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Abstract 

This work evaluates how the High Energy Ball Milling (HEBM) in a shaker mill influences the optical, physical, and 

microstructural properties of ZnO. The procedure also combines Fe inclusion from the grinding medium with particle 

size reduction. ZnO powder was milled by 1, 2, 3, 4, and 5 h, which resulted in a particle size reduction to the 

nanometric scale with a mean size of around 50 nm and a crystallite size reduction by three times when processed 

from 4 h. Milling has proven to be an efficient process for obtaining nanoparticles with an incredibly short processing 

time and changed the morphology of the particles from random to spherical shapes. Results also indicate the 

processing progressively expanded the ZnO hexagonal structure due to the imposed strain and Fe inclusion, which can 

help to decrease the bandgap and slow down the recombination rate of the electron-hole pairs, improving the 

photocatalysis activity. The optical results showed no additional band appeared due to milling processes and 

diminished the bandgap from 3.37 to 3.21 eV. Milling also led to an increase in the c value from 5.2076 to 5.2112 Å, 

which is one of the most important factors for improved antibacterial activity. HEBM has proved to be a suitable 

process for obtaining ZnO nanoparticles with properties useful for various applications. 

Keywords: High energy milling; Nanoparticles; Zinc oxide, Rietveld refinement. 

 

Resumo  

Este trabalho avalia como a Moagem de Alta Energia (MAE) em um moinho vibratório influencia as propriedades 

ópticas, físicas e microestruturais do ZnO. O procedimento também combina a inclusão de Fe do meio de moagem 

com a redução do tamanho da partícula. O pó de ZnO foi moído em 1, 2, 3, 4, e 5 h, o que resultou numa redução do 

tamanho das partículas à escala nanométrica com tamanho médio de cerca de 50 nm e uma redução do tamanho do 

cristalito em três vezes quando processado por 4 h. A moagem provou ser um processo eficiente para obter 

nanopartículas com um tempo de processamento incrivelmente curto e alterou a morfologia das partículas 

previamente aleatórias para esféricas. Os resultados indicam também que o processamento expandiu progressivamente 

a estrutura hexagonal ZnO devido à tensão imposta e à inclusão de Fe, o que pode ajudar a diminuir o band gap e a 

minimizar a taxa de recombinação dos pares elétron-buraco, melhorando a atividade de fotocatálise. Os resultados 

ópticos não mostraram qualquer banda adicional surgida na processos de moagem e uma diminuição do band gap de 

3,37 para 3,21 eV. A moagem também levou a um aumento do valor c de 5,2076 para 5,2112 Å, o que é um dos 

fatores mais importantes para a melhoria da atividade antibacteriana. A MAE provou ser um processo adequado para 

a obtenção de nanopartículas de ZnO com propriedades úteis para várias aplicações.  

Palavras-chave: Moagem de alta energia; Nanopartículas; Óxido de Zinco, Refinamento de Rietveld. 
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Resumen  

Este trabajo evalúa cómo la molienda de bolas de alta energía (MAE) en un molino agitador influye en las 

propiedades ópticas, físicas y microestructurales del ZnO. El procedimiento también combina la inclusión de Fe del 

medio de molienda con la reducción del tamaño de las partículas. El ZnO fue molido durante 1, 2, 3, 4 y 5 h, lo que 

resultó en una reducción del tamaño de las partículas hasta la escala nanométrica, con un tamaño medio en torno a los 

50 nm, y a una reducción del tamaño de los cristalitos tres veces mayor cuando se procesó a partir de las 4 h. La 

molienda demostró ser un proceso eficaz para obtener nanopartículas con un tiempo de procesamiento increíblemente 

corto y cambió la morfología de las partículas de formas aleatorias hasta esféricas. Los resultados también indican que 

el procesamiento amplió progresivamente la estructura hexagonal del ZnO debido a la tensión impuesta y a la 

inclusión de Fe, lo que puede ayudar a disminuir el bandgap y a reducir la tasa de recombinación de los pares 

electrón-hueco, mejorando la actividad de fotocatálisis. Los resultados ópticos mostraron que no apareció ninguna 

banda adicional y una disminución del bandgap de 3,37 a 3,21 eV. MAE también condujo a un aumento del valor c de 

5,2076 a 5,2112 Å, que es uno de los factores más importantes para mejorar la actividad antibacteriana. El HEBM ha 

demostrado ser un proceso adecuado para la obtención de nanopartículas de ZnO con propiedades útiles para diversas 

aplicaciones. 

