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Abstract 

Dengue has become a challenge for many countries. Arboviruses transmitted by Aedes aegypti spread rapidly over the 

last decades. The emergence chikungunya fever and zika in South America poses new challenges to vector monitoring 

and control. This situation got worse from 2015 and 2016, with the rapid spread of chikungunya, causing fever and 

muscle weakness, and Zika virus, related to cases of microcephaly in newborns and the occurrence of Guillain-Barret 

syndrome, an autoimmune disease that affects the nervous system. The objective of this work was to construct a tool to 

forecast the distribution of arboviruses transmitted by the mosquito Aedes aegypti by implementing dengue, zika and 

chikungunya transmission predictors based on machine learning, focused on multilayer perceptrons neural networks, 

support vector machines and linear regression models. As a case study, we investigated forecasting models to predict 

the spatio-temporal distribution of cases from primary health notification data and climate variables (wind velocity, 

temperature and pluviometry) from Recife, Brazil, from 2013 to 2016, including 2015’s outbreak. The use of spatio-

temporal analysis over multilayer perceptrons and support vector machines results proved to be very effective in 

predicting the distribution of arbovirus cases. The models indicate that the southern and western regions of Recife were 

very susceptible to outbreaks in the period under investigation. The proposed approach could be useful to support health 

managers and epidemiologists to prevent outbreaks of arboviruses transmitted by Aedes aegypti and promote public 

policies for health promotion and sanitation.  

Keywords: Dengue forecasting; Chikungunya forecasting; Zika forecasting; Arboviruses forecasting; Machine 

learning; Arboviruses prediction. 

 

Resumo  

A dengue se tornou um desafio para muitos países. Os arbovírus transmitidos por Aedes aegypti se espalharam 

rapidamente nas últimas décadas. A emergência de febre chikungunya e zika na América do Sul apresenta novos 

desafios para o monitoramento e controle de vetores. Essa situação piorou a partir de 2015 e 2016, com a rápida 

disseminação da chikungunya, causando febre e fraqueza muscular, e do Zika vírus, relacionado a casos de microcefalia 

em recém­nascidos e a ocorrência da síndrome de Guillain-Barret, doença autoimune que afeta o sistema nervoso. O 

objetivo deste trabalho foi construir uma ferramenta para previsão da distribuição de arbovírus transmitidos pelo 

mosquito Aedes aegypti por meio da implementação de preditores de transmissão de dengue, zika e chikungunya 

baseados em aprendizado de máquina, com foco em redes neurais perceptrons multicamadas, máquinas de vetores de 

suporte e modelos de regressão linear. Como um estudo de caso, investigamos modelos de previsão para prever a 

distribuição espaço­temporal de casos a partir de dados de notificação de saúde primária e variáveis climáticas 

(velocidade do vento, temperatura e pluviometria) de Recife, Brasil, de 2013 a 2016, incluindo o surto de 2015. O uso 

de análises espaçotemporais sobre perceptrons multicamadas e resultados de máquinas de vetores de suporte 

mostraram­se bastante eficazes na previsão da distribuição de casos de arbovírus. Os modelos indicam que as regiões 

sul e oeste do Recife foram muito suscetíveis a surtos no período investigado. A abordagem proposta pode ser útil para 

apoiar gestores de saúde e epidemiologistas na prevenção de surtos de arbovírus transmitidos pelo Aedes aegypti e na 

promoção de políticas públicas de promoção da saúde e saneamento. 

Palavras-chave: Previsão da dengue; Previsão de Chikungunya; Previsão do Zika; Previsão de arbovírus; Aprendizado 

de máquina; Predição de arbovírus. 
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Resumen  

El dengue se ha convertido en un desafío para muchos países. Los arbovirus transmitidos por Aedes aegypti se han 

propagado rápidamente en las últimas décadas. La aparición de la fiebre chikungunya y Zika en América del Sur 

presenta nuevos desafíos para el monitoreo y control de vectores. Esta situación se agravó a partir de 2015 y 2016, con 

la rápida propagación del chikungunya, que provoca fiebre y debilidad muscular, y el virus Zika, relacionado con casos 

de microcefalia en recién nacidos y la aparición del síndrome de Guillain­Barret, una enfermedad autoinmune que afecta 

al sistema nervioso. El objetivo de este trabajo fue construir una herramienta para predecir la distribución de arbovirus 

transmitidos por el mosquito Aedesaegypti mediante la implementación de predictores de transmisión de dengue, zika 

y chikungunya basados en aprendizaje de máquina, con foco en redes neuronales de perceptrones multicamadas, 

máquinas de vector de soporte y modelos de regresión lineal. Como estudio de caso, investigamos modelos de 

predicción para predecir la distribución espacio­temporal de casos a partir de datos de notificación de salud primaria y 

variables climáticas (velocidad del viento, temperatura y lluvia) de Recife, Brasil, 2013 a 2016, incluido el brote de 

2015. El uso de análises espacio­temporal por medio de perceptrones multicamadas y los resultados de las máquinas de 

vectores de soporte demostraron ser muy eficaces para predecir la distribución de los casos de arbovirus. Los modelos 

indican que las regiones sur y oeste de Recife fueron muy susceptibles a brotes en el período investigado. El enfoque 

propuesto puede ser útil para apoyar a los administradores de salud y epidemiólogos en la prevención de brotes de 

arbovirus transmitidos por Aedes aegypti y en la promoción de políticas públicas para promover la salud y el 

saneamiento. 

