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Abstract  

We evaluated the insect succession in small rodent carcasses on the soil extracts (surface vs. buried) in two areas 

(riparian vs. agricultural) and two seasonal periods (spring vs. summer). Daily, the rodent carcasses were weighed and 

the insects present were collected in them for counting and family level identification. We also measured the air and 

soil temperature daily, in addition to the physical and chemical characteristics of the soil. The total of 11,059 

individuals from 28 taxa was collected. The most abundant taxa were Calliphoridae (70%), Formicidae (20%), 

Muscidae (2%), and Sarcophagidae (2%). Insect richness was higher in spring in riparian vegetation areas; however, 

decomposition and insect abundance were greater in spring in agricultural areas by the high temperature measured. 

Vespidae, Sarcophagidae, Muscidae, and Calliphoridae decreased over time with abundance peaks respectively at 3, 7, 

7, and 8 days in riparian vegetation areas. Calliphoridae decreased abundance over time with a peak at five days, but 

Armadillidiidae increased with peak at 6-9 days in agricultural areas. Decay and insect abundance was high in 

agricultural areas, mainly on the soil surface. Insect richness was high in riparian vegetation areas, especially on the 

soil surface. Only the superficial layers of soil presented taxon indicators and all decreased over time with abundance 

peaks of Calliphoridae, Sarcophagidae, and Muscidae at 5-8, 7, and 7 days, respectively. This abundance peak of 

insect families help to understand the degradative succession of the insect community in small rodents in subtropical 

systems of the neotropical region. 

Keywords: Forensic entomology; Carcass decomposition; Insect families; Mus musculus. 

 

Resumo  

Avaliamos a sucessão de insetos em carcaças de pequenos roedores no solo (superfície vs. enterrado) em duas áreas 

(riparia vs. agrícola) e dois períodos (primavera vs. verão). Diariamente, as carcaças foram pesadas e os insetos 

coletados para contagem e identificação em nível familiar. Também medimos diariamente a temperatura do ar e solo, 

e características físic0-químicas do solo. Foram coletados 11.059 indivíduos de 28 táxons. Os táxons mais abundantes 

foram Calliphoridae (70%), Formicidae (20%), Muscidae (2%) e Sarcophagidae (2%). A riqueza de insetos foi maior 

na primavera das áreas de vegetação riparia, no entanto, a decomposição e a abundância de insetos foi maior na 

primavera em áreas agrícolas. Vespidae, Sarcophagidae, Muscidae e Calliphoridae diminuiu com o tempo, com picos 

de abundância respectivamente em 3, 7, 7 e 8 dias nas áreas de vegetação riparia. Caliphoridae diminuiu a abundância 

ao longo do tempo com pico em 5 dias, mas Armadillidiidae aumentou, com pico em 6-9 dias em áreas agrícolas. A 

decomposição e abundância de insetos foram maiores nas áreas agrícolas, principalmente na superfície do solo. A 

riqueza de insetos foi maior nas áreas de vegetação riparia, especialmente na superfície do solo. Apenas as camadas 

superficiais do solo apresentaram indicadores de táxons e todas diminuíram ao longo do tempo com picos de 

abundância de Calliphoridae, Sarcophagidae e Muscidae respectivamente em 5-8, 7 e 7 dias. Pico de abundância de 

famílias de insetos podem servir como base de dados para investigação e ajudar a determinar os intervalos Post 

Mortem em sistemas subtropicais do Neotropical.  

Palavras-chave: Entomologia forense; Decomposição de carcaça; Famílias de insetos; Mus musculus. 

 

Resumen  

Evaluamos la sucesión de insectos en pequeños cadáveres de roedores en el suelo (superficie vs. enterrados) en dos 

áreas (ribereña vs. agrícola) y dos períodos (primavera vs. verano). Diariamente, se pesaron los cadáveres y se 
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recolectaron los insectos para el recuento e identificación a nivel del hogar. También medimos diariamente la 

temperatura del aire y del suelo, y las características físico-químicas del suelo. Se recolectaron 11.059 individuos de 

28 taxones. Los taxones más abundantes fueron Calliphoridae (70%), Formicidae (20%), Muscidae (2%) y 

Sarcophagidae (2%). La riqueza de insectos fue mayor en primavera en áreas de vegetación ribereña, sin embargo, la 

descomposición y abundancia de insectos fue mayor en primavera en áreas agrícolas. Vespidae, Sarcophagidae, 

Muscidae y Calliphoridae disminuyeron con el tiempo, con picos de abundancia respectivamente a los 3, 7, 7 y 8 días 

en áreas de vegetación ribereña. Caliphoridae disminuyó en abundancia con el tiempo con un pico a los 5 días, pero 