Palabras clave: Molienda de alta energía; Nanopartículas; Óxido de Zinc, Refinamiento Rietveld. 

 

1. Introduction 

ZnO is a ceramic material and II-VI semiconductor (as it is formed by a metallic IIB and a non-metallic VIA 

element), with n-type semiconduction. It has a wide band gap (Eg = 3.37 eV) and high exciton binding energy (60 meV) at 

room temperature (Fan, Sreekanth, Xie, Chang, & Rao, 2013; Samavati et al., 2021; Toporovska et al., 2020). These 

characteristics make it interesting for several applications in electronic and optoelectronic devices, such as lasers, sensors, 

photocatalysts, solar cells, transistors, and antibacterial materials, as they can be activated by UV light to release reactive 

oxygen species in an aqueous solution (Noman, Amor, & Petru, 2021; Otis, Ejgenberg, & Mastai, 2021; Wang, Zhu, Huang, 

Mei, & Jia, 2019).  Among the possible crystalline defects in the structure of pure ZnO (O vacancy, Zn vacancy, interstitial Zn, 

interstitial O, substitutional Zn), interstitial O and Zn vacancies are the most frequent, which leads to the predominance of n-

type semiconduction without the need for external doping (Fan et al., 2013). Most binary semiconductors II-VI crystallize in 

cubic zinc blende and/or hexagonal wurtzite structures, where the tetrahedron is formed by one anion surrounded by four 

cations at the corners (Morkoç & Özgür, 2009). This structure provides a mixed character between ionic and covalent, which 

raises the bandgap energy above that expected when only covalent bonds are present. For ZnO, the possible crystal structures 

are, besides the zinc blende and the wurtzite, the cubic rock-salt structure. Under normal temperature and pressure conditions, 

wurtzite is the most thermodynamically stable crystal structure. The zinc blend is metastable and obtainable under specific 

processing conditions. Similarly, rock-salt can only be obtained under high pressure, so that the interaction between the atoms 

is forced as much as possible to become predominantly ionic (Lee, Lai, Ngai, & Juan, 2016; Morkoç & Özgür, 2009).  

The properties of ZnO are widely attributed to its particle size, the amount of the grains and grain boundaries 

(Aimable, Goure Doubi, Stuer, Zhao, & Bowen, 2017; QIN, SHAO, LIU, & WANG, 2005) and also the concentration of 

defects (B. Chen, Xia, & Lu, 2013; Lott et al., 2015) Thus, electrical and optical properties of ZnO have been improved by 

maintaining its nanometer-scale microstructure (Lee et al., 2016). The interest in nanostructured materials is growing due to 

the gain in several properties, such as optical, mechanical and catalytic, among others (Aimable et al., 2017; Phuah, 

Rheinheimer, Akriti, Dou, & Wang, 2021; Samavati et al., 2021). By starting the processing step with a nanoscale material, it 

is possible to refine the microstructure. With refinement, several interesting properties can be controlled, such as electrical 

properties (due to higher electron mobility), optical properties (due to access to a wider range of radiation absorption), 

mechanical properties, among others (Choi, Jung, Shin, & Sohn, 2015; Lee et al., 2016; Lott et al., 2015; Phuah et al., 2021; 

Samavati et al., 2021).   

There are several techniques for obtaining semiconductor powders in nanometric scale. The existing methods include 
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chemical, thermophysical, mechanical synthesis, and mechanical milling, as in the case of high energy ball milling (HEBM) 

(Pawan Kumar & Kumar, 2021; Mayo, Hague, & Chen, 1993; Noman et al., 2021; Samavati et al., 2021). Among the high 

energy mills currently used in HEBM, it can be mentioned shaker mill, planetary ball mills, attritor mills, and commercial 

mills. They differ in capacity, milling efficiency, and additional systems for heating and cooling (Dutková et al., 2016; 

Suryanarayana, 2001). Shaker type mills movements cause friction between the balls inside the vial and ball-wall friction, 

promoting the mixing and grinding of the material under high impact forces, characterizing it as high energy (Suryanarayana, 

2001). HEBM is a consolidated technique among the routes for obtaining fine powders (Dzik, Svoboda, Kaštyl, & Veselý, 

2019). Also, it consists of a technique for doping ceramic oxides.  

