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Abstract 

Music therapy is an effective tool to slow down the progress of dementia since interaction with music may evoke 

emotions that stimulates brain areas responsible for memory. This therapy is most successful when therapists provide 

adequate and personalized stimuli for each patient. This personalization is often hard. Thus, Artificial Intelligence (AI) 

methods may help in this task. This paper brings a systematic review of the literature in the field of affective 

computing in the context of music therapy. We particularly aim to assess AI methods to perform automatic emotion 

recognition applied to Human-Machine Musical Interfaces (HMMI). To perform the review, we conducted an 

automatic search in five of the main scientific databases on the fields of intelligent computing, engineering, and 

medicine. We search all papers released from 2016 and 2020, whose metadata, title or abstract contains the terms 

defined in the search string. The systematic review protocol resulted in the inclusion of 144 works from the 290 

publications returned from the search. Through this review of the state-of-the-art, it was possible to list the current 

challenges in the automatic recognition of emotions. It was also possible to realize the potential of automatic emotion 

recognition to build non-invasive assistive solutions based on human-machine musical interfaces, as well as the 

artificial intelligence techniques in use in emotion recognition from multimodality data. Thus, machine learning for 

recognition of emotions from different data sources can be an important approach to optimize the clinical goals to be 

achieved through music therapy. 

Keywords: Affective computing; Emotion recognition; Auditory stimulation; Recommendation system; Music 

therapy. 

 

Resumo  

A musicoterapia é uma ferramenta eficaz para retardar o progresso da demência, uma vez que a interação com a 

música pode evocar emoções que estimulam as áreas do cérebro responsáveis pela memória. Essa terapia é mais bem-

sucedida quando o terapeuta fornece estímulos adequados e personalizados para cada paciente. Essa personalização 

costuma ser difícil. Assim, métodos de Inteligência Artificial (IA) podem auxiliar nessa tarefa. Este artigo traz uma 

revisão sistemática da literatura da área de computação afetiva no contexto da musicoterapia. Em particular, 

pretendemos avaliar métodos de IA para realizar o reconhecimento automático de emoções aplicados a Interfaces 

Musicais Homem-Máquina (HMMI). Para realizar a revisão, realizamos uma busca automática em cinco das 

principais bases de dados científicas nas áreas de computação inteligente, engenharia e medicina. Procuramos todos os 

artigos publicados entre 2016 e 2020, cujos metadados, título ou resumo contenham os termos definidos na string de 

pesquisa. O protocolo de revisão sistemática resultou na inclusão de 144 trabalhos das 290 publicações retornadas da 

pesquisa. Através desta revisão do estado da arte, foi possível elencar os desafios atuais no reconhecimento 

automático de emoções. Também foi possível perceber o potencial do reconhecimento automático de emoções para 

construir soluções assistivas não invasivas baseadas em interfaces musicais homem-máquina, bem como as técnicas 
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de inteligência artificial em uso no reconhecimento de emoções a partir de dados multimodais. Assim, o aprendizado 

de máquina para reconhecimento de emoções de diferentes fontes de dados pode ser uma abordagem importante para 

otimizar os objetivos clínicos a serem alcançados por meio da musicoterapia. 

Palavras-chave: Computação afetiva; Reconhecimento de emoções; Estimulação acústica; Sistema de recomendação; 

Musicoterapia. 

 

Resumen  

La musicoterapia es una herramienta eficaz para ralentizar el progreso de la demencia, ya que la interacción con la 

música puede evocar emociones que estimulan las áreas del cerebro responsables de la memoria. Esta terapia tiene 

más éxito cuando el terapeuta proporciona estímulos adecuados y personalizados para cada paciente. Esta 

personalización suele ser difícil. Por lo tanto, los métodos de Inteligencia Artificial (IA) pueden ayudar en esta tarea. 

Este artículo trae una revisión sistemática de la literatura en el campo de la computación afectiva en el contexto de la 

terapia musical. En particular, nuestro objetivo es evaluar los métodos de inteligencia artificial para realizar el 

reconocimiento automático de emociones aplicado a las interfaces musicales hombre-máquina (HMMI). Para realizar 

la revisión, realizamos una búsqueda automática en cinco de las principales bases de datos científicas en los campos 

de la computación inteligente, la ingeniería y la medicina. Buscamos todos los artículos publicados entre 2016 y 2020, 

cuyos metadatos, título o resumen contengan los términos definidos en la cadena de búsqueda. El protocolo de 

revisión sistemática resultó en la inclusión de 144 trabajos de las 290 publicaciones devueltas de la búsqueda. A través 

de esta revisión del estado del arte, fue posible enumerar los desafíos actuales en el reconocimiento automático de 

emociones. También fue posible darse cuenta del potencial del reconocimiento automático de emociones para 

construir soluciones de asistencia no invasivas basadas en interfaces musicales hombre-máquina, así como las técnicas 

de inteligencia artificial que se utilizan en el reconocimiento de emociones a partir de datos multimodal. Por lo tanto, 

el aprendizaje automático para el reconocimiento de emociones a partir de diferentes fuentes de datos puede ser un 

enfoque importante para optimizar los objetivos clínicos que se deben lograr a través de la musicoterapia. 

Palabras clave: Computación afectiva; Reconocimiento de emociones; Estimulacíon acústica; Sistema de 

recomendación; Musicoterapia. 

 

1. Introduction 

1.1 Motivation 

With the aging of the world population, several countries have been facing considerable changes in the last decades 

(UN, 2020; EC, 2020). The elderly population has increased, and so is the prevalence of diseases associated with old age, such 

as osteoporosis, hypertension and dementia (NRC, 2001; WHO, 2019, 2017; Ricci, 2019). Alzheimer’s Disease and 

cerebrovascular ischemia are the two most important causes of dementia worldwide (Nichols et al., 2019; Rizzi et al., 2014). 

Several studies show that music therapy has the ability to slow down the progress of dementia through musical stimuli 

and music education (Gallego & Garcia, 2017; de Souza et al., 2017; Fang et al., 2017; King et al., 2019). Interaction with 

music stimulates the areas of the brain responsible for memory through emotions. However, the effectiveness of music therapy 

is closely related to the recognition and correct stimulation of emotions in the patient by the therapist. This task of recognizing 

emotions is often arduous, especially for less experienced professionals. 

Artificial Intelligence (AI) algorithms have been shown to be effective in solving complex classification problems, 

including the ones related to emotion recognition (Poria et al., 2017; C.-H. Wu et al., 2016; Cambria, 2016). Thus, emotion 

recognition performed by AI methods has the potential to contribute to the construction of an interface capable of helping 

music therapists in determining musical genres, styles and rhythms. This interface may be of great help to optimize 

intervention in the context of the treatment of Alzheimer’s disease and mild cognitive impairment. 

Thus, this document proposes a systematic review of the literature in the field of Computational Intelligence applied 

to emotion recognition in Electroencephalography (EEG), voice signals and facial expression. From this review, we 

particularly aim to identify AI methods to perform automatic emotion recognition applied to human-machine musical 

interfaces. Particularly, this review seeks to answer the following research questions: (1) What are the current challenges in 

automatic emotion recognition? (2) How useful is automatic emotion recognition for non-invasive assistive solutions based on 

human-machine musical interfaces? (3) Which AI techniques are being used in emotion recognition? (4) Which deep networks 
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architectures are used for music recommendation based on emotion recognition from multimodalities data? 