Palabras clave: Pronóstico del dengue; Pronóstico de Chikungunya; Pronóstico del Zika; Predicción de arbovirus; 

Aprendizaje de máquina; Predicción de arbovírus. 

 

1. Introduction 

Prevention and control of dengue fever, chikungunya fever and zika has been a major public health challenge for many 

countries. Since 2015 other arboviruses have interacted with the dengue virus, which has spread rapidly over the past two decades 

(de Lima et al., 2016; Bhatt et al., 2013). It is estimated that around 390 million new cases of dengue occur each year. However, 

problems such as misdiagnosis and inaccurate reporting or absence of case reporting in many regions can contribute to the 

underestimation of the impact of dengue and other arboviruses transmitted by the mosquito Aedes aegypti (de Lima et al., 2016). 

The emergence of other arboviruses, such as chikungunya fever and zika, especially in South America, poses new challenges to 

vector monitoring and control. This situation worsens from 2015 and 2016, with the rapid spread of chikungunya, causing fever 

and muscle weakness, among other symptoms, and the emergence of Zika virus, partially related to cases of microcephaly in 

newborns and directly related to the occurrence of Guillain­Barret syndrome, an autoimmune disease that affects the nervous 

system, ranging from muscle weakness to paralysis (Cao­Lormeau et al., 2016). 

Dengue is a viral infection transmitted to humans through mosquitoes, and is spreading rapidly around the world. Its 

primary vector is the mosquito Aedes aegypti, a species well adapted to urban areas and distributed mainly in tropical and 

subtropical regions, but also operating in North America and Europe. Evidence indicates that a secondary vector, the mosquito 

Aedes albopictus, has also been expanding its geographic range (de Lima et al., 2016; Bhatt et al., 2013). The risk of arbovirus 

outbreaks and their endemic presence is higher in tropical and subtropical regions, but is also increasingly present in North 

America and Europe, due to the presence of mosquitoes Aedes and the introduction of viruses (de Lima et al., 2016; Bhatt et al., 

2013). 

The transmission of arboviruses is a complex process that involves the interaction of multiple agents: human 

populations, mosquitoes and viruses conditioned by climatic and environmental factors in a very heterogeneous space. The space 

in which these interactions take place is complex enough that the study of arboviral transmission is fraught with challenges. 

Arborovirus pandemics have been favored by a combination of several factors: the global mobility of human populations and 

mosquito circulation; the swelling of overcrowded urban areas; the difficulty of access by urban populations, especially the 

economically disadvantaged sectors, to basic sanitation, regular water supply, and the public health system; environmental and 

climatic factors, such as temperature and rainfall, which measure rainfall density and occurrence; and, finally, the inefficiency 

of vector control strategies (de Lima et al., 2016; Gubler, 2011; Mohammed & Chadee, 2011). 

http://dx.doi.org/10.33448/rsd-v10i12.20804
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Several research groups have been dedicated to building risk maps and estimating the global distribution of arboviruses 

and their correlation with environmental data. Despite the importance of these efforts to map the distribution of these diseases, 

it is also important to understand the dynamics of arboviruses on a local scale, which is done through mathematical and 

computational models (Padmanabhan et al., 2017; Jindal & Rao, 2017; de Lima et al., 2016). Local climatic conditions, such as 

temperature, rainfall and humidity, interfere with vector development, from hatching to mosquito life and dispersal, and other 

aspects of arboviral transmission (de Lima et al., 2016; Gubler, 2011). The advancement of Digital Epidemiology and 

geoprocessing technologies, coupled with the development of Data Mining and Machine Learning techniques, have provided 

rapid monitoring, control and simulation of disease spread, assisting public health systems in controlling epidemics and of the 

environmental and behavioral factors that favor the vectors of these diseases (Salathe et al., 2012; Beltrán et al., 2018; Musah et 

al., 2019; Rubio­Solis et al., 2019; Kostkova et al., 2019). 

In Brazil, arboviruses have received special attention from the Unified Health System through public health policies 

and campaigns (Pessanha et al., 2009). In Recife, the Recife Municipal Health Secretariat, through its Open Data Portal, 

distributes the mapping of diseases and symptoms by health unit and the patient’s neighborhood of origin since 2015. The 

Pernambuco Water and Climate Agency, APAC also provides a geographic information system where the daily and monthly 

rainfall series are published since 2006, by city and, in the case of Recife, by neighborhood. 

Machine learning techniques have been shown to be useful to support the diagnosis and prediction of prognosis of 

different diseases based on biomedical signs and images and different clinical parameters (Commowick et al., 2018; S. M. de 

Lima et al., 2016; Santana et al, 2018; Cordeiro et al., 2016; Barbosa et al., 2021; de Souza et al., 2021; Pereira et al., 2021). 

