kennedy et al., 2003) to determine the group to which the participants 

would be directed, according to what was established on the total severity score variation between the moments before and after 

the 3D Virtual Reality (VR), since the variation above 15 directed the participants to the EG and if equal to or below this value 

to the CG (Kennedy et al. 2003). 

During the experiment, the subjects were asked to sit comfortably on a chair with arm support, to minimize muscle 

artifacts. In front of the participant was placed a 13-bar composed Light Emitting Diode (LED), positioned at the height of the 

participant's eyes, at 100 cm. The bar is composed of 6 LEDs on the left side and 6 on the right side, and a warning (central 

bicolor LED). They were then given instructions as to how to conduct the experiment. It was explained that the warning would 

light in two different colors, green or red, and after the warning was turned on, one of the LEDs on the right or left would light 

(Figure 2). 

 

Figure 1: Collection Steps. 

 

 

 

 

 

 

 

 

Source: Authors. 

 

The participants were asked to keep their eyes fixed on the bar center and only change the direction of their gaze after 

the warning was turned on. So that when the warning was red, the participant should inhibit the MOS so that it would not follow 

the next onset, and when the warning was green, the participant should direct her gaze to the side LED, which would then light 

up. It was also clarified that only the gaze should follow the stimulus, and the head should remain inert. During the entire use of 

the LED bar and in the resting moments, before and after the 3D VR, the electroencephalographic signal was captured in the 
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GSC and CG. The bar exposure had, in each block, a duration of 1.46s, with the parameters, baseline interval and onset duration, 

respectively of 2s x 250 ms, in alternating random mode. The light stimulus inhibition task was performed at two time points 

with 6 blocks of 120 trails in total.  Two rests were performed, at the beginning and at the end of the experiment, lasting 3 min 

each. 

The 3D VR lasted 16min35s, with a video display simulating that the participant was on a roller coaster at an amusement 

park. Every 5 minutes they were asked about the level of dizziness, according to the Modified Visual Analog Scale (VAS) for 

motion sickness, with a score variation from 0 to 10, which was previously presented. They were also asked about the occurrence 

of nausea and malaise. A safety band was used, according to the VAS, where the score 8 was the maximum allowed, since 9 and 

10 indicated severe discomfort during virtual immersion, indicating the need to interrupt the virtual immersion. The experiment 

was interrupted upon request by the participant or observation by the researchers regarding signs that indicated any risk of 

vomiting and/or fainting, in order to preserve the participants. 

 

Figure 2: Participant positioned for EEG signal acquisition. 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Authors. 

 

The instruments used for virtual immersion were the 3D Matte Vr Shinecon 2.0 Vr black VR glasses and the Samsung 

J5 cell phone, attached for video display. To capture the EGG signal we used a BrainNet BNT-EEG device (EMSA - Medical 

Instruments, Brazil) with a 20-channel analog-to-digital (A/D) converter board with 16-bit resolution. The electrodes were 

arranged following the 10-20 international system, including reference electrodes positioned on the earlobes (bi-auricular), lateral 

oculars (1 pair), in both corners of the eyes, and vertical (1 pair), one upper and one lower. 

 

2.4. Data processing 

Electrophysiological Signals 

The EEG signal analysis was performed using the EEGLAB/MATLAB program in EEGq. It was comprised in a total 

window of 2s, for visualization of the process during the No-Go warning LED, in the moments before and after, the 3D VR, 

comprised the epoch from -1s to 1s. The data contained in the epochs were bandpass filtered (0.5 to 40 Hz). The electrodes used 

for analysis were F3, F4, F7 and F8. Since, the capture room had acoustic isolation and electrical grounding.  The impedance of 

the skin-electrode interface was kept below 5kΩ. The acquired data had a total amplitude of less than 100mV. The EEG signal 

was filtered between 0.5Hz (high-pass) and 40Hz (low-pass), filtering noting 60Hz, sampling at rest 400Hz and task 200Hz, with 
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Sacadic Aquisition software. The collected data were transformed (re-referenced) using the average reference, and then were 

conducted for artifact elimination with ICA (Independent Component Analysis). By visual inspection, tracks clearly 

demonstrating blinks and saccade-related artifacts were removed. 