Next topic presents some background information regarding to aging, cognitive impairment, affective computing, and 

music therapy. In Methodology section we describe the systematic search protocol. Then, the results are showed and discussed. 

Finally, in the last section we highlight some conclusions and limitations of this work. 

 

1.2 Background 

This topic presents the main theoretical references which are the basis for carrying out and understanding this 

research. Thus, we explore the concept of cognitive deficits, focusing on Alzheimer’s Disease. Then, we give a brief 

introduction about emotions. We point out emotion recognition, considering the forms and stimuli for identification, 

emphasizing the field of study of Affective Computing. Finally, we present a brief review about therapies and interventions. 

Additionally, we discuss how they are being assisted by technologies and enhanced with musical techniques. 

To introduce the discussion concerning cognitive deficits and dementia, some aspects need to be outlined. It is 

important to clarify that cognition refers to the way our brain learns, perceives, remembers, and also processes the information 

absorbed by the different senses (Sheffield et al., 2018). Therefore, cognitive deficit is characterized as an obstacle in this 

development, especially with respect to learning and intellectual limitations. 

Also known as mild cognitive impairment, cognitive deficit can cause slight loss of memory, attention and difficulties 

in logical reasoning. However, it does not present dementia (Hamdan, 2008). In the elderly, these symptoms are often confused 

with natural causes of aging. As yet, these are signs that alert both individuals and their families, since in a few cases, they can 

evolve or be the beginning of Alzheimer’s disease (AD) in its early stages (Pais et al., 2020). 

Despite the similarities, the differentiation between cognitive decline and AD is essential to avoid confusion between 

both conditions. AD is the most common type of dementia and is also a general term used to describe conditions that occur 

when the brain can no longer function properly. In the literature, AD is classified as a chronic, degenerative, and progressive 

dementia (Lourinho & Ramos, 2019). According to Caetano et al. (2017), neurodegenerative diseases are those which cause 

irreversible neuron degeneration. According to research carried out by Bertazone et al. (2016), Alzheimer’s Disease is 

characterized by changes in memory, nonetheless, it is rarely the most detectable symptom. Failures in cognition, motor skills 

and language can also appear as the first symptoms and tend to worsen as the disease progresses. 

Although there is no cure for AD, other forms of intervention were also developed to promote an improvement on the 

Alzheimer’s patient’s quality of life (Caetano et al., 2017). In order to contemplate the individual in a holistic way, the 

treatment requires a multidisciplinary team - with an interdisciplinary approach - to combine pharmacological and non-

pharmacological measures. de Souza et al. (2017) cites psycho-corporal and biological therapies, and music therapy as 

examples of these interventions. Nonetheless, several other approaches have also been emerging in the field of affective 

computing and computational intelligence. 

Defining emotions is not a trivial task, as this term is frequently used in different contexts, and it is also present in 

everyday situations (Paxiuba & Lima, 2020). It is worth emphasizing that emotions play an essential role in the social 

formation of any human being. Studies clarify that emotional expressions are composed of variables that can be directly related 

to cognitive aspects (Le & Provost, 2013; Izard, 1977). Hence, emotions can manifest in different ways in each individual 

which include sensations, facial expressions, and body movement. For this reason, emotions are one of the most important 

experiences, because they guide choices, motivations, decisions, among other aspects. Additionally, they are essential for the 

process of verbal and non-verbal communication (Marosi-Holczberger et al., 2013; Dorneles et al., 2020). 

The literature distinguishes emotions in, at least, two different categories (Scardua & Marques, 2018; Oliveira & 

Jaques, 2013; Ekman & Friesen, 1971). The first one is the universal or basic emotions defined by joy, sadness, anger, fear, 
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disgust, surprise, amazement. The second category comprises the social emotions such as guilt, shame, arrogance, and wonder. 

As already mentioned, for each emotion, there is a definition and a peculiar way of manifesting itself in each individual. 

When it comes to recognizing these emotions, humans are often able to feel and/or identify each other’s emotional 

state. This detection may be naturally noticeable to people, but it is still a difficult task for computers. It is in this specific 

context that we highlight a sub-area in Artificial Intelligence which studies emotions in computers, called Affective Computing 

(AC) (Paxiuba & Lima, 2020). 

The term "Affective Computing" was proposed by Rosalind Picard in 1997 (Nalepa et al., 2019), and refers to a field 

of research that is totally interdisciplinary with other areas of knowledge (such as Biomedical Engineering, Psychology, and 

Computer Science). This field of research seeks to develop computational and emotion recognition methods for diverse 

purposes and applications. Briefly, AC studies how computers can recognize, model and express emotions (and other human 

psychological aspects), and how they respond to them (Picard, 1997). 

In this scenario, there are several ways to investigate the recognition of emotions. But for that to happen, data must be 

used. According to González & McMullen (2020), data can come from different sources, such as voice, facial expressions, and 

physiological signals. 

For the emotion classification through voice signal, cultural and language patterns can also be considered to the model 

development. Some attributes are considered more relevant, and they are well established in this type of prediction. Among 

them, we can mention pitch (Sondhi, 1968), energy or intensity (Ingale & Chaudhari, 2012), formants (Goudbeek et al., 2009), 

mel-cepstral frequency coefficients (MFCC) (Han & Chan, 2006) along with the characteristics common to most waveforms. 

In the literature referring to audio recognition, Convolutional Neural Networks (CNN) (Zhao et al., 2019), Support 

Vector Machines (SVM) (Sonawane et al., 2017), and Generative Adversarial Networks (GANs)(Chatziagapi et al., 2019) are 

quite recurrent. They are considered the leading models for this type of classification. It is also worth emphasizing the 

popularity of the MFCC as one of the most used attributes. According to Han & Chan (2006), the MFCC is a parametric 

representation of the frequency spectrum of the voice signal. It is a scale very close to the human auditory system, which has a 

non-linear behavior in frequency. 

Another way to perform human affective recognition is through its physiological signals. From the Peripheral 

Nervous System, the most evaluated signals are: the Galvanic Skin Response (GSR), the Respiration Range, the Skin 

Temperature, and the Electrocardiogram (ECG). From the Central Nervous System, the signal evaluated is the 

Electroencephalogram, commonly known as EEG. In this type of approach, models which combine the analysis of more than 

one signal tend to achieve better performances. Knowing that physiological and cognitive responses can be significantly 

impacted by emotions (Brosch et al., 2013), combined classifiers that use multimodal analysis become very reliable for the 

identification of these sensations. They are also an alternative to voice and image’s recognition methods. 

Another popular method for emotion recognition is through facial expressions (Y. Wang & Kosinski, 2018). This 

method is somehow more direct, intuitive and easy to identify. AI models based on this optics almost always have attributes 

that can be visually identified, such as dark hair, and light eyes. However, these features are extremely difficult to standardize 

and to extract. Thus, studies that take into account the varieties of physiognomy, age, gender, and different demographic 

groups are a trend among new researches (Buolamwini & Gebru, 2018). 

AI models focused on images and videos have a high computational cost. This is due to their large amount of data 

throughout various pre-processing stages or classification. However, these deficits can be offset by better performance and 

accuracy for day-to-day applications (Jeong & Ko, 2018), whereupon other approaches would not be feasible or practical. 