Additionally, machine learning­based regression techniques have been successfully used for temporal and spatiotemporal 

prediction of contagious diseases such as Covid­19 (da Silva et al., 2021; de Lima et al., 2020). We believe that this set of 

techniques can achieve good accuracy results when adapted to arboviruses, including not only the spatial and temporal windows 

of the number of cases, but also climatic and environmental variables. 

The objective of this work was to construct a tool to forecast the distribution of arboviruses transmitted by the mosquito 

Aedes aegypti by implementing dengue, zika and chikungunya transmission predictors based on machine learning, focused on 

multilayer perceptrons neural networks, support vector machines and linear regression models. As a case study, we investigated 

forecasting models to predict the spatio­temporal distribution of cases from primary health notification data and climate variables 

(wind velocity, temperature and pluviometry) from Recife, Brazil, from 2013 to 2016, including 2015’s outbreak. Multiplayer 

perceptrons demonstrated to be the most adequate models, reaching considerable high correlation coefficient values and 

percentual errors lower than 5%. 

 

2. Methodology 

2.1 Proposed Method 

In this work, we propose a prototype of a system for spatio­temporal prediction of the distribution of cases of 

arboviruses, i.e. dengue, chikungunya and zika. The main hypothesis of this work is that the monthly average measurements of 

temperature and wind speed, and the number of arbovirus cases per two months by geographic location, considering a 12­month 

prediction window, can be used to predict the spatial and temporal distribution of dengue, chikungunya and Zika cases. As a case 

study, we used the climatic variables obtained from the national meteorological systems, and the case information by 

neighborhood of the City of Recife, available in the National Notification System and in the Open Data Portal of the City of 

Recife, from 2014 to 2016. Considering the predictive models, we also start from the hypothesis that machine learning methods 

can be used successfully to predict the spatiotemporal distribution of arboviruses cases in this context (Koche, 2011; A. S. Pereira 

et al., 2018; Ludke & André, 2013; Yin, 2015). 

http://dx.doi.org/10.33448/rsd-v10i12.20804
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Therefore, this research is characterized as a quali­quanti case study, ie a case study that combines qualitative aspects 

(visual analysis from the spatial distributions generated by the geographic information system) and quantitative aspects 

(regression evaluation indices and other statistics of interest) in your analysis. The following subsections present in detail the 

databases, data preparation and pre­processing, machine learning methods used to build the predictive models, the geographic 

information system, and quality indices. 

 

2.2 Area under study 

The area delimited for this study was the City of Recife (8° 03’14” S, 34° 52’51” W), capital of the State of Pernambuco 

which is located in the northeast region of Brazil (Figure 1). Recife, according to the Brazilian Institute of Geography and 

Statistics (IBGE) has a territorial extension of approximately 218km2 and about 1,637,834 million inhabitants, besides being the 

city Northeast with the highest Human Development Index (HDI). The climate of the city of Recife is characterized as tropical 

humid, with average monthly temperatures above 18° C, high relative humidity and high rainfall throughout the year (INMET). 

 

Figure 1: Localization of the City of Recife. 

 

Source: Authors. 

 

2.3 Mapping of arbovirus cases 

Data on arbovirus cases were obtained through the Open Data Portal of Recife City (http://dados.recife.pe.gov.br/), 

which contains the records of the number of cases of Dengue, Zika. and chinkugunya from 2013 to 2016. For each two months 

of each year, the number of arboviral cases in each of the 94 districts of Recife was counted separately. From the information on 

the number of cases in each neighborhood, a vector layer of points was generated, shapefile (.shp), geographically locating the 

number of cases to each neighborhood of the city geographically, as can be observed in the map on the right in Figure 2. In order 

to estimate the distribution of arboviral cases throughout the municipality, the QGIS interpolation tool was used, in which the 

interpolation method selected was the inverse distance interpolation. As a result of the interpolation, we obtained a raster image 

http://dx.doi.org/10.33448/rsd-v10i12.20804
http://dados.recife.pe.gov.br/
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(.tif) that can be observed in the map on the left in Figure 2. Rasters were generated for each quarter from 2013 to 2016, where 

each raster represents the distribution map of the cases of arboviruses. 

 

Figure 2: On the left is the dotted vector layer of arbovirus cases. On the right is the arboviruses distribution map of the first two 

months of 2013. 

 

Source: Authors. 

 

2.4 Mapping of climate variables 

Climatic factors such as rainfall and temperature are among the causes of an increase in arboviruses. Mosquito behavior 

is determined by weather conditions. This is because rainfall, temperature, and humidity affect the interaction of biological and 

viral vectors throughout life, mating age, spread, feeding, and faster viral replication (Morin et al., 2013; LaDeau et al., 2015). 

The monitoring of climate variables in Brazil is performed by the National Institute of Meteorology 

(http://www.inmet .gov.br), INMET. This monitoring is performed through stations distributed throughout the country, one of 

which is located in Recife City. Temperature and wind speed data were collected from the INMET database, where the historical 

series of daily measurements of weather stations from 1961 are found. From this database, the historical series of the years were 

collected from 2013 to 2016. 