Some studies have reported applications of ball-milled powders (Bégin-Colin et al., 2009; Dias et al., 2016; Otis et al., 

2021; Reddy et al., 2019; Šepelák, Bégin-Colin, & Le Caër, 2012). For ZnO semiconductors, besides other important 

properties such as size and surface area, the exposure surface and the surface defects play an important role in its applications 

(D. Chen et al., 2014; Zhang et al., 2014).  ZnO nanoparticles increases the photocatalytic, antibacterial, and antimicrobial 

activity (Noman et al., 2021). Salah et al (2011) (Salah et al., 2011) firstly applied HEBM through a planetary mill up to 50h 

for reducing the particle size of ZnO to nanometric scale from a microcrystalline powder, suggesting the modifications induced 

in ZnO nanoparticles might prove useful as antibacterial material. Gancheva et al (2013) (Gancheva, Iordanova, Dimitriev, 

Avdeev, & Iliev, 2013) used the same milling to evaluate the photocatalytic activity of ZnO after milling for 10h with different 

milling speed rotation (Gancheva et al., 2013). Chen et al (2014) (D. Chen et al., 2014) stated that the defects promoted during 

HEBM highly influence the photocatalytic activity of ZnO with increased time and rotation due to the bulk defects promoted 

during the milling process.  Mekprasart et al. (2020) (Mekprasart, Chutipaijit, Ravuri, & Pecharapa, 2020) evaluated different 

time of processing and milling rotation on the ZnO size reduction as a top-down process with high efficiency to achieving 

nanoparticles.  

Additional to particle size reduction, the mechanic activation by milling processes was also applied to the 

incorporation of ions to improve the photocatalytic efficiency of ZnO (Kotha, Kumar, Dayman, & Panchakarla, 2021). This 

process can help decrease the bandgap and slow down the recombination rate of the electron-hole pairs. Güler et al (2016) 

(Güler, Güler, Evin, & Islak, 2016) investigated the influence of milling time and Fe2O3 content on the optical and electrical 

properties of ZnO and the results showed enhanced properties with potential for photocatalysis. Reddy et al (2019) (Reddy et 

al., 2019) evaluated the photocatalytic activity of Fe doped ZnO nanoparticles obtained by HEBM. The authors achieved high 

percentage of degradation using a milling time of 40h. Doping using several metal ions have also been used to enhance the 

ZnO optical and catalytic activity, such as Cu (Chandekar et al., 2020; Jiang et al., 2019), Co (Gonçalves, Paganini, Armillotta, 

Cerrato, & Calza, 2019), Fe (Reddy et al., 2019; Yin et al., 2017), among others (Khalid et al., 2019; Promod Kumar et al., 

2020). Sharma et al (2016) (N. Sharma, Jandaik, & Kumar, 2016) also demonstrated that doping ZnO nanoparticles with Fe 

showed improved antimicrobial activity. Despite several works that have been made regarding the application of HEBM to 

ZnO, no discussion concerning shaker mills has been found in the literature. 

The purpose of this study was to investigate the applicability of HEBM in the particle size reduction of the ZnO 

powder with an increase in the number of particles at a nanometer scale. Also, it aimed to investigate if the generation of 

higher surface area, until then unexposed, (one of the most important properties to evaluate in samples that have undergone 

milling processes) will influence on the ZnO's physical and optical properties. Since the milling was carried out in steel vial 

and ball, the incorporation of Fe ions was also analyzed. 
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2. Methodology  

The present work consists of an experimental research based on a qualitative approach and the data were discussed on 

the lights of descriptive-diagnostic analysis. Zinc Oxide powder (ZnO, 99% purity, Synth®) was used as the material of study 

for the milling procedures. ZnO commercial was characterized by X-ray diffraction. The analyses were performed with Cu Kα 

radiation in 0.1542 nm, at 40 kV and 30 mA, scanning between 15 and 75 º with an angular step of 0.02º in continuous mode.  

The powder was dry milled in a SPEX 8000 shaker/ Mill, in which hardened steel vial and ball (5 mm in diameter). 

The ball/powder mass ratio was 5:1, and the milling times were 1, 2, 3, 4, and 5 h, according to previous works (Pallone et al., 

2010; Yokoyama, 2008). After finishing the milling process, the fine powder was leached with 0.5 M oxalic acid (Anidrol, 

analytical grade), for the removal of surface Fe from the grinding medium. The removal of the excess Fe residue will favor the 

analysis only of the interference of the ions incorporated in the ZnO. For the acid leaching, the ratio of 3 g of the powder to 

100 mL of oxalic acid solution was used. The mixture was left under stirring and heating to approximately 100 ºC for 4 hours. 