Lastly, it is worth taking into account the fact that emotions are brief psychophysiological phenomena. Thereby, 

collecting data on emotions spontaneously is still a challenging task. For this reason, it is often necessary, in research 
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environments, to place the individual in situations with the purpose of evoking certain emotions. The emotions can be evoked 

through (Meska et al., 2020) odors, visual or auditory stimuli. The visual and auditory stimuli can be images, videos, songs 

(Vicencio-Martínez & Garay-Jiménez, 2019), affective scenes using Virtual Reality (T. Xu et al., 2019; Teo & Chia, 2018), 

and others. 

Considering what has been exposed so far, it is important to contextualize them in interdisciplinary fields which 

include music, education, health and technology. These fields, when combined, have potential for therapeutic applications and 

diversified interventions. The interventions include games, affective entertainment, and health rehabilitation assisted by Virtual 

Reality (Bulagang et al., 2021). Music, for example, is a resource that has the ability to stimulate and develop the brain (Kirana 

et al., 2018). It has a variety of applications for therapeutic purposes such as emotion regulation, social interaction (Agres et 

al., 2021), and motor functions rehabilitation (Dechenaud et al., 2019). Music can also be applied in physical therapy. Since the 

exercises are often monotonous and repetitive for the patients, the music can increase their motivation and involvement in the 

section (Colombo et al., 2019). 

With regard to technologies for therapeutic purposes, we highlight games, which add entertainment to the therapy 

moment, and improve patient engagement (Fonteles et al., 2018). This is possible because games offer rewards and different 

levels of challenges. These characteristics are advantageous because they involve the individuals in the rehabilitation process. 

Simultaneously, they increase the individual’s motivation during the exercises (Agres et al., 2021). Games can have different 

classifications depending on the goals for the rehabilitation process. For example, games like Exergames aim to improve the 

health and well-being of elderly people through stimuli to perform physical activities (Crespo et al., 2016). Another category is 

the serious games. According to Agres et al. (2021), serious games can be an alternative to train the skills of patients with 

Parkinson’s Disease. It can also assist in treating traumatic brain injury, and in training for patients with dementia. 

Virtual reality (VR) applications are pointed out by therapists as a high degree of immersion approach and as a non-

threatening method for patients to practice multisensory integration in a real context (Lubetzky et al., 2019). As shown in the 

research carried out by Geraets et al. (2021), VR can make therapies more available and cost-effective for a larger group of 

patients. In addition, they can increase the intensity of treatment through home exercises that complement face-to-face 

therapies. The authors emphasize that with VR, innovative strategies can not only improve therapeutic interventions, but can 

also be used to investigate mechanisms involved in the persistence of mental disorders. As in games, VR applications are also 

diverse. As it is a more engaging and realistic approach involving and realistic, it contributes to senses and thought stimulation 

(T. Xu et al., 2019). These stimuli in VR can even be customized according to the purpose of rehabilitations, as in the study by 

Cameirão et al. (2017), where the stimuli were customized for the rehabilitation of stroke survivors with mild cognitive 

impairment (MCI). 

Still in the context of technologies, therapies, and interventions, affective and social robotics emerges as an 

opportunity to carry out personalized therapies (Agres et al., 2021). These technologies can contribute to the rehabilitation 

process becoming less dependent on therapeutic expertise (Kikuchi et al., 2018). Thus, reducing the burden on the physicians 

who perform the interventions (Agres et al., 2021). In general, a robotic system be used for many purposes. It can be a bridge 

for interaction with autistic children, improving their social skills (HAN et al., 2018), assist in treatment of children with 

cancer (Ranjkar et al., 2019), contribute with wrist (English & Howard, 2017a) and upper limb (Kikuchi et al., 2018) 

rehabilitation. Furthermore, it can contribute to therapeutic interventions in order to support people with visual and intellectual 

disabilities (Wingerden et al., 2020). 

It is worth reiterating that the studies mentioned in this section confirm that applications and inclusion of games, VR 

or robotics for therapeutic purposes - when integrated with musical strategies - can be a powerful tool. In fact, music makes all 

the difference in the rehabilitation process, and also influences the user’s affinity with the systems. For this reason, the search 
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for musical solutions for applications in healthcare grows continuously. A topic that cannot be discarded is the importance of 

properly trained professionals to assist in the development of these technologies so that their effectiveness is truly beneficial. 

 

2. Methodology  

This systematic review selected primary studies based on keywords, search period, and both inclusion and exclusion 

criteria. As sources, we chose five of the main scientific databases on the fields of intelligent computing, engineering, and 

medicine (i.e., IEEE Xplore, MedLine/PubMed, SCOPUS, Science Direct and Springer Link). The systematic review was 

conducted with automatic search in the databases using keywords and period as filters. Particularly, the scope of this study was 

to focus on the methodological aspects of state-of-the-art works, especially issues related to the most explored computational 

and artificial intelligence methods. 

Therefore, wee search all papers released from 2016 to 2020, whose metadata, title or abstract contains the terms 

defined in the following search string: (“Artificial Intelligence” OR “Deep Learning” OR “Machine Learning” OR 

“Computational Intelligence” OR “Neural Network” OR “Deep Kernel”) AND (“Electroencephalography” OR “EEG” OR 

“Neural Signals” OR “Brain Signal”) AND (“Voice Signals” OR “Speech”) AND (“Emotion Recognition” OR “Recognition 

of Emotion” OR “Affective”) AND (“Alzheimer” OR “Dementia” OR “Degenerative Disorder” OR “Neurodegenerative 

Disease” OR “Neurodegenerative Disorder” OR “Cortical Disorder”) AND (“Human-Machine Musical Interfaces” OR 

“Affective Music” OR “Music Therapy” OR “Music Biofeedback”). 

Article selection was performed in five phases (Figure 1). In the first phase, we identified the number of papers from 

each scientific database. Then, in the second step, we assessed its suitability to all four exclusion criteria (EC). As EC, we 

exclude duplicated works, studies that do not include some computational tool, documents classified as poster, tutorial, 

editorial, book, annals or reviews, and studies based on invasive techniques. 

The third phase consisted in an evaluation according to introduction and conclusion, in order to select studies that 

meet at least one of the following inclusion criteria (IC): IC1) studies with computational tools applied to EEG signals; IC2) 

studies with computational methods applied to voice signals; IC3) studies with computational tools applied to physiological 

data (Galvanic Skin Response, Respiratory Frequency, Heart Rate, Electrocardiogram, Electrooculogram); IC4) studies with 

computational tools applied to image or video processing; IC5) studies that use emotion recognition in EEG signals; IC6) 

studies with emotion recognition in voice signals; IC7) studies with emotion recognition in physiological signals; IC8) studies 

that use emotion recognition in images or videos; IC9) studies that use Human-Machine Musical Interfaces (HMMI). 

After reading the remaining papers, in the fourth phase, we assigned scores to each of them based on the quality 

checklist in Table 1. To assign these quality scores, the articles were carefully read and evaluated for their formal aspects. 

Thus, each article was assigned a score for each question presented in Table 1. The score could be 0 (zero) if the text did not 

meet the criterion, 0.5 if partially met, or 1 if the criterion was well presented in the text. Finally, in the fifth step, we group the 

studies according to their content. 