The Pernambuco Water and Climate Agency (http://www.apac.pe.gov.br), in Recife, monitors hydrometeorological 

indices through the Pernambuco Hydrometeorological Geoinformation System, the SIGHPE. Data related to the rainfall indexes 

of the city of Recife were collected in the SIGHPE database, which contains the historical series of hydrometeorological indexes, 

since 2006, of the rainfall stations distributed in the city. For this work, only the accumulated rainfall from 2013 to 2016 were 

collected. In the case of Recife, wind temperature and speed records are monitored by a single station, while hydrometeorological 

http://dx.doi.org/10.33448/rsd-v10i12.20804
http://www.inmet.gov.br/
http://www.inmet.gov.br/
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records are carried out by three stations in different neighborhoods. The temperature and wind velocity records in the other 

districts of Recife were estimated using the Gaussian distribution. 

Sample standard deviation values were calculated from Equation 1, where xmax represents the maximum value and µ 

represents the monthly average of wind temperature and velocity values. 

𝜎 =
𝑥𝑚𝑎𝑥 − 𝜇

4
. (1) 

For the monthly accumulated rainfall, the maximum value considered was the maximum value recorded between the 

three monitoring stations, while the average considered was the average of the accumulated rainfall between the three monitoring 

stations. With information on climate variables in all neighborhoods of Recife, the shapefiles were generated for each of the 

variables for each month from 2013 to 2016. Finally, the inverse distance interpolation tool was used to estimate the spatial 

distribution of climatic variables throughout the Recife territory. 

 

2.5 Regression models 

Linear Regression 

The linear regression is the simplest method to predict numeric values. In this method, it is assumed that the data has a 

linear behavior, and that the prediction variable can be represented as a linear combination of the attributes with their 

pre­determined weights (Witten & Frank, 2005). Thus, the general model of linear regression is represented by the Equation 2. 

y = w0 + w1x1 + w2x2 + ... + wnxn, (2) 

where y is the prediction variable; x1,x2,...,xn, represent the values of the attributes and w0,w1,w2,...,wn represent the weights of 

each attribute. The idea of the linear regression algorithm is, then, to find the optimal weights that best represent the problem. 

One of the ways to find the optimal weights is to minimize the sum of the squared difference between the predicted value and 

the actual value (Witten & Frank, 2005). The sum of the squared difference is calculated by Equation 3: 

𝑆 =∑[𝑦(𝑖) −∑𝑤𝑗𝑥𝑗
(𝑖)

𝑘

𝑗=0

]

2
𝑛

𝑖=1

 (3) 

 

Artificial Neural Networks 

Artificial neural networks (ANN), consists in a machine learning technique based on the behavior of the human brain 

(Siriyasatien et al., 2018). The neural networks consist of smaller units, artificial neurons, which are fundamental to their 

functioning. The artificial neurons contains the following elements: (1.) a set of synapses or connectors where a signal xi at the 

entrance to the synapse j connected to the k neuron is multiplied by the synaptic weight wk,j (2.) an adder to add the input signals, 

weighted by the respective neuron synapses; (3.) an activation function to limit the output of a neuron (Haykin, 2001). 

Mathematically, an artificial neuron is represented by the Equation 4 and by the Equation 5: 

𝑢𝑘 =∑𝑤𝑘,𝑗𝑥𝑖

𝑛

𝑗=1

, (4) 

𝑦𝑘 = 𝜑(𝑢𝑘 + 𝑏𝑘), (5) 

wherein x1,x2,...,xn represent the input signals; wk,1,wk,2,...,wk,n represent the synaptic weights of the input signals xi for the k-th 

neuron; bk, is the term bias and φ is a neuron activation function. In regression applications, the inputs x1,x2,...,xn of the input layer 

correspond to the forecasting window. For instance, in case of temporal forecasting, the inputs are observed time window of the 

time series. 

http://dx.doi.org/10.33448/rsd-v10i12.20804
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The network architecture used in this work was the Multilayer Perceptron (MLP). In this configuration, the neural 

network has an input layer, two or more hidden layers and an output layer (Haykin, 2001). ANNs have also been widely used to 

predict disease cases. For example, in the prediction of dengue cases in the city of São Paulo, Brazil (Baquero et al., 2018). They 

were also used to predict dengue outbreaks in the northeastern coast of Yucatán, Mexico, and in San Juan, Puerto Rico (Laureano-

Rosario et al., 2018). Moreover, the ANNs were applied to model cases of infection by Salmonella in the state of Mississippi, 

USA (Akil and Ahmad, 2016). 

 

Support Vector Regression 

The support vector regression is a supervised machine learning technique for data analysis and pattern recognition. The 

idea of the SVR algorithm is to find the best hyperplane defined by Vapnik’s ε-insensitivity loss function. When this hyperplane 

is found, a linear regression is applied to the corresponding hyperplane. In situations where the problem is linearly separable, the 

best hyperplane is given by the equation: 

y = wTx + b, (6) 

where w = (w1,w2,...,wn)T is the vector of weights, x = (x1,x2,...,xn)T is the feature vector, and b is the bias. For problems that are 

not linearly separable, the data is mapped to a hyperplane in a larger dimension. Thereupon, the algorithm seeks to solve the 

problem by applying the linear regression of the equation 6 in the corresponding hyperplane. For nonlinearly separable problems, 

SVR machines use kernel functions, K : R×R → R. Then, the SVR output assumes the following expression: 

y = K(w,x), (7) 

where the kernel function can be polynomial, sigmoidal, Gaussian, or even assume other mathematical expressions (Drucker et 

al., 1997; Witten and Frank, 2005; Smola and Schölkopf, 2004). 