Armadillidiidae aumentó, con un pico a los 6-9 días en áreas agrícolas. La descomposición y la abundancia de 

insectos fueron mayores en las áreas agrícolas, especialmente en la superficie del suelo. La riqueza de insectos fue 

mayor en las áreas de vegetación ribereña, especialmente en la superficie del suelo. Solo las capas superiores del suelo 

mostraron indicadores de taxones y todos disminuyeron con el tiempo con picos de abundancia de Calliphoridae, 

Sarcophagidae y Muscidae respectivamente en 5-8, 7 y 7 días. Las abundancias máximas de familias de insectos 

pueden servir como base de datos para la investigación y ayudar a determinar los intervalos post mortem en sistemas 

neotropicales subtropicales. 

Palabras clave: Entomología forense; Descomposición de la canal; Familias de insectos; Mus musculus. 

 

1. Introduction 

Decomposition is a continuous degradation process that releases CO2 and energy (Bornemissza, 1957; Higley & 

Huntington, 2009; Medeiros et al., 2015; Rezende et al., 2021) that starts at the death of the organism and end when the carcass 

is reduced to the skeleton (Probst et al., 2020; von Hoermann et al., 2021; Wolff et al., 2001). In addition, another important 

process is pedogenesis, which depends on animals that mix organic matter with mineral components in the soil (Moskowitz et 

al., 2015; Oliveira-Costa, 2013). Both processes, decomposition and pedogenesis, are essential for the ecosystem maintenance 

(Bornemissza, 1957; Moskowitz et al., 2015) as they allow nutrients and minerals to be reused in the food chain (Alvim et al., 

2015; Rezende et al., 2019; Rezende et al., 2021). Also, animal carcass is important for the reproduction of some insects, as 

Nicrophorus concolor (Coleoptera: Silphidae) (Ito, 2021). Therefore, insect colonization in carcasses decomposing with 

abiotic factors influence (e.g. temperature and moisture) and carcass conditions (e.g., completeness, toxicology, and pathology) 

may determine the decomposition rates in an ecosystem (Andrade-Herrera et al., 2020; Jales et al., 2020; Moretti et al., 2008; 

Von Hoermann et al., 2021). 

Insects constitute the most abundant and diverse group, and they are found in almost all terrestrial habitats and aquatic 

environment, except in salt water (Haskell et al., 2008). Insects may travel to distances of three to five kilometers for locating a 

suitable habitat for laying their eggs (Higley & Huntington, 2009). In this sense, insects are usually the first to find a 

decomposing body. Therefore, through the insect community structure, it is possible to determine the Post Mortem Interval 

(PMI) and the place of death, as the succession of species on carcasses is also considered a serial replacement class (Haskell et 

al., 2008; Probst et al., 2020). The degradative succession process may occur on a relatively short time scale; however, 

succession patterns may vary widely and according to the distinctiveness of the fauna in each local region (Oliveira-Costa, 

2013). In this way, the study of the degradation succession process must take into account the local patterns of visiting 

cadaveric insect fauna (Na & Pt, 2013; Wang et al., 2021). Thereby, this studies are important to understand the degrading 

succession process and provide subsidies to nutrient cycling from these carcasses (Haskell et al., 2008). 

Small rodents can be abundant in subtropical systems and have important ecological functions, such as invertebrate 

control and seed consumption (Rabinowitz & Nottingham, 1989; Terborgh et al., 1993). Small rodents may be a frequent 

source to dead organic matter of animal origin in systems where they are abundant (Maestri et al., 2014; Terborgh et al., 1993), 

due to the fast life cycle compared to other mammals (Feng & Himsworth, 2014). In the subtropical region of the Neotropics, 

native genre such as Akodon, Bibimys, and Brucepattersonius are abundant (Maestri et al., 2014). On the other hand, non-

native rodents are common and abundant as the genus Mus. The genus Mus was introduced in Brazil in the European 

colonization, and was the main representative the species Mus musculus that can inhabit both urban and rural areas (Feng & 
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Himsworth, 2014). However, despite many studies in the tropical region (Cruz & Vasconcelos, 2006; Jales et al., 2020; 

Oliveira-Costa, 2013; Pujol-Luz et al., 2006), few studies were carried out in the Neotropical subtropical region on the survey 

of cadaveric fauna (Trivia & Carvalho, 2018). 