After the leaching, the solution was kept at rest for the separation of the liquid, through the decanting of the powder. Once 

separated, the powder was led to another leach, so that the procedure was performed three times for each sample. After 

leaching, the powders were washed to remove the residual acid, by stirring and heating in distilled water for 30 minutes, 

repeating the procedure three times with water exchange at each repetition. Isopropyl alcohol was added after the last wash and 

drying, and the suspension was allowed to stir again for thirty minutes. The samples were then deagglomerated in isopropyl 

alcohol medium in Ultrasonic Sanders bath for 25 minutes and slow dried at 50ºC. After drying, the powder was sifted through 

a 45 μm opening sieve. The leaching procedure was adapted according to previous works (Hernández, García, Cruz, & 

Luévanos, 2013; Silva et al., 2008). 

The milled powders were characterized by X-ray diffraction at the same condition as previously described. The 

crystallite average size was determined using the Williamson-Hall method. Assuming that the microstress is uniform in all 

crystallographic directions according to the uniform deformation model (UDM), Equations A is used for calculus (Mote, 

Purushotham, & Dole, 2012; Prabhu, Rao, Kumar, & Kumari, 2014; Williamson & Hall, 1953): 

 

                                                                                                                               (Eq. A) 

 

where β is the full width at half maximum of the diffracted peak (FWHM); θ is the Bragg diffraction angle; K is a 

shape value constant, dependent on the morphology of the particle; λ is the wavelength of the used radiation (Cu Kα = 0.1542 

nm); ε is the component of crystalline microdeformations; D is the crystallites average size. From Equation A, when 

considering linear function y=ax+b, where y corresponds to β*cosθ and x to 4*sinθ, the angular coefficient of the linear 

adjustment performed for the experimental points will be equivalent to the microdeformation ε and the linear coefficient will 

correspond to (K*λ)/D. 

Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA) were simultaneously carried out in 

a Netzsch Jupter STA 449F3 equipment, between 200 and 1100 ºC, under Nitrogen atmosphere, with a heating rate of 10 

K/min. Also, Fourier Transform Infrared Spectrometry (FTIR) was performed in a Perkin-Elmer Spectrum 1000, with 

transmittance measurements performed in the range of 4000 to 450 cm-1, with KBr-pressed samples. 

Semi-quantitative chemical analysis via X-ray fluorescence (FRX) was performed using the Axios PW 4400/40 DY 

1686 equipment. The beads for analysis were made using a lithium tetraborate (Li2B4O7) 99.5% fluxing agent and 0.5% 

lithium bromate (LiBr) using a platinum-gold crucible. The powder morphology and particle size were analyzed by scanning 
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electron microscopy (SEM) in a Magellan 400 L equipment.  

The optical analysis was evaluated by Diffuse Reflectance Spectroscopy (DRS), performed in a Varian Cary 5G 

spectrophotometer between 250 nm and 800 nm. The samples’ optical band gap was calculated by the Tauc’s Plot as described 

by Dias et al (2018) (Dias, Oliveira, Renda, & Morelli, 2018).  For nomenclature purposes, the samples were prefixed Z 

followed by the processing time number. The ZnO as purchased is named ZnOP (pattern). The samples that underwent the 

leaching process received the suffix L. Also, some samples that underwent heat treatment received the terminology T followed 

by the used temperature. Heat treatments were carried out at temperatures of 600, 800, 900 and 1000 ºC. The analysis of the 

particle size distribution was performed by laser diffraction (Horiba - LA-950V2), in alcoholic medium, with prior 30 min in 

the ultrasound, considering the number of particles as distribution basis. 

 

3. Results and Discussion 

The results will be presented according to the characterization steps, corresponding to the precursor powder, then to 

the processing, and finally to the processed material. The results for X-ray diffraction of the precursor and milled powder are 

presented in Figure 1. 

 

Figure 1 - X-ray diffractogram for (a) milled powders from 1 to 5 h and raw material, and the small peaks in evidence 

indicating the presence of Fe according to ICDD #6-696; (b) leached samples and respective pattern for hexagonal zinc oxide 

and hydrated zinc oxalate. 