Finally, to summarize the results from each article, we extracted the following information: (a) Article name; (b) 

Name of authors; (c) Year; (d) Institution; (e) Database; (f) Application of the study; (g) Methodology procedures; (h) AI 

classification methods; (i) Phase of study development (Concept Design, Testing, Maintenance of Commercial Product); (j) 

Results; (k) Advantages of the method; (l) Disadvantages of the method. 
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Figure 1: Search phases. 

 

Source: Authors. 

 

Table 1: Quality Criteria (QC) to evaluate the selected studies. 

ID Quality Criteria Answer 

QC1 
Is there a description of the application domain in 

which the search was performed? 

YES (Y) = 1.0; 

PARTIALLY (P) = 

0.5; NO (N) = 0. 

QC2 Are the objectives clearly stated? Y/P/N 

QC3 

Are the methodology procedures, such as EEG or 

audio signals acquisition methods, databases or 

development environment tools clearly expressed? 
Y/P/N 

QC4 Is there a description of the sources of information? Y/P/N 

QC5 

Are the computational tools, such as Computational 

Intelligence techniques detailed explained? Including 

architectures parameters and/or equations. 
Y/P/N 

QC6 Are the future works or contributions clearly 

described? 

Y/P/N 

QC7 
Does the study exposes the main challenges and 

limitations of the proposed method? 
Y/P/N 

Source: Authors. 

 

3. Results and Discussion 

Four people performed papers assessment. Figure 2 shows all evaluation phases and the amount of articles included 

and excluded in each one. The search process resulted in 189 publications in IEEE Xplore database, 1 in MedLine/PubMed, 38 

in SCOPUS, 19 in Science Direct, and 43 in Springer Link. The interdisciplinary nature of this work required searching on 

several different bases. However, the chosen databases have different emphases and include works from diverse areas of 

knowledge. Thus, it is natural that the search returns different amounts of papers in each database. From these works, 122 met 

at least one of the exclusion criteria and were removed. The 168 remaining studies went through title, abstract, and keywords 

evaluation, resulting in 24 excluded and 144 accepted works. Thus, from the 290 studies found by the search string, 144 were 
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actually included in this review. 

It is important to mention that during search process, we needed to reduce the length of the search strings used in 

Science Direct and Springer Link, since these bases did not support the original amount of Boolean operators. Thus, for 

Science Direct we used the terms: (“EEG”) AND (“Speech”) AND (“Emotion Recognition”) AND (“Dementia”) AND 

(“Music”). In Springer Link, we used: (“Machine Learning”) AND (“EEG”) AND (“Speech”) AND (“Emotion Recognition”) 

AND (“Dementia”) AND (“Music”). 

In the last phase of the review, we grouped the selected studies according to the division shown in Figure 3. The 

studies were combined in six groups: Games, Virtual Reality, Affective Robotics and Therapies (G1), Physiological and 

behavioral responses induced by acoustic signals (G2), Emotion recognition associated with acoustic stimuli (G3), Non-

invasive assistive solutions based on human-machine musical interfaces (G4), Musical composition, recommendation and 

customization (G5), and other approaches (G6). This last group consists of some studies that does not fit any of the other 

groups. 

As shown in Figure 3, the minority of the studies (8%) are in the 4th group, regarding to non-invasive assistive 

solutions based on human-machine musical interfaces. G1 and G3 together concentrate almost half the amount of studies 

(47%). Thus, its possible to see that in the last years many studies are being conducted in the areas of games, virtual reality, 

affective robotics, therapies, and emotion recognition associated with acoustic stimuli. 19% of the papers are related to 

physiological and behavioral responses induced by acoustic signals (G2). Finnaly, both G5 and G6 have 13% of the studies 

each. 

All selected studies were evaluated according to the previously defined quality criteria. Then, we calculated their 

average quality score (AQS) as the mean value of the scores from all criteria. Figure 4a shows the average score of all quality 

criteria for each group. Most of the studies had good performance in describing their goals and methodology, however, few 

studies provided information regarding to their contribution and limitations. The AQS for all groups is found in Figure 4b. 

Overall, all groups showed AQS above 0.7. The studies on G3 achieved the best quality scores while less quality papers were 

found in G5. This may indicate that more qualified papers are related to studies on emotion recognition associated with 

acoustic stimuli. However, there are still few relevant studies on customization of musical content. 

Regarding to the year of publication, Figure 5 shows the the distribution of papers published over the last five years 

for each group. We observe an increase in the number of studies in the last two years (2019 and 2020) specially in groups G2 

and G3. This increase shows a growing interest in the effects of music and other acoustic stimuli in the human being. 
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Figure 2: Amount of works for each selection phase. 

 

Source: Authors. 

 

Figure 3: Groups distribution of the selected studies. 

 

Source: Authors. 
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Figure 4: Quality analysis of the studies from each group. In (a) are the average score for each quality criteria and (b) 

shows the average quality score for all groups. 

 

(a) 

 

(b) 
 

Source: Authors. 

 

http://dx.doi.org/10.33448/rsd-v10i15.22844


Research, Society and Development, v. 10, n. 15, e392101522844, 2021 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v10i15.22844 
 

 

11 

Figure 5: Year distribution of the articles in each group. The amount of studies per year for G1, G2, G3, G4, G5 and 

G6 are respectively shown in (a), (b), (c), (d), (e), and (f). 

 

Source: Authors. 

 

3.1 Games, virtual reality, affective robotics and therapies 

In the present study, it was possible to identify that music brings several health benefits and contributes to the healthy 

development of the brain. In addition to music, we identified other gamified approaches such as Games, Virtual Reality (VR), 

and Affective Robotics. Such approaches were proposed by the articles listed in Table 2. All the aforementioned approaches, 

when applied to therapies for rehabilitation or treatment purposes, show excellent therapeutic potential. This occur because 

they contribute to the patient’s involvement in the exercises and contribute to increase their motivation. 

It is evident that emotion recognition approaches mostly use music, videos, and images (static and dynamic) to 

stimulate emotions in individuals. Yet, studies already use affective scenes in Virtual Reality to stimulate and to induce 

emotions. Then, they perform emotion recognition methods through electroencephalographic signals (T. Xu et al., 2019; Teo & 

Chia, 2018). In another case, the authors use VR scenes along with music as stimuli to induce emotional responses in 

individuals (Sra et al., 2017). It emphasizes that, although VR were not designed for this purpose, it stands out positively when 

compared to traditional approaches. One of the reasons is because, with VR, the individuals involvement can be higher since 
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the VR is able to bring them closer to the reality in an immersive way. These aspects mentioned can be more promising when 

combined with music. 

Affective virtual spaces have gained prominence for VR applications. It covers areas ranging from education, 

entertainment, art, well-being to health. Hence, VR applications are being widely used for therapeutic purposes. For example, 

to assist with rehabilitation of people with vestibular disorder (Lubetzky et al., 2019), and rehabilitation of stroke-affected 

people with mild cognitive impairment (Cameirão et al., 2017). Other applications include: psychological relaxation therapies 

(Zhu et al., 2019), and support to the Emotional self-awareness (Bermúdez i Badia et al., 2019). These therapies use 

audiovisual scenes with music which induces relaxation, and feedback with VR oriented affective states, respectively. Thus, 

considering the aforementioned therapies, researches are working twoards the development of tools which assesses the user 

experience. Both the therapeutical context, and the individuals affective state are taken into account (Krüger et al., 2020). 