Studies shows a high insect community variation, mainly by habitat differences (Parry et al., 2016), food availability 

(T. D. C. Moretti et al., 2008), insect community structure (Tembe & Mukaratirwa, 2021), and temporal changes (Richards et 

al., 2009). Studies in other regions have shown that Diptera and Coleoptera account for 60% of the fauna associated with 

decaying carcasses, and Chrysomya sp. are an important gender of scavenger fauna (Haskell et al., 2008; Oliveira-Costa, 2013; 

Tembe & Mukaratirwa, 2021). According to Moretti et al. (2008), a higher diversity of arthropods has been found in cadaveric 

fauna, and Chrysomya megacephala (Fabricius, 1974) may be an important specie of scavenger fauna in southern Brazil 

(Carvalho & Mello-Patiu, 2008; Trivia & Carvalho, 2018). Also Moretti et al. (2008) show the presence of other necrophagous 

families that are of forensic interest, such as Sarcophagidae and Drosophilidae. In this way, our objectives were the following: 

i) compare the richness and abundance of insects throughout the rodent carcasses decomposition, as well as the decomposition 

process itself by repeated-measures ANOVA, using time in days as a random factor; and ii) evaluate which insects were 

temporal indicators, positively or negatively, along the degradative colonization process through Threshold Indicator Taxa 

Analysis between areas (riparian vs. agricultural), periods (spring vs. summer), and soil depths (depth vs. surface). 

 

2. Methodology 

2.1 Study area 

The study was carried out in a riparian vegetation area (26º54’51”S and 52º41’03”W) and an adjacent agricultural 

area (26º54’46”S and 52º41’08”W) in spring (October 2020) and summer (January 2021) at both locations in the West 

(Coronel Freitas City) of Santa Catarina State, Brazil. The agricultural area shows culture rotation throughout the year by 

pasture, oat, and corn in the Atlantic Forest biome. The climate is of Cfa type with an average annual temperature range of 17 

to 20°C and precipitation of 1900 to 2200 mm. The predominant soil is Red Latosol, with a soft undulated relief, with a very 

clayey texture, which may vary with LitholicNeosol and Haplic Cambisol. 

 

2.2 Environmental characteristics 

The chemical and physical properties of the soil were collected at the same points where litter bags were incubated. 

The samples were collected at depths from 0.0 to 10 cm for the chemical and physical characteristics of the soil. Air and soil 

temperatures were measured daily using a thermometer and the soil moisture by drying at 80°C to constant weight ([initial 

weight – final weight]/initial weight). Rainfall was measured by a portable rain gauge during the experiment period. The 

chemical characteristics of the soil were analyzed by the Soil Analysis Laboratory of the Agricultural Research and Rural 

Extension Company of Santa Catarina - EPAGRI in Chapecó/SC. Clay was determined by densiometry, pH water and SMP by 

potentiometry, P by Mehlich-1/colorometry, K by Mehlich-1/flame photometer, MO by spectroscopy, and Al, Ca, and Mg by 

KCl/atomic absorption spectrophotometry. The characterization of the soils was performed according to the methodology 

proposed by Tedesco et al. (1995). 

 

2.3 Sampling unit 

The insect community was collected from rodent carcasses of the Mus musculus species (Schwartz; Schwartz, 1943), 

weighing between 27.33g and 35.70g (mean of 31.11g). All rodents were donated by the Unochapecó Bioterism Center (Ethics 

Committee - CEUA no. 010/20) and submitted to euthanasia by cervical dislocation. At each area, rodent carcasses were then 

placed in soil covered by cages (37 cm x 27 cm; 3 cm mesh) and some weight was providing above each cage to keep cages 
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constant and protect carcasses from the attack of large animals 10m away from each other. Insects attracted to rodent carcasses 

were collected daily from 13:00 to 14:00 hour. The collected insects were preserved in 70% ethanol after washing them in tap 

water, and then transferred in labeled tubes to the laboratory. 

 

2.4 Morphological identification 

The collected insects were examined under stereomicroscope (Zeiss Stemi 305 binocular) and identified following the 

morphological identification key of Byrd and Castner (2001) and Carvalho and Mello-Patiu (2008). A part of the collected 

insects was preserved and deposited in the ecological entomology laboratory of Community University of the Chapecó Region 

- Unochapecó. 

 

2.5 Experiments 

In the experiment I, we tested the degradative succession between periods (spring vs. summer) and areas (riparian vs. 

agricultural). The rodent carcasses were used at six points on the surface of riparian vegetation areas and in six points on the 

surface of agricultural areas over two periods (spring vs. summer). The sampling effort totaled 24 rodent carcasses (6 points x 

2 areas x 2 periods = 24 carcasses – half male and half female). 

In the experiment II, we tested the degradative succession between soil layers – surface vs. buried only in riparian 

vegetation areas. Rodent carcasses were used at three points, with three carcasses placed on the soil surface, three carcasses 

buried in the soil of riparian vegetation areas, three carcasses placed on the soil surface, and three carcasses buried in the soil 

of agricultural areas in two periods (spring vs. summer). The sampling effort totaled 24 rodent carcasses (3 points x 2 areas x 2 

periods x 2 depths = 24 carcasses – half male and half female). 