 

2.5. Statistical analysis 

2.5.1 Behavioral 

In data analysis referring to the SSQ, after it was observed that it did not have a normal distribution by means of the 

Shapiro Wilk test, besides not having homogeneity of variances, according to Levene's Test.  The Mann-Whitney test was used 

to analyze whether there was a statistically significant difference between the groups (CG and EG) and time (before and after) 

in the domains: Nausea, Oculomotor, Disorientation and Total Score. And the Wilcoxon test to observe if there was a statistically 

significant difference for the moments before and after within each group (CG and EG) in the domains (Nausea, Oculomotor, 

Disorientation, and Total Score), with the Bonferroni correction considered p <0.003, for statistically significant differences. 

 

2.5.2 Electrophysiological 

As for the electrophysiological data, to verify the absolute theta band power variation related to the epoch from -1s to 

1s, to the No-Go warning LED to be observed at the moments before and after the 3D VR, in the CG and EG and in the electrodes 

F3, F4, F7, F8. Initially the data were parametrized, outliers removed, with the Shapiro Wilk test it was observed that the data 

were normally distributed (p>0.05). It was assumed that there was no variances homogeneity. The Three Way Anova test was 

used to analyze the statistically significant difference between group, moment, and area, where a double interaction was observed 

between group and moment and moment and area. The Student's t-test was used to analyze interactions, with p <0.025 considered 

statistically significant after applying the Bonferroni correction.  The analysis was conducted using SPSS for Windows version 

21.0. 

 

3 Results 

3.1 Behavioral 

The Mann-Whitney test showed statistically significant difference between group and moment, for the moment after, 

in the Nausea domains (U= 7; p< 0.0001), Oculomotor (U= 36.5; p< 0.0001), Disorientation (U= 24.5; p< 0.0001) and Total 

Score (U= 18.5; p< 0.0001). Wilcoxon's test, on the other hand, showed the statistically significant difference for the moments 

before and after EG, in the Nausea domains (Z= -3.518; p<0.0001), Oculomotor (Z= -3.344; p< 0.001), Disorientation (Z= -

3.416; p<0.001), Total Score (Z= -3.518; p<0.0001) (Figure 3). 
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Figure 3: Demonstrates by means of the median SSQ scores within each domain for CG and EG, at the moments before and 

after (a, d) the 3D VR. ❋ significant difference between the moments before and after intra-group, for the domains (DN, DO, 

DD) and total score (ET); + significant difference in DN-d between the groups, △ significant difference in DO-d between the 

groups; ⌂ significant difference in DD-d between the groups; □ significant difference in ET-d between the groups; considering 

p< 0.05. 

Source: The authors. 

 

3.2 Electrophysiological 

A Three Way Anova was performed for group (control and experimental), moment (before and after) and areas (F3, F4, 

F7, F8) interaction was observed between moment and group [F (1, 1,000) = 4.072, p= 0.04, ɳ ² p= 0.002, power= 52%] and an 

interaction between area and group [F (3, 1,000) =16.972, p< 0.001, power= 100%]. In the analysis between moment and group, 

the t-test pointed out a difference in the control group, between the moment before and after, only for Right Dorsolateral 

Prefrontal Cortex (F4) [t (872) =2.921, p= 0.004, d= 0.098] and in the experimental group also for Right Dorsolateral Prefrontal 

Cortex or F4[t (873) =2.241, p = 0.025, d =0.075]. When assessing the interaction between time and area a difference was 

observed at the time before for the groups in Left Dorsolateral Prefrontal Cortex or F3 [t (1663) = 6.312, p< 0.001, d = 6.31], 

Right Dorsolateral Prefrontal Cortex or F4 [ t (1636) = 8. 768, p< 0.001, d = (8.76)], Left Ventrolateral Prefrontal Cortex or F7[t 

(1403) = 4.388, p< 0.001, d= 4.38] and Right Ventrolateral Prefrontal Cortex or F8 [t (1311) = 6.728, p< 0.001, d= 6.72]. 

Whereas, at the later time point, a statistically significant difference was observed for Left Ventrolateral Prefrontal Cortex or 

F7[t (1,619) = 4.011, p< 0.001, d= (4.01)] and Right Ventrolateral Prefrontal Cortex or F8 [t (1,554) = 4.347, p< 0.001, d = 

4.347] (Figure. 4). 
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Figure 4: Shows the absolute theta band power in dorsolateral prefrontal cortex and ventrolateral prefrontal cortex by mean and 

standard deviation, between CG and EG at the moments before and after (a, d) 3D VR. ❋ significant difference between the 

moments before and after intra-group, for area; □ significant difference in CPFDLe-a between groups; △ significant difference 

in CPFDLd-a between groups; ⌂ significant difference in CPFVLe-a between groups; ◇ significant difference in CPFVLe-d 

between groups; ० significant differences in CPFVLd-a between groups; ✞ significant differences in CPFVLd-d between groups. 