 

2.6 Metrics 

The main metrics we adopted to evaluate the models are the following: the correlation coefficient and the Relative 

Quadratic Error (RMSE percentage). The correlation coefficient is a statistical measure between expected and forecasted values. 

This value varies from -1 to 1. When it approaches 1, it indicates a strong positive correlation. Conversely, when the correlation 

coefficient is close to -1, it indicates that the variables have a strong negative correlation. When the correlation coefficient is 

close to zero, it indicates that there is no correlation between the variables (Witten and Frank, 2005). The value of the correlation 

coefficient serves as the global evaluator for the model. Therefore, it is possible to obtain a high correlation coefficient as well 

as at the same time obtain high values for local errors. For this reason, it cannot be the only metric for assessing model 

performance. In order to avoid a superficial evaluation of the regressors, we therefore chose the RMSE (%) as an evaluation 

metric. The Equation 8 shows the expression of the calculation of the relative quadratic error, where pi is the predicted value and 

ai is the actual value, for i = 1,2,...,n. 

In addition to the RMSE (%), we also calculated the Root Mean Square Error (RMSE), the Mean Absolute Error (MAE), 

the Mean Absolute Percentage Error (MAPE) and the Mean Percentage Error (MPE) (Equations 9-12): 

RMSE(%) = √
∑ (𝑝𝑖 − 𝑎𝑖)

2𝑛
𝑖=1

∑ 𝑎𝑖
2𝑛

𝑖=1

× 100%, (8) 

RMSE = √
1

𝑛
∑𝑒𝑖

2,

𝑛

𝑖=1

 (9) 
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MAE =
1

𝑛
∑|𝑒𝑖|

𝑛

𝑖=1

, (10) 

MAPE =
100%

𝑛
∑|

𝑒𝑖
𝑎𝑖
|

𝑛

𝑖=1

, (11) 

MPE =
100%

𝑛
∑(

𝑝𝑖 − 𝑎𝑖
𝑝𝑖

)

𝑛

𝑖=1

, (12) 

where, pi is the forecasted value, ai is the actual value and ei = ai − pi is the difference between the actual value and the forecasted 

value. 

The Pearson’s Correlation Coefficient R is defined as follows: 

𝑅 =
∑ (𝑝𝑖 − 𝑝̅)(𝑎𝑖 − 𝑎̅)𝑛
𝑖=1

√∑ (𝑝𝑖 − 𝑝̅)2𝑛
𝑖=1 ∙ ∑ (𝑎𝑖 − 𝑎̅)2𝑛

𝑖=1

, (13) 

where p¯ and a¯ are the sample average values for the sets of predicted and actual values, respectively. Similarly, the Spearman’s 

Rank Correlation Coefficient ρ is defined as following: 

𝜌 =
∑ (𝑅(𝑝𝑖) − 𝑅̅(𝑝))(𝑅(𝑎𝑖) − 𝑅̅(𝑎))𝑛
𝑖=1

√∑ (𝑅(𝑝𝑖) − 𝑅̅(𝑝))2𝑛
𝑖=1 ∙ ∑ (𝑅(𝑎𝑖) − 𝑅̅(𝑎))2𝑛

𝑖=1

, 
(14) 

where R(pi) and R(ai) are the ranks of pi and ai, whilst R¯(p) and R¯(a) are the sample averages of the ranks of pi and ai, 

respectively. 

The Kendall’s Rank Correlation τ is given as follows: 

𝜏 =
2

𝑛(𝑛 − 1)
∑∑sign(𝑝𝑖 − 𝑝𝑗) ∙ sign(𝑎𝑖 − 𝑎𝑗)

𝑗−1

𝑖=1

𝑛

𝑗=1

, (15) 

where n is the number of observations and 1 ≤ i,j ≤ n. The signal function, sign, is defined as following: 

sign(𝑥) = {
1, 𝑥 > 0
0, 𝑥 = 0
−1, 𝑥 < 0

, 

for x ∈ R. 

 

2.7 Forecasting Set 

The prediction sets were assembled from the distribution maps of arboviruses cases and climatic variables for each two 

months. The bimonthly prediction model was chosen due to the fact that the Brazilian Unified Health System (SUS) is planning 

to combat arbovirus outbreaks considering the bimester cycle. The attribute vectors of the prediction sets were assembled by 

simultaneously scanning the spatial distribution maps pixel by pixel and concatenating latitude and longitude with the following 

information, in the following order: distribution of arbovirus cases, and for each month of the bimester, the temperature 

distribution, rainfall and wind speed. Each prediction vector contains information from the six quarters preceding the prediction 

quarter. Therefore, 18 prediction sets were assembled, each with 15,553 instances and 44 attributes, in which the output of each 

prediction set is the pixel value of the arbovirus case distribution at the corresponding coordinate. The 15,553 instance sets were 

established as test sets. 