 

2.6 Data analysis 

The normality of the data (function “ks.test” from the “dgof” package for R) was assessed with the Kolmogorov-

Smirnov test while the homogeneity of variances was assessed with Levene’s test and the data were transformed when 

necessary (log10(x+1)). In the experiment I, seven Repeated-Measure ANOVA models were created (RM-ANOVA; “aov” + 

Error (repeated measure factor = days) function from “stats” package for R) to test i) the remaining mass of rodent carcasses by 

([initial weight – final weight] * 100 / initial weight), ii) insect richness, iii) insect abundance, temperature of (iv) air and v) 

soil), vi) rainfall and vii) soil moisture (response variables) between areas (riparian vs. agricultural), periods (spring vs. 

summer), and interaction between variables (explanatory variable) (Crawley, 2007). Other seven RM-ANOVA models from 

experiment II, with the same response variables to test areas (riparian vs. agricultural), soil depth (surface vs. buried), and 

interaction between variables (explanatory variable) also used days as a random repeat factor (Crawley, 2007). Contrast 

analysis (“coms” function from the “coms.R” package for R) was used to discriminate among explanatory variables (Crawley, 

2007). In this contrast analysis (orthogonal), the explanatory variables were increasingly ordered and tested pairwise with the 

closest values, sequentially adding values to the model month with no differences and testing with the following, in a stepwise 

simplification of the model (Crawley, 2007). 

Threshold Indicator Taxa Analysis (“titan” function from the “TITAN2” package for R) was used to track the 

relationship (positive or negative) and check in which period in days the insect community on rodent carcasses are associated 

across four individual models (riparian vs. agricultural and surface vs. buried) (Baker & King, 2013). In experiment I, the 

studied areas (riparian and agricultural) were tested over the days, using the seasonal periods as replicates. In experiment II, the 

studied soil depths (surface and buried) were tested over the days, using the seasonal periods as replicates. The Threshold 

Indicator Taxa Analysis is based on Indicator Species Analysis (Dufrêne & Legendre, 1997) and the Change Point Analysis 

http://dx.doi.org/10.33448/rsd-v11i1.24558


Research, Society and Development, v. 11, n. 1, e7511124558, 2022 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v11i1.24558 
 

 

5 

(King & Richardson, 2003). Based on the frequency of occurrence and relative abundance of the insect community in rodent 

carcasses, changes were detected in the distribution of species in environmental gradients by Threshold Indicator Taxa 

Analysis (King et al., 2011). In this way, Threshold Indicator Taxa Analysis highlights the change point based on alterations in 

mean and variance of response variable, with z - (negative responders, or decliners) and z + (positive responders, or increasers) 

of the species being associated with the lowest and highest values of the environmental gradient analyzed, respectively (Baker 

& King, 2010). These changes in the distribution of species from Threshold Indicator Taxa Analysis were detected in space or 

over time, and associate individual species with different environmental and temporal scores (King et al., 2011). In the 

Threshold Indicator Taxa Analysis, only species with a frequency of at least 3 were considered. Also, for the Threshold 

Indicator Taxa Analysis, the significance was set at p (IndVal) ≤ 0.05, and purity and reliability set at ≥ 0.70 were considered 

(Baker & King, 2010). 

 

3. Results 

3.1 Environmental characteristics 

In experiment I, the air temperature was significantly high in riparian vegetation areas (Repeated Measure ANOVA; 

F(1,204) = 8.77; p = 0.003), while the temperature of soil and rainfall were significantly high in the agricultural area (RM 

ANOVA; F(1,204) = 50.21; p < 0.001). Both temperatures (air and soil) were significantly high in spring (RM ANOVA; F(1,204) = 

62.39; p < 0.001; F(1,204) = 20.72; p < 0.001, respectively). On the other hand, rainfall was significantly high in summer (RM 

ANOVA; F(1,204) = 5.51E+29; p < 0.001). Soil moisture changed significantly only in the interaction between areas and 

seasonal periods (RM ANOVA; F(1,204) = 3.99; p = 0.047), with the high values in the summer of the agricultural areas 

compared to the spring of the agricultural areas. 

In experiment II, air temperature was significantly high in riparian vegetation areas (RM ANOVA; F(1,214) = 11.57; p = 

0.001), while the temperature of soil and rainfall were significantly high in the agricultural area (RM ANOVA; F(1,214) = 56.22; 

p < 0.001). The temperature of the soil was significantly high at surface compared to deep layers (RM ANOVA; F(1,214) = 7.52; 

p = 0.007). Soil moisture was significantly high in riparian vegetation areas compared to agricultural areas (RM ANOVA; 

F(1,214) = 5.10; p = 0.025). Also, soil moisture significantly changed in the interaction between areas and depth, with high 

values in deep layers of riparian vegetation areas compared to the superficial soil layers of the agricultural areas (RM ANOVA; 

F(1,214) = 25.95; p < 0.001). 