 

Source: Authors (2021). 
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According to Figure 1, the ZnOP (pattern) presented the hexagonal crystalline structure, corresponding to the mineral 

Wurtzite (ICDD #2003-6-1451). Figure 2 (a) shows the comparison of the diffractograms of the milled ZnO samples from 1 to 

5 h and their respective precursor powder. It can be seen the main diffraction planes present in all samples. All diffractograms 

were identified according to the same precursor oxide card (ICDD #36-1451). As described in the literature (Dib, Trari, & 

Bessekhouad, 2020; Promod Kumar et al., 2020; Poornaprakash, Chalapathi, Subramanyam, Vattikuti, & Park, 2020), this 

crystalline structure corresponds to the active phase for most required ZnO applications. Small peaks (on the magnification of 

Figure 1 (a)) indicate Fe presence (ICDD # 6-696). The Fe peak intensity has increased following the increase in the milling 

time. The difference between the oxides before and after milling is related to the enlargement of the diffracted peaks for the 

milled samples. 

Figure 1(b) shows the comparison of the diffractograms of the milled samples after the leaching process. Comparing 

the samples processed with the standard ZnO, it showed that these diffractograms no longer presented the peaks corresponding 

to zinc oxide. All leached compositions were identified as zinc oxalate hydrate (ZnC2O4.2H2O), according to ICDD 2003 #25-

1029. It was noticed, during the leaching process, that there was an interaction between the leached oxide and the leaching 

acid. In addition to zinc oxalate, Z4L sample presented the formation of an intermediate compound, with the respective 

diffracted peaks showing correspondences with the zinc oxalate (ZnC2O4 – ICDD #37-718) and zinc oxalate hydrate. 

Analyzing the diffractograms of the processed samples (Figure 1(a)), as the milling time increases, there is a crystallinity loss 

of the samples due to the induced deformations. The peak broadening may occur as a function of crystallite size decrease, 

lattice distortion and crystalline defects (Mote et al., 2012; Prabhu et al., 2014; Williamson & Hall, 1953).  Table I describes 

the crystallite average size for each sample processed by HEBM according to the W-H method, where the crystallite size 

contribution to the peak broadening is calculated separately to the lattice strain.  

 

Table 1 - Crystallite size calculated by Williamson-Hall method for the samples processed via HEBM compared to the ZnO 

pattern before processing. 

Sample ZnOP Z1 Z2 Z3 Z4 Z5 

Crystallite Size (nm) 113 69 52 46 35 32 

Source: Authors (2021). 

 

According to Table 1, the Williamson-Hall results indicate the increase in the milling time was accompanied by a 

decrease in the crystallite size. The crystallite size reduced until the 4-hour value has been reached, from which no significant 

differences were observed. The results show that the nanometric scale of the processed powders is likely to be obtained by 

HEBM, since very small crystallite sizes were reached.  To better characterize the peak broadening and structure changes 

according to the milling time, Rietveld Refinement was performed for the non-leached oxides. The results are presented in 

Figure 2.  
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Figure 2 - Rietveld refinement results: adjusted profiles and experimental data for a) ZnOP and b) Z5, c) variation lattice 

parameters and volume according to the milling time. 

 

Source: Authors (2021). 

 

Adequate adjusts were obtained, as exemplified for ZnOP (Fig. 3a) and Z5 (Fig. 3b). The residual between the 

calculated and experimental data shows a good refinement was achieved, and also the Rwp and χ2 values show high-quality and 

trustworthy results. The hexagonal strucure was progressively expanded according to the milling time, since the lattice 

parameters a, c, and the structure volume V increased after processing, as shown in Figure 2(c). The structure was schematized 

in Fig.3c, utilizing the crystallographic coordinates from Schreyer at al. (Schreyer, Guo, Thirunahari, Gao, & Garland, 2014). 

The lattice suffered a greater expansion in the first hour. Next, the expansion continued occurring, but in a slower rate. This 

phenomenon can be attributed to two concomitant processes: the strain due to the impact and shear forces promoted by HEM; 

and the Fe cation structural inclusion from the vessel and milling spheres. The former occurred more intensively in the first 

hour, observed by a significant increment of the diffraction peaks broadening compared to the raw oxide. The latter is mainly 

attributed to the cationic structural inclusion, which can also lead to lattice expansion. Fe2+ has a larger crystal radius than Zn2+ 

in tetahedral coordination (0.77 Å versus 0.74 Å, respectively) (Saleh, Prakoso, & Fishli, 2012; Shannon, 2011), therefore, 

isovalent inclusions promoted the lattice expansion in a minor extent.  

Many works have also reported the use of ZnO nanostructures as antibacterial material. Yamamoto et al (2004) stated 
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that this effect can be increased when the c value is also increased (Yamamoto, Komatsu, Sawai, & Nakagawa, 2004). 