Regarding to therapies, musical sonification appears as a potential technique. It has been helping in treatments and 

rehabilitation. The gamified approaches which have been developed involves adapted guitar for upper limbs rehabilitation for 

stroke-affected individuals (Dechenaud et al., 2019). It also includes gesture recognition tools for motor rehabilitation (Murad 

et al., 2017). Researches have also investigated and presented good results for therapies based on vibro-acoustics. They 

appraised its effects on physiological signals of young people and adults. The authors evaluated the biosignals to assess the 

therapy potential to induce a relaxation state after a stress situation (Delmastro et al., 2018; Cavallo et al., 2020). 

Given the advances in therapies that use musical strategies, different applications arise. Among the application we 

exemplify: (1) the development of a system to measure the reaction of autistic children during music therapies, considering 

parameters such as frequency and intensity of sound; (2) protocol validation for training and assessment of manual function 

rehabilitation; (3) development of intelligent systems to detect stress through EEG signals, leading individuals to relaxation, 

(4) and music therapy applications to aid in memory recovery. 

Physical therapy exercises often can cause discomfort, boredom or fatigue on patients. This is due to repetitive and 

monotonous activities. Games with musical techniques and VR applications have become an alternative strategy to involve 

patients on their activities. Musical games stand out for some contributions such as (1) in the promotion of the upper limb 

motor rehabilitation on stroke-affected individuals (Sanders et al., 2020); (2) in the motor and cognitive skill’s exercises by 

touching sequences (English & Howard, 2017b); (3) and in hand exercises through the process of learning rhythms and 

melodic structures (Fonteles et al., 2018). 

Exergames games based on VR are being used to treat low back pain (Ortegon-Sarmiento et al., 2020), and to assist in 

therapies for the elderly encouraging arm movement (Crespo et al., 2016). Also in the context of games, other approaches can 

be highligthed such as (1) the affective adaptation of games to motor rehabilitation by recognizing emotions by facial 

expressions (Aranha et al., 2017) (2) modulation of affective and physiological states of individuals using VR-based musical 

games to stimulate mental activation and relaxation (Arroyo-Palacios & Slater, 2016) (3) recognition of frustrations caused by 

games and their interfaces through multimodal signal analysis (Song et al., 2019) (4) learning components for a digital opera 

composition through a gamified app (Scott, 2017). 

The use of affective robotics has also gained a lot of acceptance and prominence due to its diverse uses. It has been 

used mainly for therapeutic purposes, for example, robotic systems for upper limbs and wrists’ motor rehabilitation using 

musical integration (Kikuchi et al., 2018; English & Howard, 2017a). Affective robots has also been used in health 

interventions in order to to assist individuals with intellectual disabilities (Shukla et al., 2019). Musical and social robots are 

also adopted for interaction with autistic children (HAN et al., 2018), and children undergoing cancer treatment (Ranjkar et al., 

2019), respectively. 

Affective robots using musical techniques report success in the rehabilitation process. These are being developed to 
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act as personal companions with a focus on the mood of individuals. They can also interact through scents, and music to 

generate positive emotions (Lui et al., 2017). Affective robots can also interact as robot dogs to cooperate in music therapies 

and identification of pneumonia in patients suffering from dementia (Lyu & Yuan, 2020). Moreover, they are able to interact 

as a singing robot in order to communicate through music, and evoke and assess emotional responses in humans (Wolfe et al., 

2020). 

Finally, it is important to point out that only 9 studies, among the 33 studies mentioned in this subsection, used 

Artificial Intelligence techniques (T. Xu et al., 2019; Lui et al., 2017; Aranha et al., 2017; Song et al., 2019; Murad et al., 2017; 

Cavallo et al., 2020; Teo & Chia, 2018; Lyu & Yuan, 2020; Sra et al., 2017). The mostly used techniques were Support Vector 

Machines (SVM), Random Forest, Convolutional Neural Networks (CNN), Decision Trees and K-Nearest Neighbor (KNN). 

Furthermore, we observed that a significant portion of 22 of the 33 studies are in the experimental phase. Six of them are in 

prototyping stage, three of them are in concept design stage, and only two in the validation stage. 

 

3.2 Physiological and behavioral responses induced by acoustic signals 

From this study, it we observed that almost 19% of the selected works deal with physiological and/or behavioral 

responses induced by sound signals (Table 3). In addition, we noted that there has been an increase in the number of 

publications involving this topic over the years, as most articles were published over the years 2019 and 2020. Only 9 out of 

the 27 works in this area were published between the years 2016 and 2018. This demonstrates a growth in scientific interest in 

this area of research. 

We also observed that such studies have been carried out in several countries, especially in the European, Asian and 

American continents. As for the data sources, almost all the works were developed from their own databases. The data were 

collected locally, and with little dissemination to the scientific community. Another aspect is that the vast majority of the 

returned studies is in the experimental phase. However, three of them propose the design and the tool validation. 

The returned works also presented a great diversity in the investigation of the effects of sound signals in the human 

organism. Most of these works sought to better understand the interventions of music and auditory stimuli in human brain 

waves (Qin et al., 2020; Dutta et al., 2020; Bhargava et al., 2020; Liao et al., 2017; Q. Li et al., 2020; Soysal et al., 2020; 

Ramdinwawii & Mittal, 2017; Rushambwa & Mythili, 2017; Chavan et al., 2016; O’Toole et al., 2019; Santhosh et al., 2020; 

Geethanjali et al., 2019; Liu et al., 2020; X. Wang et al., 2020; Jagiello et al., 2019; Ibrahim et al., 2019). Other works have 

studied ways in which factors such as musical preference can affect human physiology, mainly through the measurement of 

hemodynamic aspects (Yamada & Ono, 2019; Huang & Benjamin Knapp, 2017). 

Several studies also acted in the investigation of behavioral changes favored by sound stimuli. In this sense, some 

works have successfully explored the effects of music in reducing anxiety, stress, and depression (Dragulin et al., 2019; Lin et 

al., 2020;˘ Wang et al., 2016; Mitrpanont et al., 2017; Chavan et al., 2016; Chennafi et al., 2018; Liu et al., 2020; Geethanjali et 

al., 2019). Other groups studied the effects of these sound stimuli in increasing the state of relaxation, attention, and 

engagement in activities (Kanehira et al., 2018; Leslie et al., 2019; Ramdinwawii & Mittal, 2017; Stappen et al., 2019; 

Rushambwa & Mythili, 2017; Plut & Pasquier, 2019; Soysal et al., 2020; Rushambwa & Mythili, 2017). 

Regarding the use of Artificial Intelligence (AI) tools, only nine works related to this topic made use of these tools 

(Yamada & Ono, 2019; Huang & Benjamin Knapp, 2017; Wang et al., 2016; Liu et al., 2020; Dutta et al., 2020; Bhargava et 

al., 2020; Q. Li et al., 2020; Ibrahim et al., 2019; Liu et al., 2020). Such computational approaches were mainly applied in 

works that sought to analyze cerebral and hemodynamic biosignals. Both supervised and unsupervised learning methods were 

used. Among these methods, it is worth highlight that Support Vector Machines (SVM) were applied in the majority of the 

studies. The ones which did not use AI tools, commonly used cognitive tests or performed purely qualitative analyzes through 
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observations and interviews with participants. 

 

Table 2: Studies related to games, virtual reality, affective robotics and therapies. 