Comparing the soil surface characteristics on the two areas, we observe a high values of clay densiometry (41±3.0 vs. 

40±2.6 %; mean and standard deviation), pH (5.5±0.2 vs. 5.0±0.1), organic matter (4.1±0.6 vs. 3.4±0.1 %), Ca (14.6±2.2 vs. 

13.0±1.1 cmolc/dm3), and cation exchange capacity (22.4±2.1 vs. 20.8±1.5 cmolc/dm3) in riparian vegetation areas compared 

to agricultural areas, respectively. On the other hand, P (24.7±3.7 vs. 22.3±4.1 mg.dm3), K (345.6±22.6 vs. 292.4±33.6 

mg.dm3), Al (0.23±0.1 vs. 0.20±0.1 cmolc/dm3), and Mg (3.8±0.1 vs. 3.6±0.3 cmolc/dm3) show the high values in agricultural 

areas compared to riparian vegetation areas, respectively. We also found low values of clay densiometry (31.6±6.5 %; mean 

and standard deviation), organic matter (3.4±1.2 %), Ca (12.6±1.4 cmolc/dm3) and cation exchange capacity (20.6±2.3 

cmolc/dm3) in deep layers of riparian vegetation areas compared to soil surface. On the other hand, the high values of pH 

(5.3±0.4), P (29.7±8.5 mg.dm3), K (334.3±55.6 mg.dm3), Al (0.46±0.5 cmolc/dm3), and Mg (3.6±0.6 cmolc/dm3) were in deep 

layers of riparian vegetation areas compared to soil surface. 

 

3.2 Insect community 

The total of 11,059 individuals from 28 taxa were collected (Table 1). The most abundant taxa were Calliphoridae 

(70%), Formicidae (20%), Muscidae (2%), and Sarcophagidae (2%). In total, we found 6,605 individuals (36.6±108 ind. mean 
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and standard deviation) in the riparian vegetation area and 4,454 (24.7±62 ind.) individuals in the agricultural area. Moreover, 

evaluating the year seasons, we found 6,376 individuals (35.4±97 ind. mean and standard deviation) in summer and 4,683 

(26.1±79 ind.) individuals in spring. 

 

Table 1. Occurrence of insects collected on rodent carcasses in riparian vegetation areas and agricultural areas in two periods 

(spring - spr and summer - sum) of buried (bur) and soil surface (sur) rodent carcasses. 

 riparian agricultural riparian agricultural 

 bur sur bur sur spr sum spr sum 

Insecta 

 Dermaptera 

Forficulidae 2 0 0 2 0 2 0 2 

 Orthoptera 

 Gryllidae 1 0 0 0 1 0 0 0 

 Isopoda 

 Armadillidiidae 2 1 11 12 0 3 0 23 

 Hemiptera 

Ectrichodiinae 0 1 0 0 0 1 0 0 

 Hymenoptera 

Pompilidae 2 5 0 0 2 5 0 0 

 Vespidae 7 14 0 0 9 12 0 0 

Sphecidae 2 3 0 0 5 0 0 0 

 Formicidae 101 1672 4 1138 163 1610 702 440 

 Coleoptera 

Cerambycidae 13 11 0 0 24 0 0 0 

Cleridae 5 3 0 6 8 0 0 6 

 Coccinellidae 0 1 0 0 1 0 0 0 

 Curculionidae 1 0 0 0 1 0 0 0 

Chrysomelidae 0 6 0 4 5 1 0 4 

Dermestidae 1 0 0 0 0 1 0 0 

Glaresidae 0 1 0 0 1 0 0 0 

 Hydrophilidae 1 0 0 0 1 0 0 0 

Leiodidae 2 5 0 0 2 5 0 0 

Neriidae 0 1 0 0 1 0 0 0 

Nitidulidae 25 3 0 0 26 2 0 0 

Noteridae 13 5 0 1 16 2 0 1 

Scarabaeidae 4 8 2 7 2 10 0 9 

Staphylinidae 0 3 1 12 0 3 0 13 

 Lepidoptera 

Lycaenidae 1 0 0 0 1 0 0 0 

Diptera 

Calliphoridae 229 2148 212 5193 884 1493 2777 2628 

Drosophilidae 2 2 0 0 4 0 0 0 

Muscidae 28 50 0 0 20 58 0 0 

Sarcophagidae 14 52 0 0 24 42 0 0 

Tephritidae 2 1 0 0 3 0 0 0 

Source: Authors. 