The Weka machine learning environment (Frank et al., 2004; Hall et al., 2009), version 3.8, was used to assemble the 

training set from the resample tool. This tool allows a new database to be created with random values for instances, but with the 

same statistical characteristics as the original database. The number of instances of the new base must be specified. In this case, 
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the training sets were generated by applying resample to each of the prediction sets with the number of instances equivalent to 

30% the original set. Sets containing 15,553 instances were used to test the models created by the best regressor. 

From the training set, we investigated the best regression architectures for predicting the distribution of arbovirus cases, 

namely: Linear Regression, Support Vector Machine (SVM) and Multilayer Perceptron (MLP) with a single hidden layer. For 

the SVM regressor, evaluations were performed with the following configurations: C = 0.1 and linear (or degree 1), 2 and 3-

degree polynomial kernels, and RBF kernel. Regarding single layer MLP, we investigated architectures with 10, 20, 30 and 40 

neurons in the hidden layer. 

 

3. Results and Discussion 

We evaluated each of the regressors in 30 rounds using 10­fold cross­validation. For the quantitative evaluation, we 

calculated the Correlation Coefficient (R), the Absolute Mean Error (MAE), the Mean Square Error (RMSE) and the Percent 

Relative Quadratic Error (RMSE percentage). However, the data were analyzed considering only the correlation coefficient, as 

global quality, and relative quadratic error as local quality metric. The detailed results of R, RMSE% and training time of each 

regressor are shown in Tables 1, 2 and 3. In this paper, we consider a high correlation coefficient to be above 0.9 and a low 

relative squared error to be below 5%. Best results are highlighted in red. 

In Table 1, the results show that the linear regression presents satisfactory values for the correlation coefficient R, with 

average 0.97 and standard deviation of 0.03, and for the training time, as average of 0.05 and standard deviation. 0.03 and is 

therefore considered a very fast prediction method. On the other hand, the relative square error RMSE% presents a considerably 

high value, with an average of 21.23% and standard deviation of 12.11%. 

 

Table 1: Correlation coefficient, relative square error and training time results for Linear Regression. 

 

Source: Authors. 

 

Table 2 presents the results for multilayer neural networks with a single hidden layer in the configurations of 10, 20, 30 

and 40 neurons. The results indicate that for all architectures evaluated, the correlation coefficients R presented very high values 

with averages around 0.999 and 1, and standard deviation of 0.001. Regarding the relative quadratic error, we observed that the 

10-neuron configuration has a fairly low RMSE% with an average of 4.15% and this value decreases as the number of neurons 

in the hidden layer increases, reaching a minimum value of 3.29% in the 30-neuron configuration, followed by a considerable 

increase to 3.67% in the 40-neuron configuration. The behavior of training time shows an increase as the number of neurons in 

the hidden layer increases. Thus, considering the evaluation metrics, the best network configuration among the ones evaluated 

was the network with 30 neurons because of its high correlation coefficient, relative square error satisfactorily below the 

established limit of 5% and having a training time reasonably low. 
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Table 2: Correlation coefficient, relative squared error and training time results for multilayer perceptron, MLP, with 10, 20, 30 

and 40 neurons in the hidden layer. 

 

Source: Authors. 
 

Table 3 shows the results for SVM, with 1­degree (linear), 2­ and 3­degree polynomial kernels, and RBF kernel. 

Correlation coefficient R values for all kernel configurations were considerably high and quite stable (low standard deviation), 

with emphasis on polynomial kernels of degrees 2 and 3, with averages of 0.999 and 1, respectively, and standard deviation of 

0.001 and 6.818 × 10−5, in that order. Regarding RMSE%, the 2­ and 3­degree polynomial kernels obtained satisfactory values 

of 3.09% and 1.20%, respectively. Linear and RBF kernels obtained very high values of RMSE% (with average of 26.49% and 

40.49%), considerably higher than the boundary of 5% established for this type of error. Regarding training time, SVM 

configurations were quite slow for 2­ and 3­degree polynomial kernels, with a major disadvantage of 3­degree polynomials in 

its speed and stability. In contrast, for the linear and RBF kernels, the results showed that they are relatively fast compared to the 

training time of neural networks. However, they are considerably slower compared to linear regression. Taking into consideration 

the evaluation metrics, the 2­degree polynomial kernel is the best SVM configuration due to its high correlation coefficient R, 

low RMSE% and shorter training time among configurations that meet the requirements of R and RMSE% set for this task. 

 

Table 3: Correlation coefficient, relative squared error and training time results for SVM, with linear (or grade 1), 2­ and 3­degree 

polynomials, and RBF kernels. 

 

Source: Authors. 
 