Source: The authors. 

 

4 Discussion 

The present experiment investigated changes in PAT analyzed by EEGq means related to the inhibition control process 

in the light stimulus inhibition task, using the No-Go paradigm. We analyzed the theta band in female subjects, who were induced 

to develop the Cybsikness symptoms, which were triggered by means of 3D VR. PAT behavior was observed in areas of the 

scalp representing CPFDL (F3-F4), CPFVL (F7-F8) in both groups, i.e., those who developed Cybersikness and those who did 

not, EG and CG respectively. The use of 3D VR, in this study, was justified in the discomforts generated in the individuals 

submitted to it were relevant, especially in those prone to develop Cybersikness symptoms. In particular, the quantification of 

these symptoms was established by SSQ means, in scores, this being the behavioral study variable. The variation in scores was 

used as a means of defining the groups, with the CG containing participants who did not develop symptoms, according to the 

scores, and the EG containing those who did. 

Some participants during exposure to 3D VR were unable to remain watching the movie for all 16min35s, which was 

its total duration, and was also one of the requirements for the participants to continue in this study. However, as initially 

established, the participants would not be exposed to severe discomfort, to protect their integrity. Two individuals dropped out 

of the experiment during the virtual immersion, reporting intense headache and strong nausea, indicating 9 on the VAS for 

nausea. Such fact, reinforces about the duration of immersion to 3D VR being sufficient, reaching what was expected within this 

study, aiming to stimulate the symptoms of Cybersikness (Gavgani et al., 2016; Bos et al., 2018).   
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Analyzing the data related to the SSQ, a statistically significant difference was observed when comparing the moments 

before and after 3D VR in the EG.  In the CG, comparing the same moments, no significant differences were observed after 

immersion in 3D VR, which establishes that the participants from the EG manifested a greater range of symptoms, quantified by 

means of the SSQ scores, after watching the video in virtual immersion. This result is within expectation, since in the EG all the 

individuals developed Cybersikness. Therefore, it is due to 3D VR the triggering of the related symptoms in the subjects of the 

EG, since they proved to be sensitive to this exposure. Studies corroborate the results of the present study, since it has been 

observed that some individuals feel discomfort when using VR devices, such as eye fatigue, nausea, among others, which are 

also common. As for the score, it was established that the higher it was, the more symptoms were developed and/or the greater 

was their intensity, for this reason the increase of the same symptoms was not observed significantly, after 3D virtual immersion 

in the CG (Carnegie & Rhee 2015; Han et al. 2017; Keshavarz et al., 2018).    

According to some studies, healthy individuals are likely to develop symptoms such as disorientation, nausea, eye 

fatigue, belching, headache, vertigo and etc, during and after exposure to 3D VR, for up to 5 hours. Since, when they develop 

this cascade of symptoms in virtual environment the individual presents Cybersiknness (Carvalho et al., 2011; Treleaven et al., 

2015). In this study, the SSQ score was also compared between the groups of individuals, those who developed and those who 

did not develop Cybersikness at times before and after 3D VR. It was observed that at the time before both groups had no 

statistically significant differences, which reinforces about the individuals initially being equal when compared, as they had no 

symptoms establishing Cybersikness before watching the video. However, after exposure to 3D VR, there were significant 

differences when comparing the CG and EG, as we observed higher scores, referring to more symptoms in the EG, due to 

exposure to 3D VR. The result of the present study is in accordance with the literature, since the emergence and/or increase in 

the intensity of symptoms related to Cybersikness are observed after exposure to 3D VR in specific individuals (Malińska et al., 

2014; Biernacki et al., 2016). 

In the electrophysiological data analysis, there was interaction between time and group. Both in the CG and EG when 

comparing the moments before and after, within each group, there was an increase in PAT after 3D VR, in all areas studied, i.e., 

in the right and left CPFDL, as well as in the right and left CPFVL also, although among these results it was significant only the 

one referring to the PAT of the right CPFDL, when comparing the moments before and after VR, which according to studies is 

justified because the CPFDL and CPFVL play different roles in preparation for inhibition. Since the CPFDL focuses on the goal 

of the task itself and its activation occurs prior to the stop, while the VLPFC can implement action control, participating later, 

right at the time related to task preparation for inhibition of the light stimulus (Chikazoe, 2010; Swann et al., 2013; Bruni et al., 

2015).  