 

In experiment I, the remaining masses were high in the spring of riparian vegetation areas compared to the spring of 

the agricultural area (Table 2a; Figure 1a). The insect richness was high in riparian vegetation areas (Table 2b; Figure 1c), 

mainly in spring (Table 2b; Figure 1c). On the other hand, the insect abundance was high in agricultural areas (Table 2c; 

Figure 1e), mainly in summer (Table 2c; Figure 1e). Threshold values over time ranged between 2.5 to 10 (sumz +) and 1.5 to 

7 (sumz -). According to the significance criteria adopted here (p ≤ 0.05, reliability and purity ≥ 0.70), 5 taxa (Vespidae, 

Sarcophagidae, Muscidae, Calliphoridae, and Armadillidiidae) had a systematic relationship with the time in days. In the 

riparian vegetation areas, the families Vespidae, Sarcophagidae, Muscidae, and Calliphoridae showed a decrease in abundance 

to time with respective peaks in 3, 7, 7, and 8 days (Figure 2a and 2b). In agricultural areas, the family Calliphoridae also 

showed a decrease in abundance to time with peak in 5 days (Figure 2c e 2d), butthe family Armadillidiidae showed an 
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increase in abundance to time with peak in 6-9 days (Figure 2c e 2d). 

 

Table 2. Result of Repeated Measure ANOVA and Contrast Analysis (Post Hoc) of the remaining mass (a), insect richness (b), 

and insect abundance (c) in rodent carcasses between areas (riparian vs. agricultural), periods (spring vs. summer), and 

interactions between factors in Experiment I. 

  Df Sum Sq Mean Sq F value Pr(>F) Contrast analysis 

A. remaining mass      
Error x days 1 135183 135183    
area 1 516 516 1.65 0.210  

period 1 602 602 1.92 0.167  

area x period 1 20927 20927 66.82 < 0.001 agricultural in spring < riparian in spring 

Residual 204 63887 313    
B. insect richness     
Error x days 1 61.1 61.1    
area 1 40.8 40.9 20.63 < 0.001 agricultural <riparian 

period 1 0.0 0.0 0.01 0.927  
area x period 1 15.5 15.5 7.84 0.006 agricultural in spring <riparian in spring 

Residual 204 403.9 2.0    
C. insect abundance     
Error x days 1 61.1 61.1    
area 1 40.8 40.9 20.63 < 0.001 riparian <agricultural 

period 1 0.0 0.0 0.10 0.927  
area x period 1 15.5 15.5 7.84 0.006 agricultural in spring <agricultural in summer 

Residual 204 403.9 2.0    

Source: Authors. 
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Figure 1. Remaining mass of rodent carcasses (“a” and “b”), insect richness in rodent carcasses (“c” and “d”), and insect 

abundance in rodent carcasses (“e” and “f”) between areas (riparian vs. agricultural) periods (spring vs. summer; experiment I), 

and soil depths (depth vs. surface; experiment II). The solid lines are the representations of the linear model, while the 

remnants of the same color are the 95% confidence intervals for each model. 

 

Source: Authors. 
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Figure 2. Values of the largest indicator z value in insect abundance in rodent carcasses change points by probability 

abundance function of the nBoot bootstrapped replicates (n=500) along days from riparian vegetation areas (a), agricultural 

areas (b), and surface in both areas (c). Taxa names are arranged discretely along the y-axis based on the rank order of the 

central tendency of the probability abundance function for z- (dark colors negative, decliners) and z+ (red colors positive, 

increasers), respectively (a, b, e c). The black symbols represent associated species and sumz-, represented by the black cycle, 

and sumz +, represented by the white cycle (b, d and f). 

 

Source: Authors. 

 

 

In experiment II, the remaining masses were high in agricultural areas compared to the riparian vegetation areas 

(Table 3a; Figure 1b), mainly in soil surface compared to soil deep layers (Table 3a; Figure 1b). Insect richness was high in the 

riparian vegetation areas (Table 3b; Figure 1d) and in soil surface compared to soil deep layers (Table 3b; Figure 1d). On the 
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other hand, the insect abundance was high in agricultural areas (Table 3c; Figure 1f), also mainly in soil surface compared to 

soil deep layers (Table 3c; Figure 1f). Threshold values over time ranged between 3 and 10 (sumz +) and between 2 and 7.3 

(sumz -). We observe 3 taxa (Sarcophagidae, Muscidae, and Calliphoridae) with a systematic relationship with the time in 

days. Only the superficial layers of soil presented taxon indicatorsand all decreased with time. The abundance peaks of 

Calliphoridae, Sarcophagidae, and Muscidae were respectively in 5-8, 7, and 7 days. 