According to Rietveld analysis, the c value has increased from 5.2075 Å to 5.2112 Å. The increase in the c value typically 

leads to high amounts of H2O2 release which can inhibits bacterial growth. Salah et al (2011) were able to increase the c value 

of ZnO from 5.204 to 5.216 with 50h of milling in a horizontal oscillatory mill (Retsch, PM 400). Therefore, the use of a 

shaker mill might reduce the time of processing to produce ZnO with adequate characteristics for antibacterial applications.  

FTIR was performed to identify the functional groups and chemical bonds present in the samples after leaching. 

Figure 3 shows the FTIR spectral referring to ZnOP and ZnO processed via HEBM and submitted to acid leaching and Table 2 

shows the FTIR band assignments.   

 

Figure 3 - FTIR transmittance spectrum for ZnOP sample compared to leached Z1L, Z2L, Z3L, Z4L, and Z5L samples. 

 

*the break in 1384cm-1 is related to the impurity band present in the KBr source used for sample pressing. Source: Authors (2021). 

 

Table 2 - Relationship of the bands observed in the FTIR spectra for samples processed via HEBM and leached in oxalic acid 

and their assignments. 

Wavenumber (cm-1) Assignment 

3383 ν (OH) : H2O(Wladimirsky1 et al., 2011) 

1632 νas (CO)(Cooper, 2015; Wladimirsky1 et al., 2011) 

1364 νs(CO) + νs(CC)(Georgeta et al., 2015; Wladimirsky1 et al., 2011) 

1320 νs(CO) + δ(OCO)(Cooper, 2015; Georgeta et al., 2015) 

823 νs(CC) + δ(OCO)(Cooper, 2015; Wladimirsky1 et al., 2011) 

745 e 618 ρ(H2O)(Wladimirsky1 et al., 2011) 

495 e 456 δ ring(Wladimirsky1 et al., 2011) 

meaning: ν = stretching, νas = antisymmetric stretching, νs = symmetric stretching, δ = bending, ρ = rocking. Source: Authors (2021). 

 

According to Figure 3, For ZnOP, the characteristic band of the Zn-O bonding between 600 and 400 cm-1 is observed. 

However, for ZnO submitted to milling and leaching, it was observed the appearance of several bands, which were identified 

and related to the probable chemical groups responsible for such interactions, according to the FTIR spectra available in the 
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literature for hydrated zinc oxalate (Table 2) (Cooper, 2015; Georgeta, Marcela, Anda, Gratiela, & Alexandrina, 2015; 

Wladimirsky, Palacios, María C. D’Antonio, & Ana C. González-Baró and Enrique J. Baran, 2011). In table 2 one can see the 

characteristic wavenumber of each spectral trace present in Figure 3 and its respective assignment. According to the mentioned 

literature of each attributed assignment, these bands can be of stretching, antisymmetric stretching, symmetric stretching, 

bending or rocking vibrations for the functional groups of the zinc oxalate hydrate. From the FTIR spectra, although the Z4L 

sample presented different x-ray diffraction peak, according to the infrared technique it presents the same chemical groups as 

the others, thus confirming the presence of interactions of the oxalate group with the zinc oxide used. To reverse the formation 

of zinc oxalate crystals formed during the acid leaching stage, it was performed for the Z3L sample (chosen as an intermediate 

between the milling times) the DSC/TG, presented in Figure 4 (a).  

 

Figure 4 - (a) DSC/TG performed for the Z3L sample and (b) FTIR transmittance spectrum for ZnO P sample compared to the 

heat-treated ones. 

 

Source: Authors (2021). 

 

According to Figure (a), there are two significant events showed by the coupling of the mass loss and heat flow 

curves: the presence of an endothermic peak at approximately 150ºC accompanied by a mass loss, corresponding to the 

vaporization of the hydration water; the second event, at 400ºC, also characterized by an endothermic peak accompanied by a 

significant mass loss corresponding to the decomposition of oxalate. Zinc oxalate can be thermally converted to zinc oxide 

after approximately 400 º C. Aiming to reverse the effect of the acid leaching a heat treatment at 600ºC was proposed for both 

samples: those submitted only to milling (also seeking to mitigate the effects of crystallinity loss due to HEBM) and the 

leached ones.  