Group Description Amount of Studies Studies 

G1 

Games, Virtual Reality, 

Affective Robotics and 

Therapies 

33 

Krüger et al. (2020) 

Dechenaud et al. (2019) 

T. Xu et al. (2019) 

Sanders et al. (2020) 

Fonteles et al. (2018) 

Lubetzky et al. (2019) 

Kikuchi et al. (2018) 

Ortegon-Sarmiento et al. (2020) 

Lui et al. (2017) 

Shukla et al. (2019) 

Cameirão et al. (2017) 

Bermúdez i Badia et al. (2019) 

Tiwari & Tiwari (2017) 

Colombo et al. (2019) 

English & Howard (2017b) 

English & Howard (2017a) 

Kirana et al. (2018) 

HAN et al. (2018) 

Crespo et al. (2016) 

Aranha et al. (2017) 

Arroyo-Palacios & Slater (2016) 

Song et al. (2019) 

Murad et al. (2017) 

Mulla et al. (2017) 

Delmastro et al. (2018) 

Cavallo et al. (2020) 

Wolfe et al. (2020) 

Teo & Chia (2018) 

Lyu & Yuan (2020) 

Ranjkar et al. (2019) 

Sra et al. (2017) 

Scott (2017) 

Zhu et al. (2019) 

Source: Authors. 
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Table 3: Studies related to physiological and behavioral responses induced by acoustic signals. 

Group Description Amount of Studies Studies 

G2 

Physiological and 

behavioral responses 

induced by acoustic signals 

27 

Yamada & Ono (2019) 

Dragulin et al. (2019) 

Kanehira et al. (2018) 

Stappen et al. (2019) 

Mitrpanont et al. (2017) 

Leslie et al. (2019) 

Liao et al. (2017) 

Lin et al. (2020) 

Ibrahim et al. (2019) 

Jagiello et al. (2019) 

X. Wang et al. (2020)  

Liu et al. (2020) 

Geethanjali et al. (2019) 

Santhosh et al. (2020) 

O’Toole et al. (2019)  

Chavan et al. (2016)  

Wang et al. (2016) 

Qin et al. (2020) 

Dutta et al. (2020) 

Bhargava et al. (2020)  

Q. Li et al. (2020) 

Plut & Pasquier (2019) 

Soysal et al. (2020) 

Ramdinwawii & Mittal (2017) 

Rushambwa & Mythili (2017) 

Chennafi et al. (2018) 

Huang & Benjamin Knapp (2017) 

Source: Authors. 

 

3.3 Emotion recognition associated with acoustic stimuli  

Among the 144 studies selected through this systematic review, 35 are related to emotion recognition (listed in Table 

4). Considering the years of publication, we noted that most of the works were published in the years 2019 and 2020, both 

presenting nine studies. 

Considering the types of approach for the recognition of emotions, we observed that a significant number of studies 

uses the analysis of physiological signals to achieve this objective. Thus, studies using biosignals such as EEG (Bankar et al., 

2018; Shen et al., 2020; Dutta et al., 2020; Marimpis et al., 2020; Bo et al., 2017; Rahman et al., 2020), ECG (Hsu et al., 2020) 

and skin’s electrodermal activity (Rahman et al., 2019) were returned. Other studies combined more than one parameter, in 

addition to biosignals, to assess emotion. In this context, we highlight studies using more than one biosignal for emotional 

assessment. In Ramírez et al. (2020)’s approach, they combined functional magnetic resonance’s and EEG’s parameters. Daly 

et al. (2019), on the other hand, combined ECG signal, and the skin’s electrodermal activity to the emotion recgonition task. In 

works regarding the evaluation of biosignals, we also observe that in the vast majority the authors collect their own data. 

Although they described the processes in the papers, the lack of availability of open datasets makes it difficult to reproduce and 

improve the models which were tested. 

Sereval works also used other parameters instead of biosignals for emotion recognition. Among them, we can 

highlight the groups that assess emotion through audio analysis (Greer et al., 2020; Lv et al., 2018; Mo & Niu, 2019; Lopes et 

al., 2019; Kumar et al., 2016; Panda et al., 2020; Chapaneri & Jayaswal, 2018). Textual aspects also have great potential in the 

field of emotion recognition in music. Thus, some works explore the use of song lyrics (Malheiro et al., 2018; Matsumoto & 

Sasayama, 2018), as well as their association with audiovisual content to improve the performance of models in this field of 

study (Nemati & Naghsh-Nilchi, 2017). As for data, most studies that involve only audio analysis, use data from public 
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databases such as Soundtracks, MTV database, MediaEval. In Panda et al. (2020)’s study, the authors made available to the 

scientific community the database which they elaborated. For those studies that use only video content, and audiovisual 

content, the authors assemble their own dataset. Therefore, it affects the study’s reproducibility. 

Finally, regarding the techniques involving AI, only nine works did not use this approach (Bankar et al., 2018; Greer 

et al., 2020; Daly et al., 2019; Kumar et al., 2016; Bortz et al., 2019). Among those, 15 papers tackled classification problems. 

On the other hand, 8 papers worked towards the prediction of continuous emotion using regression algorithms. Malheiro et al. 

(2018), in turn, involved both types of problem. Another aspect observed was that the SVM was the algorithm that was most 

present in the returned studies (Wardana et al., 2018; Hsu et al., 2020; Lv et al., 2018; Dutta et al., 2020; Mo & Niu, 2019; 

Bakhtiyari et al., 2019; Lopes et al., 2019; Bo et al., 2017; Nemati & Naghsh-Nilchi, 2017; Rahman et al., 2020; Nawa et al., 

2018; Dantcheva et al., 2017), followed by Artificial Neural Networks (Zhang et al., 2019; Lv et al., 2018; Dutta et al., 2020; 

Goyal et al., 2016; Marimpis et al., 2020; Bakhtiyari et al., 2019; Rahman et al., 2019; Rahman et al., 2020; Chapaneri & 

Jayaswal, 2018). 

 

3.4 Non-invasive assistive solutions based on human-machine musical interfaces  

Musical and sound stimuli are increasingly being explored in interfaces of the most diverse orders. In this review, 12 

of the 144 articles returned by the research deal with solutions based on human-machine musical interfaces (Table 5). Seven of 

them are in the testing phase and five in the implementation and clinical validation phase of the solution. All these studies used 

their own databases collected locally in the field or in the laboratory. Most of the works were developed in European and Asian 

countries, with special emphasis on Japan. This country showed a great advance in the development, and application of human-

computer interfaces compared to other countries in the world. 
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Table 4: Studies related to emotion recognition associated with acoustic stimuli. 

Group Description Amount of Studies Studies 

G3 

Emotion recognition 

associated with acoustic 

stimuli 

35 

Bankar et al. (2018) 

Zhang et al. (2019) 

Malheiro et al. (2018) 

Navarathna et al. (2019) 

Shen et al. (2020) 

Dantcheva et al. (2017) 

Wardana et al. (2018) 

Greer et al. (2020) 

Hsu et al. (2020) 

Lv et al. (2018) 

Matsumoto & Sasayama (2018) 

Daly et al. (2019) 

Dutta et al. (2020) 

S. Ehrlich et al. (2017) 

Goyal et al. (2016) 

Marimpis et al. (2020) 

Mo & Niu (2019) 

Saha et al. (2016) 

Bakhtiyari et al. (2019) 

Lopes et al. (2019) 

Bo et al. (2017) 

Nemati &Naghsh-Nilchi (2017) 

Kumar et al. (2016) 

Panda et al. (2020) 

Rahman et al. (2019) 

Rahman et al. (2020) 

Bo et al. (2017) 

Chapaneri & Jayaswal (2018) 

Bortz et al. (2019) 

X. Xu et al. (2019) 

Tarvainen et al. (2017) 

Chin et al. (2018) 

Ramírez et al. (2020) 

Nawa et al. (2018) 

Marimpis et al. (2020) 

Source: Authors. 