 

Table 3. Result of Repeated Measure ANOVA and Contrast Analysis (Post Hoc) of the remaining mass (a), insect richness (b), 

and insect abundance (c) in rodent carcasses between areas (riparian vs. agricultural), soil depths (depth vs. surface), and 

interactions between factors in Experiment II. 

  Df Sum Sq Mean Sq F value Pr(>F) Contrast analysis 

A. remaining mass      
Error x days 1 112786 112786    
area 1 8435 8435 23.83 < 0.001 riparian <agricultural 

soil depths 1 35829 35829 101.21 < 0.001 surface <buried 

Local x soil depths 1 1294 1294 3.66 0.057 surface in riparian <buried in agricultural 

Residual 214 75754 354    
B. insect richness     
Error x days 1 15.2 15.2    
area 1 54.5 54.5 24.07 < 0.001 agricultural <riparian 

soil depths 1 9.8 9.8 4.35 0.038 buried <surface 

area x soil depths 1 0.6 0.6 0.25 0.619 buried in agricultural <surface in riparian 

Residual 214 484.8 2.3    
C. insect abundance     
Error x days 1 15.2 15.2    
area 1 54.5 54.5 24.07 < 0.001 riparian <agricultural 

soil depths 1 9.8 9.8 4.35 0.038 buried <surface 

area x soil depths 1 0.6 0.6 0.25 0.619  
Residual 214 484.8 2.3    

Source: Authors. 

 

4. Discussion 

4.1 Degradative succession between periods 

In experiment I, high decomposition occurred in the seasonal period (spring) and in the area (agricultural) with higher 

soil temperatures. The higher number of cloudy days and constant rains in summer can reduce the direct sunlight incidence on 

the soil, decreasing soil temperature compared to spring (Ota et al., 2019). The high soil temperatures in the agricultural area 

are perhaps due to the lack of coverage in tall plant extracts (De Frenne et al., 2019; Rezende et al., 2017). On the other hand, 

riparian vegetation areas keep a constant mild microclimate (Quintão et al., 2013; Rezende et al., 2017) compared to 

agricultural areas. High temperatures may accelerate the ecosystem metabolism by stimulating the decomposing community 

activity in rodents’ carcasses (Navarro et al., 2013; Al-Mekhlafi et al., 2020; Probst et al., 2020). As an example, lower and 

constant soil temperatures may slow down the metabolic activity and oviposition of detritivorous insects, such as Diptera and 

Coleoptera, and as calliphorids (Souza & Linhares, 1997; Pujol-Luz et al., 2006). Insects are pecilothermic, that is, their 

temperature varies according to the environment. High soil temperatures may also accelerate the immature development 

(Kutcherov et al., 2019) and, consequently, the food resources consumption (Kotzé et al., 2016), explaining the high 

decomposition in the warmer area and period. Furthermore, the high abundances observed in the agricultural area may demand 

greater food resource consumption (Rodríguez & Liria, 2017; Zeariya & Kabadaia, 2019), helping to explain the faster 

decomposition. Finally, there is the increase in invertebrate richness in the riparian vegetation area, possibly because carcasses 

take a longer time to decay (Moretti et al., 2008) and shows that soil temperatures and the abundance of detritivorous insects 

are more important in accelerating the decomposition process. 
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In experiment I, the families Vespidae, Sarcophagidae, Muscidae, and Calliphoridae in riparian vegetation areas and 

Calliphoridae in the agricultural area decreased their abundance over time. The families Calliphoridae, Sarcophagidae, and 

Muscidae have a preference for colonizing soft tissues during the initial stages of decomposition (Cruise et al., 2018; Tembe & 

Mukaratirwa, 2021). Furthermore, small carcass decreases the resource available, concentrating the greatest insects’ 

abundances in early stages of decomposition (Al-Mekhlafi et al., 2020; Zeariya & Kabadaia, 2019). Also, the presence of 

hymenoptera in rodent carcasses is common, especially species of Vespidae families (Haskell et al., 2008). Vespidae may feed 

on bodily fluids and dipteran larvae (Moretti & Ribeiro, 2006), justifying their high abundance in early decomposition stages. 

Some Vespidae species may chew the tissues of carcass natural cavities (nose, mouth, and anus), looking for liquids or small 

pieces of meat (Herdina et al., 2016). On the other side, Armadillidiidae showed an increase in abundance over time in 

agricultural areas, probably to use the carcasses as a refuge against dissection (Haskell et al., 2008; Oliveira-Costa, 2013). 