Figure 4 (b) shows the FTIR spectrum for the heat-treated samples. The ZnOP sample is presented just for comparison 

and shows a water band around 3383 cm-1, which is absent on the other samples. Regarding the Zn-O bonding band, between 

600 and 400 cm-1, it is now present on the heat-treat samples and was not on the leached ones (Figure 3). It confirmed the heat 

treatment at 600 ºC was able to reverse the oxalic acid formation. Comparing the bands' intensity in Figure 4 (b), one can see 

that for both leached and heat-treated samples (Z1LT600 and Z5LT600), the Zn-O band, although present, was weaker than the 

just heat-treated ones. The intensity of the oxide bond was decreased according to the experimental procedures performed and 

had its lowest intensity for the sample leached and processed for the longest milling time. This fact corroborates the XRD 

analysis that the milling and the leaching processes led to deformations on the ZnO structure. Particle size distribution (Figure 

5) by laser diffraction was performed for the samples milled for 2 and 5 h, before and after heat treatment at 600 ºC.  
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Figure 5 - Particle size distribution of the pattern powder, milled and heat-treated samples. 

 

Source: Authors (2021). 

 

The results showed in Figure 5 demonstrated the milling process was indeed able to reduce the particle size. When 

increasing the milling time from 2 to 5 h, the particle size was reduced completely to a nanometric scale (green curve), with an 

average size of approximately 50 nm. However, the heat treatment for both milling times provided the formation of aggregates 

and partially reversed the milling action, since the curves for the Z2T600 and Z5T600 showed particle size distribution in a 

higher scale. However, even with the heat treatment, the particle size did not reach the initial value of the ZnO precursor 

powder. To confirm the results of the presence of Fe, the X-ray fluorescence analysis is described in Table 3 for the samples 

processed for 2 and 5 h (Z2 and Z5).  

 

Table 3 - Determinations of the compounds present in the samples by X-ray fluorescence. 

Determinations (%) 
Samples 

Z2 Z2L Z5 Z5L 

Al2O3 0.16 0.39 0.6 0.32 

SiO2 0.15 0.23 0.14 0.28 

Fe2O3 1.38 1.85 2.27 2.57 

ZnO 98.30 97.53 97.00 96.80 

Source: Authors (2021). 

 

Comparing the leached samples obtained for both processing times according to the results presented in Table 3, an 

increase in the percentage values of the other compounds (Al2O3 and SiO2) is observed. This fact can be explained, however, 

when observing the percentage values of ZnO. After acidic leaching, there was a decrease in the percentage of this oxide in the 

samples. This phenomenon suggests two events: the elimination of a small portion of ZnO solubilized in the acid during the 

leaching process and also the loss of some ZnO nanoparticles that have not been able to decant after the leaching. Therefore, 
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the presence of Fe in the samples is confirmed even after the leaching process. It can also be noticed the increased in the Fe 

content according to the milling time, since Z2 presented 1.38% and Z5 presented 2.27%, indicating that an increase in 3 h of 

processing led to an increase of almost 65% of iron incorporation.   

The SEM images of the precursor powder and the milled and leached powder are demonstrated in Figure 6 and 7, 

respectively.  

 

Figure 6 - SEM image from the ZnO precursor powder. 

 

Source: Authors (2021). 

 

The ZnO used as raw material consisted of particles predominantly on a submicron scale (between 100 and 600 nm, 

as shown in Figure 6). It can also be seen that the morphology of the particles is randomly shaped, more predominantly 

hexagonal prism and thin rods.  
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Figure 7 - SEM images for the ZnO powder milled for 2 and 5 h, and respective leached samples. 

 

Source: Authors (2021). 

 

For the SEM images of samples milled for 2 and 5 h, Figure 7 (a) and (b) respectively, presence of particles at the 

nanoscale and a wide distribution of agglomerates is observed, despite the deagglomeration methods adopted. To verify the 

dispersion of the constituent elements, analysis by energy dispersive spectroscopy (EDS) was performed together with element 

mapping for the 2 and 5 h milled samples (Z2 and Z5), before and after the leaching. The presence of the Fe element is 

perceived in all cases in a homogeneously dispersed manner throughout the analyzed region, confirming that it was not present 

in the form of isolated particles, according to the backscattered-electron analysis. The increase in milling time led to an 

increase in the percentage of Fe in the analyzed area. These results corroborate with those from Rietveld refinement and XRF. 

Long period of milling times favors the inclusion of Fe in the structure, leading to the lattice expansion. Also, Salah et al 

(2011) (Salah et al., 2011) reported changes on the morphology of the powder which was firstly random shapes to spherical 
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shapes. This behavior was also reported in our work, where one can see by the SEM images the presence of spherical shapes 

rather than the hexagonal shapes presented by the precursor powder, which might also be useful for various applications. In 

order to verify the changes on the optical properties, the DRS spectra are shown in Figure 8.  