Overall, by evaluating all tested architectures, we can observe that the multilayer perceptron is a regressor that meets 

the needs of the prediction problem in question. As mentioned in this section, the configuration with 30 hidden layer neurons 

reached the best evaluation because it has a high correlation coefficient R, RMSE% below 5%, and reasonably short training 

time when compared to other regressors. Although training time is not critical in this type of problem, it was adopted as an 

important criterion to select the best regressor. After all, despite having very good correlation coefficients and very low RMSE%, 

2­ and 3­degree polynomial kernels SVM settings achieved very high values for training time. On the other hand, configuring 

SVM with RBF kernel has proved to be quite unsuitable for solving this problem. The training time for this configuration was 

considerably shorter than the MLP training time with 30 hidden layer neurons. However, as seen in Table 3, the RMSE% reached 

very high values, far above the established value as adequate. 
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Table 4 presents the results for MLP with 30 neurons in the hidden layer, considering the training set with 4,665 

instances and the test set with 15,553 instances. This table also presents results for RBF­kernel SVM, considering these same 

sets. The metrics used to quantitatively evaluate the models are the correlation coefficient R and the relative square error 

(RMSE%). The qualitative evaluation of the models generated the distribution maps of arboviruses cases on the Recife map for 

each two months of 2014, 2015 and 2016. 

For qualitative analysis, we generated the prediction images from the results obtained in the model validations. Figures 

3, 4 and 5 correspond to the bimonthly predictions using MLP with 30 hidden layer neurons in 2014, 2015 and 2016, respectively. 

 

Table 4: Validation results of the prediction models created by the multilayer perceptron, with a single layer and 30 neurons in 

the hidden layer. 

 

Source: Authors. 

 

The warmer regions represent the areas with the highest concentrations of arbovirus cases, while the colder areas 

represent low case rates. The numeric labels of Recife’s neighborhoods are shown in Table 5. 

 

Table 5: Numeric labels of Recife’s neighborhoods. 

 

Source: Authors. 
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In Figure 3a, we can see that there was a higher concentration of arbovirus cases in the southern region of Recife. The 

most affected neighborhood in this area was Cohab, followed by Ibura and Boa Viagem. In the west of the city, the neighborhood 

with the highest rate of cases was Várzea. In the northernmost region of the city, the most affected neighborhoods were Dois 

Unidos and Casa Amarela. In the second quarter of the same year, Figure 3b, we can observe that the southern region of the city 

remains the most affected region. However, there is an increase in arbovirus cases in the Boa Viagem neighborhood and a 

decrease in cases in Cohab. We can also perceive an increase of cases in the neighborhood of Imbiribeira towards Pina. In the 

northern part of the city, it is possible to identify a significant increase in the neighborhoods of Dois Unidos, Linha do Tiro, 

Macaxeira, Nova Descoberta, and Vasco da Gama. In the third quarter of 2014 (Figure 3c), in the south zone, there is a 

considerable decrease in cases in Boa Viagem, Ipsep and Imbiribeira. However, the opposite occurs in the neighborhood of Ibura 

and Cohab. In the west of the city, Várzea also shows a remarkable reduction of cases. 

The remaining two­month periods of 2014, Figures 3d, 3e and 3f, showed very similar behaviors. The southern zone 

remains the place with the highest rate of cases. From the fourth quarter onwards, the neighborhoods with the highest number of 

cases were Ibura and Jordão. And in the west, there is an increase in arboviruses from the third quarter of 2014 to the fourth 

quarter of that same year. In the following two months, for this neighborhood, cases of arboviruses are constant, although they 

are still considered very high. 

From the last two months of 2014 (Figure3f) to the first two months of 2015 (Figure4a), prediction using MLP with 30 

neurons in the hidden layer showed a significant increase in arboviruses in the northern region. Recife. The affected 

neighborhoods were mainly Córrego do Jenipapo, Casa Amarela, Vasco da Gama, Nova Descoberta, and Dois Unidos. The 

southern zone showed a considerable decrease in arboviruses cases, having a very high incidence only in the neighborhood of 

Cohab. In the second and third bimesters, Figures 4b and 4c, respectively, the points with the highest incidence are the 

neighborhoods of the southern zone, especially Cohab, Ibura and Boa Viagem. In the west, there are also cases in the Várzea 

neighborhood and, more to the southwest of the city, in Jardim São Paulo as well. In the fourth bimester of 2015, the situation is 

more controlled, where cases were concentrated only in Ibura and Cohab (see Figure 4d). 
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Figure 3: Prediction results for regression using MLP with 30 hidden layer neurons for the year 2014. 

(a) 1st bimester of 2014 (b) 2nd bimester of 2014 (c) 3rd bimester of 2014 

 

(d) 4th bimester of 2014 (e) 5th bimester of 2014 (f) 6th bimester of 2014 

 

Source: Authors. 

 

During the 5th and 6th bimesters (Figures 4e and 4f, respectively), the situation worsens again. In the case of the 5th 

bimester, the neighborhoods located more in the center of the city had a significant increase in cases, especially the districts of 

Cordeiro, Madalena, and Prado. In the northeast of the city, the largest concentration of cases was in the neighborhood of Campo 

Grande. In the last two months of 2015, there was a considerable increase in cases of the northern region in neighborhoods such 

as Casa Amarela, Alto José Bonifácio, Nova Descoberta, Macaxeira, Vasco da Gama, and Morro da Conceição. In the southern 

zone, the neighborhoods of Ibura, Ipsep, Imbiribeira and Pina stand out towards Afogados. In the western neighborhoods of the  

city, the highest concentrations of cases occurred in the neighborhoods of Torrões and Iputinga. 
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Figure 4: Prediction results for regression using MLP with 30 hidden layer neurons for the year 2015. 