 

4.2 Degradative succession between soil layers 

In experiment II, high decomposition occurs in riparian vegetation area, mainly in the superficial layers of the soil, 

due to differences in moisture. Less vegetation cover increasestemperature variations and decreases soil moisture (De Frenne et 

al., 2019; Rezende et al., 2017). Lower humidity may make the environment more hostile to specialist organisms, such as 

detritivorous insects subject to dissection (Sfenthourakis and Hornung, 2018). High moisture in topsoil may accelerate insect 

colonization compared to lower soil layers. Moreover, richness was high in riparian vegetation areas, especially in superficial 

soil layers. Soil can act as a barrier to the detritivorous insects, delaying colonization and decreasing richness by reducing 

decomposition of the buried soil extract eight times compared to the soil surface. On the other hand, insect abundance was high 

in agricultural areas. Insect abundance may have been influenced by the lower presence of predators. Fewer ants in the 

carcasses, female of Diptera were able to colonize the available resource more intensively, indicating that the specific insect 

composition may be important for the decomposition process. 

In experiment II, only the superficial layers of the soil showed indicator taxa, all (Calliphoridae, Sarcophagidae, and 

Muscidae) decreasing abundance with time. Succession studies of cadaveric fauna highlight that species of families 

Calliphoridae, Sarcophagidae, and Muscidaecan stay longer on carcass, but decreasein abundance with time (Cruise et al., 

2018; Haskell et al., 2008; Parry et al., 2016; Tembe & Mukaratirwa, 2021). They are attracted by the odors that are produced 

in the early stages of decomposition (Oliveira-Costa, 2013). These peaks also explain the influence of the carcass condition, 

due to the high humidity (Tembe & Mukaratirwa, 2021), where rodents rot faster. 

 

4.3 Drying process of rodent carcasses 

We observed five decomposition stages of Mus musculus: initial decay, putrefaction, black putrefaction, fermentation, 

and dry decay (Figure 3), as also observed by Moretti et al. (2008). Also, some rodent carcasses in decomposition process may 

undergo skeletonization or mummification (Figure 4). Mummification is a drying process, dependent on extreme factors of 

temperature and humidity, which inhibits bacterial activity (Al-Mekhlafi et al., 2020; Tembe & Mukaratirwa, 2021). As an 

example, high temperatures and low humidity accelerate the decomposition of rodent carcasses, but cause the mummification 

of some carcasses (Al-Mekhlafi et al., 2020; Haskell et al., 2008). In the present study, the drying process of some carcasses 

was observed from the 8th day of summer in riparian vegetation areas by high temperatures. In addition, the attractiveness of 

flies is not hindered, since they were found in the process of drying the carcasses in this study. 
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Figure 3. Decomposition stagesof Mus musculus: (a) initial decay, (b) putrefaction, (c) black putrefaction, (d) fermentation 

and (e) dry decay. 

 

Source: author. 

 

In this way, the drying process of carcasses may then favor the Coleoptera and Formicidae, which colonize the 

carcasses in the final stages, as they have a preference for cartilage (Haskell et al., 2008). In addition, species of the Coleoptera 

order families are able to respond to soil changes (Parry et al., 2016). In studies carried out with carcasses, the Coleoptera and 

Formicidae families were found in advanced stages of decomposition (Cruise et al., 2018; Tembe & Mukaratirwa, 2021; 

Zeariya & Kabadaia, 2019). In this experiment, the presence of beetle families such as Cerambycidae, Chrysomelidae, 

Nitidulidae, Noteridae, and Dermestidae was mainly observed in the final stages. 

 

Figure 4. Drying of rodent carcasses. 

 

Source: author. 
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5. Conclusion 

Finally, we can conclude that the temperature and moisture of the soil were the main drivers of carcass decomposition 

over areas and periods. We also found that insect abundance is more important than insect richness to accelerating carcass 

decomposition. We also observed that buried carcasses in soil decompose more slowly due to the physical barrier caused by 

the soil. Most taxon indicators (Vespidae, Sarcophagidae, Muscidae, and Calliphoridae) declined over time, except 

Armadillidiidae, probably to use the carcasses as a refuge against dissection. Lastly, Coleoptera and Formicidae colonize the 

carcasses in the final stages of decomposition due to the facility of cartilage use. This abundance peak of insect families can 

serve as the baseline data for investigation and help to determine Post Mortem intervals on Neotropical Subtropical systems. 

During the decomposition process, it is also important to take into account the influence of dipteran larvae on the 

carcasses, as they produce metabolic heat. This heat can be due to the increase in temperature caused by the aggregation and 

movement of larvae. Therefore, it would be interesting to measure the temperature of the larvae in the carcasses, using a 

thermometer, to better understand how the decomposition process takes place inside the carcass. 
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