 

Table 5: Studies related to non-invasive assistive solutions based on human-machine musical interfaces. 

Group Description Amount of Studies Studies 

G4 

Non-invasive assistive 

solutions based on human-

machine musical interfaces 

12 

LingHu & Shu (2018) 

Daly et al. (2016) 

S. K. Ehrlich et al. (2019) 

Yi-Hsiang et al. (2018) 

Kobayashi & Fujishiro (2016) 

Desai et al. (2018) 

Boumpa et al. (2018) 

Daly et al. (2020) 

Shan et al. (2018) 

Syed et al. (2018) 

Mideska et al. (2016) 

Hasan et al. (2020) 

Source: Authors. 

 

Regarding the use of AI, six works did not use or did not make explicit the use of these techniques. Among the studies 

involving AI, we noticed a preference for supervised learning methods, especially the SVMs. In addition, there is also a 

predominance in the use of technologies using ARM-type microcontrollers, and sensors with remote communication. 

Most of the works of this group propose the development of interfaces for monitoring and modulating mental and 
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affective states through music (LingHu & Shu, 2018; Mideska et al., 2016; Shan et al., 2018; Daly et al., 2016; S. K. Ehrlich et 

al., 2019; Kobayashi & Fujishiro, 2016; Daly et al., 2020). In Desai et al. (2018)’s work they present an approach in the 

opposite direction. 

In their study, they propose a musical brain machine interface (BCMI) which modulates musical parameters - such as 

harmony, rhythm, and melody - from the biofeedback captured by the user’s EEG signal. The main goal is to adapt the music 

according to their emotional state. Thus, instead of using music to modulate the emotional state, the authors propose to alter the 

music according to the user’s brain activity. 

Some other studies searches for technologies to improve the development of activities of daily living for people with 

disabilities. An interface based on sound signals was proposed by Boumpa et al. (2018) to help people with dementia in the 

development of their daily activities (Boumpa et al., 2018). Hasan et al. (2020)’s study uses the emotional response to musical 

stimuli to identify movement intention (Hasan et al., 2020). Such a solution can be incorporated in assistive BCIs. Other works 

seek to apply these musical interfaces to improve communication and interaction between people (Syed et al., 2018; Yi-Hsiang 

et al., 2018). Syed et al. (2018)’s study proposes a tool to help people with hearing impairments and hearing people 

communicate. In Yi-Hsiang et al. (2018)’s work, in turn, musical synchronization is studied to encourage interaction between 

individuals with Autism Spectrum Disorder and robots. 

In general, there is a growth in the interest of researchers in human-machine interfaces, including those that make use 

of sound and musical aspects to achieve their goals. Despite this, there is a concentration of studies of this nature in regions 

with greater economic development, as they generally involve the use of high-tech and high-cost devices for capturing and 

processing signals. It was also observed that the use of AI in this context is still shy, possibly due to the difficulty associated 

with the integration of this technology in hardware with remote communication systems and real-time responses. 

 

3.5 Musical composition, recommendation and customization 

This group has 18 of the 144 studies returned by the search string. They deal with approaches to composition, 

personalization or music recommendation. These works are presented in Table 6. The vast majority of these works were 

elaborated by groups located in Eastern countries, mainly in China. Works in this area were most published in 2016 and 2020, 

with no work made available in 2019. 

 

Table 6: Studies related to musical composition, recommendation and customization. 

Group Description Amount of Studies Studies 

G5 

Musical composition, 

recommendation and 

customization 

18 

Savery et al. (2019) 

Deshmukh et al. (2017) 

Subramaniam et al. (2018) 

Y.-C. Wu & Chen (2016) 

Chang et al. (2017) 

Vinayagasundaram et al. (2016) 

Su et al. (2020) 

Chen et al. (2020) 

González & McMullen (2020) 

Chen et al. (2020) 

Tiple et al. (2016) 

Seanglidet et al. (2016) 

Hossan & Chowdhury (2016) 

Gu et al. (2018) 

Sawata et al. (2019) 

Amali et al. (2018) 

Gilda et al. (2017) 

Fernandes et al. (2021) 

Source: Authors. 
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Considering the origin of the data used in the studies, the majority of the groups used their own database. Three of 

them used the Facial Expression Recognition 2013 (FER-2013) Dataset, to identify emotions though facial expression. 

Furthermore, two of them used the DEAPDataset, which is a dataset for emotion analysis using EEG, physiological and video 

signals. 

From these works, we observed that the composition, personalization and musical recommendation are generally 

carried out using multimodal signals. Most works combine physiological signals such as galvanic skin response, heart and 

respiratory rates, and facial expressions. Some of these works also use electroencephalographic signals or functional images to 

analyze brain activity. As they are multimodal signals and often difficult to interpret, most studies use AI methods to analyze 

the data. In general, deep learning techniques are more frequently used, especially LSTMs and CNNs configurations. Some 

works also use shallow learning approaches, such as SVM and K-means. Works that do not use AI techniques commonly use 

computational methods of signal filtering and threshold identification to process the data. 

Some of the works propose systems and approaches still in the state of computational testing phase. Others are in the 

validation and implementation phase with real users. From these studies, there are two works that present proposals for 

systems for automatic emotion detection (González & McMullen, 2020; Vinayagasundaram et al., 2016). Three other studies 

use techniques for generating affective or personalized music (Savery et al., 2019; Y.-C. Wu & Chen, 2016; Chen et al., 2020). 

These studies of musical generation combine several aspects related to music composition and affectivity, and musical taste 

factors. Generally, these studies focus on the therapeutic context, to favor user engagement. 

The vast majority of works in this group deal with approaches for recommending music or audiovisual content in a 

personalized way (Deshmukh et al., 2017; Subramaniam et al., 2018; Chang et al., 2017; Chen et al., 2020; Tiple et al., 2016; 

Seanglidet et al., 2016; Gu et al., 2018; Amali et al., 2018; Gilda et al., 2017; Su et al., 2020). In these works, several aspects 

are used to identify users’ opinions. Most of these studies analyze facial expressions (Chang et al., 2017), EEG (Chang et al., 

2017) and text recognition (Subramaniam et al., 2018). 

Furthermore, Hossan & Chowdhury (2016) propose an approach to emotional state control based on affective music 

(Hossan & Chowdhury, 2016). Sawata et al. (2019), on the other hand, presents a strategy for identifying favorite music 

(Sawata et al., 2019). Fernandes et al. (2021)’s study proposes the conversion of EEG signals into music as a way to promote 

musical personalization (Fernandes et al., 2021). 