(a) 1st bimester of 2015 (b) 2nd bimester of 2015 (c) 3rd bimester of 2015 

 

(d) 4th bimester of 2015 (e) 5th bimester of 2015 (f) 6th bimester of 2015 

 

Source: Authors. 

 

The predictions of the first two bimesters of 2016 (Figure 5) using MLP with 30 hidden layer neurons showed very 

similar behaviors. According to the images, the most affected regions in these two quarters were the south and west of the city. 

In the southern zone, the highest concentrations of cases occurred in Cohab and Ibura, with less intensity in the Ipsep, Boa 

Viagem and Imbiribeira neighborhoods. In the west of the city, the most affected neighborhoods were Várzea and Iputinga. In 

the third bimester of 2015 (Figure 5c), there was a considerable decrease in cases in the southern region of the city, focusing only 

on the neighborhoods of Cohab and Ibura. In the west of the city, it is also possible to notice a reduction of cases in the Várzea 

neighborhood. However, cases in the neighborhoods of Iputinga, Cordeiro and Torrões intensified. In the next two months 

(Figure 5d), the situation gets even worse. In the 4th bimester, the cases were mainly concentrated in the south towards the west 

of the city. The most affected neighborhoods were Cohab, Imbiribeira, Boa Viagem, Areias, Varzea, Iputinga, and Cordeiro. 

In the fifth bimester of 2015 (Figure 5e), the behavior of the distribution of arbovirus cases was quite similar to the 

previous bimester. There is a decrease in cases in some neighborhoods of the southern region such as Ibura and Imbiribeira. In 

contrast, Boa Viagem showed a significant increase in the number of cases from the fourth to the fifth bimester. Comparing the 

map of Figure 5e with the map of Figure 5f, we can see that, from the southern region of the city towards the western region, the 
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neighborhoods located in this region showed an increase in arbovirus cases. Finally, in the last two months of 2016 (Figure 5f), 

the prediction showed an improvement in the situation. The southern zone showed a significant reduction in arboviruses, except 

for the Cohab neighborhood. In the western region of the city, we can also notice a significant decrease in cases, except for 

Várzea and Iputinga. 

 

Figure 5: Prediction results for regression using MLP with 30 hidden layer neurons for the year 2016. 

(a) 1st bimester of 2016 (b) 2nd bimester of 2016 (c) 3rd bimester of 2016 

 

(d) 4th bimester of 2016 (e) 5th bimester of 2016 (f) 6th bimester of 2016 

 

Source: Authors. 

 

Overall, the prediction maps using MLP with 30 neurons showed that the main regions of Recife with high concentration 

cases are the west and south regions. In the western region, the neighborhood that appears most frequently with regard to the 

highest concentration of cases is the Várzea neighborhood. In the southern region, the neighborhoods that appear most frequently 

at the highest concentration of cases are the neighborhoods of Cohab, Ibura, Imbiribeira, and Boa Viagem. The prediction maps 

presented are similar to the actual distribution maps of arbovirus cases. This corroborates the quantitative analysis metrics of the 

chosen regression method. 
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4. Conclusion  

The use of machine learning predictors proved to be very effective in predicting the distribution of arbovirus cases. 

According to the qualitative results presented in the section 3, the regions in which arbovirus outbreaks transmitted by Aedes 

aegypti predominate are the southern and western regions of Recife. In the western region, the neighborhood that appears most 

frequently with regard to the highest concentration of cases is the Várzea neighborhood. In the southern region, the 

neighborhoods that appear most frequently at the highest concentration of cases are the neighborhoods of Cohab, Ibura, 

Imbiribeira and Boa Viagem. Already the northern region of the city appears with a high concentration of cases in the first two 

quarters of the year. Although there are cases throughout the year, it was also observed that arbovirus cases usually occur 

predominantly in the warmer months of the year (October to March). 

Finally, the approach using spatio­temporal analysis provided a broader assessment of those regions where more or less 

arboviral outbreaks occur. From the qualitative results it was possible to differentiate in the heat maps the regions with very high 

concentration of cases from the regions with low concentration and the regions that are in the transition range. This type of 

approach is very relevant in supporting health managers and epidemiologists in the planning of short and medium term actions 

to prevent outbreaks of arboviruses transmitted by Aedes aegypti, and may also support the development of public policies for 

health promotion and sanitation. 

As future work, we intend to evaluate new learning machines: statistical learning methods, random forests, classifier 

committees, meta­classifiers, and approaches based on hybrid architectures combining deep learning and linear regression 

methods. We also intend to expand the period observed until 2020, even considering that, in 2020, the data are underreported 

due to the Covid19 pandemic and the overload of the public health system in Recife. Additionally, we intend to use the proposed 

methodology to also predict in time and space the location of potential breeding sites for the Aedes aegypti mosquito. 
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