 

Figure 8 - DRS spectra and Tauc’s plots and the calculated band gap for the samples milled for 2 and 5 h. 

 

Source: Authors (2021). 

 

The DRS spectra for the samples milled for 2 and 5 h (Figure 8), the added Tauc’s plots and calculated band gap 

shows the influence of the milling process on the optical properties of ZnO. The ZnO presents an energy band gap of 3.37 eV 

and a wide absorption band at 370 nm. According to the Figure 8, There was a decrease on the reflectance intensity with an 

increase of the milling time. However, an increase of milling timing from 2 to 5 h decreased the band gap energy from 3.26 to 

3.21 eV (from the inset graph), which leads to a lower energy requirement to be activated. No additional band appeared, 

demonstrating that no new phases came out with milling, as also demonstrated by the XRD results. Reddy et al (2019) (Reddy 

et al., 2019) studied the effect of Fe doped ZnO nanoparticles ball milled in a planetary mill on its optical property. The lowest 

optical band gap was achieved after 40h of milling, and the authors attributed the superior photocatalytic activity if the Fe 

doped ZnO to an increase in the electron-hole pair separation due to the inter charge diffusion between the bands. The presence 

of metal doping can substantially reduce the recombination rate of the photogenerated charge carriers in semiconductors 

(Akhundi & Habibi-Yangjeh, 2016; Shekofteh-Gohari & Habibi-Yangjeh, 2017). The high processing time could be reduced 

by replacing the planetary mill by the shaker mill (as used in this work), since the energy and frequency of impact is much 

higher in the latter (Suryanarayana, 2001). 

As shown in previous works, interest in the applications of ZnO nanoparticles has grown in recent decades as it 

exhibits properties that can be applied to different fields, as biomedical, sensor and catalysis. The increased specific surface 

area and the reduced particle size leads to enhanced particle surface reactivity. Bottom-up approaches for obtaining 

nanoparticles (such as vapor synthesis, pyrolysis, sol–gel synthesis, and precipitation methods) are well stablished in the 

http://dx.doi.org/10.33448/rsd-v10i12.20855


Research, Society and Development, v. 10, n. 12, e476101220855, 2021 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v10i12.20855 
 

 

14 

literature, enabling control of the particle size and morphology. However, for optimized conditions, these processes can present 

high complexity and costs. In this sense, top-down approaches (as mechanical milling) consist of a simple operation, coupled 

with low cost and possibility of high amounts of material been processed at the same time (S. Sharma, Pande, & Swaminathan, 

2017). In relation to high energy ball milling, this is the first time in the literature that a shaker mill was applied to ZnO particle 

size reduction and physical characterization. High energy ball milling with a shaker mill proved to be suitable in achieving 

nanoparticles with great optical, physical and microstructure properties with a short time of processing. This could broaden the 

applicability of ZnO nanoparticles processed by HEBM, such as photocatalytic, antibacterial and antimicrobial applications. 

Also, crystallographic orientation plays an important rule regarding antibacterial activity and the paper also showed that an 

increase in the c value was able to be achieve in a reduced time compared to previous work with other milling type.  

 

4. Conclusion 

High energy milling using a shaker mill resulted in particle size reduction for both processing times with an increase 

in milling time. The oxalic acid leaching process presented strong interaction with the ZnO, leading to the formation of zinc 

oxalate which was reversed by heat treatment. The heat-treated powder, however, presented lower interaction between the Zn-

O bond. Rietveld refinement showed the hexagonal structure progressively expanded according to milling time. Also, the c 

value increased, which might be useful for antibacterial and antimicrobial applications. The band-gap decreased to 3.21 V with 

5h of milling, which might be useful for excitation events. High-energy milling using a shaker mill proved to be an efficient 

technique in reducing particle size in a significantly shorter processing time than other conventional mills. 

HEBM showed how the process can promote structural changes and enhance the properties of the final processed 

powder. This process could help researches to overcome some challenges and future prospects to the field of nanostructured 

materials. Further investigations aiming at visible light applications to ZnO, by adding metal dopants (such as Sn, Mn, and Co) 

or semiconductors (such as TiO2, SnO2, and Co3O4) to the high energy milling process to form doped ZnO or ZnO 

heterostructures, respectively, can be an important route to broad and reduce the costs of ZnO application.  
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