The PAT increase in the frontal region is observed during MOS-related activities, more specifically the task of inhibiting 

the light stimulus, as well as the control of this stimulus, since the frontal region acts in inhibiting the execution of individuals' 

functional actions (Petit et al. 2012; Detandt et al. 2017; Maij et al. 2017). Although, the Cybersikness symptoms exacerbations, 

are also related to the increase in PAT, something that was already observed in both groups by means of the SSQ, which allows 

suggesting that this increase is not only related to the Cybersikness symptoms exacerbation, but also to the inhibitory control, 

which was observed during the task of inhibition of the light stimulus (Knyazev, 2010; Zhou et al., 2016; Liu et al., 2017; Huster 

et al., 2013; Herrmann et al., 2016). 

This study also showed an interaction between moment and area, with a statistically significant difference in PAT 

between the CG and EG comparing them at the moment before in the CPFDL and CPFVL areas, i.e., in all areas analyzed in this 

study. The subjects in the EG, during the light stimulus inhibition task had higher PAT, even though at this moment both groups 

were equal in relation to symptoms, since there was no presence of Cybersikness symptoms, because they had not yet undergone 

3D VR to present symptoms, the referred group had higher PAT compared to the CG.  The increased PAT observed in the EG 

http://dx.doi.org/10.33448/rsd-v10i12.20070


Research, Society and Development, v. 10, n. 12. e29101220070, 2021 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v10i12.20070 
 

 

10 

suggests that, the inhibition control of the light stimulus was significantly higher compared to the CG, prior to immersion in 3D 

VR. In a manner, not yet established in the literature, because the light stimuli inhibitory control relationship in individuals 

susceptible to developing the Cybersikness symptoms has not yet been investigated. The result of this study suggests that 

individuals, even at the time when they do not present the Cybersikness symptoms, only in being sensitive to Cybersikness 

during light stimulus inhibition show higher PAT in CPFDL and CPFVL, suggesting greater inhibitory control in these 

individuals (Knyazev 2010; Swann et al., 2013; Cartie et al. 2015;). 

After 3D VR, comparing the CG and EG to light stimulus inhibition, although in all areas studied there was a higher 

PAT for the EG, this difference was only significant in the right and left CPFVL. This corroborates the suggestion that individuals 

exposed to 3D VR who develop Cybersikness symptoms tend to have a greater inhibitory control of light stimuli, even when 

they did not show symptoms, i.e., before the induction of Cybersikness, as well as in the presence of symptoms. When observing, 

the moment before, such results elucidate that although, the individuals had not yet been exposed to 3D VR and developed 

Cybersikness, possibly the sensory inadequacy of the vestibular, visual, and proprioceptive system generated, induces these 

results, observed with increased PAT in the EG (Bair, 2017; Liu et al., 2017; Buonocore et al., 2017; Freitas et al., 2018). 

 

5 Conclusion 

The present study aimed to analyze the individuals PAT who were induced to Cybersikness through 3D VR, during the 

task inhibition of light stimulus for the moment before virtual immersion and after, comparing the results of the participants who 

developed Cybersikness with those who did not. The participants who were exposed had the development of more symptoms 

and were also more intense, besides having presented higher PAT in all the areas studied. Therefore, it can be concluded that 

individuals exposed to 3D VR who develop Cybersikness show higher PAT in CPFDL and CPFVL when compared to 

individuals who do not develop the same symptoms, whether considering the moment before 3D virtual immersion or after 

analyzing the electrocortical activity of these individuals during inhibition of the light stimulus.  

The results elucidate that the increase in PAT in CPFDL and CPFVL is not only related to the onset and/or intensification 

of symptoms, but also to greater control during the task of inhibiting the light stimulus, since higher PAT was observed in 

Cybersikness-sensitive individuals at all studied time points. The small sample size is a limitation of this study.  Further studies 

on the subject should be carried out with a larger sample in to analyze the PAT variation in frontal cortex areas through inhibition 

tasks in individuals sensitive to Cybersikness. 

For future development of works with a better methodological adjustment, we made some notes, namely: researching 

other ranges of brain activities, inclusion of a placebo group to better verify the effects, increase the number of participants for 

a better representation of the population, and finally would optimize the experimental design including a sample randomization. 
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