 

3.6 Other approaches 

The approach used in the works presented here, in most cases, determines the conduct of the research. In this section, 

however, 19 articles could not be grouped since they do not have a common field among them (Table 7). It can be said that 

these studies are somewhat unique, from their own perspective or application. Among them, 12 works were published in the 

years 2019 and 2020. This number represents 63% of the total articles found since 2016. This increase may also indicate a 

growing trend towards new approaches involving emotion recognition (Zhang et al., 2018; Mehta et al., 2019; Al-Qazzaz et al., 

2020; Aydın, 2020; Rizos & Schuller, 2019; Thammasan et al., 2017), and the use of music combined with affective 

computing. 

Geographically, 58% of the works were published in the Asian continent. Most them were placed in China and Japan, 

with two publications each. As for the databases used, almost 42% were created exclusively for the study itself. It may indicate 

a scarcity of material for approaches that generally require very detailed and sufficiently diverse databases. In this context, 

studies that focus on the creation of databases under stimuli (Suhaimi et al., 2018), and even an alternative perspective are 

crucial. Regarding the study phases, eight of the 19 articles are classified as experimental phase. However there is also a well-

balanced distribution, and often mixed with modeling, testing and concept design. 
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An important observation is that in seven studies the authors did not use any Artificial Intelligence (AI) techniques. 

Apparently, this fact may have some coherence because it deals with other approaches and alternatives. However, very 

similarly to the works already presented in this section 4, these publications also involve brain signal capture Barnstaple et al. 

(2020), database creation (Suhaimi et al., 2018), music generation, and physiological (Lui e Grunberg, 2019; Nalepa et al., 

2019) or affective response to acoustic stimuli. In the studies which present AI methods, the algorithm widely used is the 

SVM. The SVM is present in six publication. Nonetheless, along with classical approaches, other algorithms were investigated 

-in most cases- such as LSTM, KNN, and Deep Neural Network. 

It is interesting to bring attention that some of these studies - considering the emotion prediction perspective - 

investigate the similarities between the images’ emotional content and music (Xing et al., 2019; Verma et al., 2019; Parra et 

al., 2019). In these articles, the identification of visual and sound attributes, and their relationship with emotional stimulation 

help to understand two striking points. The first one is the emotion recognition itself, whereas the second one is the 

characteristics present in these media. These characteristics can be used in both acoustic (Saha et al., 2016) and visual 

(Suhaimi et al., 2018) stimulation to obtain an affective response. 

In contrast, other works use well-known attributes to create affective sentences from images (Konno et al., 2018) and 

generate synthetic music from an original database (Herremans e Chew, 2019). Although the articles present promising 

approaches, it is important to draw attention to some aspects. For example, the need of higher datasets, better description of the 

evaluation metrics, and meticulous detailed methodology. A significant improvement on these aspects may possibly bring 

more precise answers and substantially enhance the proposed models. 

 

Table 7: Studies related to other approaches. 

Group Description Amount of Studies Studies 

G6 Other approaches 19 

Konno et al. (2018) 

Zhang et al. (2018) 

Mehta et al. (2019) 

X. Li et al. (2020) 

Al-Qazzaz et al. (2020) 

Barnstaple et al. (2020) 

Aydın (2020) 

Nalepa et al. (2019) 

Xing et al. (2019) 

Verma et al. (2019) 

Navarro-Tuch et al. (2018) 

Lui & Grunberg (2017) 

Saha et al. (2016) 

Suhaimi et al. (2018) 

Rizos & Schuller (2019) 

Herremans & Chew (2019) 

Thammasan et al. (2017) 

Kyong et al. (2019) 

Parra et al. (2019) 

Source: Authors. 

 

4. Conclusion 

This review aimed to identify AI methods to perform automatic emotion recognition applied to human-machine 

musical interfaces. We were interested in mapping studies related to emotions perceived through facial expressions, speech, 

EEG or physiological signals. Innovative therapeutic approaches were also of interest, especially those that use musical stimuli 

and computational methods. 

The review protocol was systematically defined and followed throughout the process. The search string resulted in 
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290 publications found in the five main scientific databases on the fields of intelligent computing, engineering, and medicine. 

From these publications, 144 remained in this review after the qualitative and content analysis. 

These studies were grouped into six groups based on their content. Most of them had a high interdisciplinary content. 

Associations of therapy issues with human-computer interfaces, music, and robotics were common. The studies in this review 

showed that the areas of affective computing and music therapy are being more combined in the state-of-the-art. While 

interdisciplinarity proved to be a feature of this field of study, it was also a challenge during the grouping process. Thus, 

making it often hard to categorize a study in only one of the groups. 

The review also demonstrated that most databases used in the included studies are not public. This makes it difficult 

for other groups to access the data collected and used in many of the works. The lack of dissemination of the databases 

compromises the reproducibility of the studies. Moreover, it serves as an obstacle to the accessibility of the proposed solutions. 

Therefore, we encourage the dissemination of more databases in the area. This dissemination can not only provide greater 

reach of their authors works but can also benefit researchers from places with unsatisfying structure to carry out data 

acquisition. 

This study also found that the use of AI in the context of affective computing and music therapy is growing with the 

years. The papers that did not use AI techniques commonly performed interviews, forms, and cognitive-behavioral tests to 

extract and assess information. The use of Support Vector Machines and decision trees architectures is still vast in the 

literature. However, in many cases, deep learning methods are also incorporated, mainly Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs). In the case of CNNs, the authors have been investing in networks with more 

and more layers, as data has become increasingly complex and multimodal. As for RNNs, the most explored in the studies has 

been the Long ShortTerm Memory (LSTM), which may provide information in the temporal dimension. Temporality is an 

essential factor in speech processing and musical composition. Overall, we find that studies using AI and other computational 

techniques often do not provide a well-described methodology and/or parameters. This compromises the quality and 

reproducibility of these studies. 

Many of the included studies that used AI applied it to music processing and emotion recognition. In music 

processing, AI was used to recognize patterns and use them to recommend personalized content or even compose music. 

Regarding emotion recognition, most works use deep networks and multimodality data. Most of these studies succeed in 

recognizing primary emotions (i.e. anger, fear, surprise, disgust, contempt, happiness, and sadness) but are not efficient in 

identifying secondary emotions such as love, frustration, shame, and relief. Another challenge for emotion recognition is how 

to differentiate felt from expressed emotions. Some studies seek to overcome this challenge by assessing multimodality data 

(e.g. combine EEG, facial expression and physiological signals). 

The importance of multimodality data was recurrent in the works. This also points to the relevance of these studies 

being carried out by multidisciplinary teams. The combination of professionals from different areas is beneficial for the 

development of robust and useful solutions. 

Regarding the development of Human-Machine Musical Interfaces (HMMIs), the importance of using music in an 

appropriate, thought-out, programmed, and personalized way to achieve non-musical goals was perceived. Over the years, 

there has been an increase in the demand for innovations, including therapeutic ones. In this review, many works already 

propose HMMIs to provide personalized feedback based on the users’ biomedical data. Unfortunately, there are still relatively 

few studies in this field, which are mostly concentrated in more developed countries. 

From this systematic literature review, we hope to provide theoretical foundations to encourage the development of 

research in affective computing combined to music therapy. This is a very promising area where there is still a lot to be 

explored. Artificial Intelligence tools applied to emotion recognition can optimize music therapy processes and, thus, enhance 
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its effects. Finally, we believe that the popularization of therapeutic approaches such as music therapy has great potential to 

improve the quality of life of people with cognitive, motor and behavioral disorders. 
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