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Abstract  

Environmental pollution has been a point of discussion in the international community and an object of investigation 

by research groups, which focus on the development of remediation methods. In the current study, the bunch of açaí 

(Euterpe oleracea) was used as a precursor for the preparation of low-cost activated carbon in order to remove the dye 

17 AY 17 from the aqueous solution. The synthesis was carried out at temperatures of 500, 600 and 700 °C, for 2.0 h in 

a muffle furnace. The kinetic and thermodynamic mechanism of the adsorption process of the acid yellow dye 17, and 

the effects of pH, contact time and initial concentration were investigated. Activated carbon carbonized at 700 °C had 

the highest adsorption capacity, about of 99.9% of removal of the AY. The adsorption capacity of AY 17 was slightly 

pH dependent with a maximum value at pH 2.0. The kinetic data show that the equilibrium time was 200 min, and the 

adsorption capacity of activated carbon was 99.9% at 50 mg L‒1 and 67.0% at 150 mg L‒1 of adsorbate, suggesting high 

adsorption capacity of the material, even in the presence of high dye concentration. The adsorption process of AY 17 is 

described by the pseudo-second order kinetic model, and the experimental adsorption isotherms are adjusted to the 

Freundlich model, indicating that the adsorption of AY 17 on activated carbon occurs with the formation of multilayers. 

The present study shows that this low-cost material has great potential for remediation of textile effluents. 

Keywords: Adsorption; Activated carbon; Acid yellow 17. 

 

Resumo 

A poluição do meio ambiente tem sido ponto de discussão na comunidade internacional e objeto de investigação por 

grupos de pesquisa, que têm buscado o desenvolvimento de métodos de remediação. No presente estudo, o cacho de 

açaí (Euterpe oleracea) foi utilizado como precursor de carvão ativado de baixo custo para a remoção do corante 

amarelo ácido 17 (AY 17) em solução aquosa. A síntese foi realizada nas temperaturas de 500, 600 e 700 ° C, por 2,0 

h em forno mufla. O mecanismo cinético e termodinâmico do processo de adsorção do corante AY 17, e os efeitos do 

pH, tempo de contato e concentração inicial foram investigados para o carvão ativado com maior capacidade adsortiva. 

O carvão ativado carbonizado a 700 °C teve a maior capacidade adsortiva, cerca de 99,9% de remoção do AY. A 

capacidade de adsorção de AY 17 é ligeiramente dependente do pH, com um valor máximo em pH 2,0. Os dados 

cinéticos mostram que o tempo de equilíbrio é de 200 min, e a capacidade de adsorção do carvão ativado foi de 99,9% 
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a 50 mg L‒ 1 e 67,0% a 150 mg L‒1 de adsorbato, sugerindo alta capacidade de adsorção do material, mesmo na presença 

de alta concentração de corante. O processo de adsorção de AY 17 é descrito pelo modelo cinético de pseudo-segunda 

ordem, e as isotermas experimentais de adsorção são ajustadas ao modelo de Freundlich, indicando que a adsorção de 

AY 17 no carvão ativado ocorre com a formação de multicamadas. O presente estudo mostra que esse material de baixo 

custo possui grande potencial para remediação de efluentes têxteis.  

Palavras-chave: Adsorção; Carvão ativado; Amarelo ácido 17. 

 

Resumen  

La contaminación ambiental ha sido un punto de discusión en la comunidad internacional y objeto de estudio de diversos 

grupos de investigación, que se enfocan en el desarrollo de métodos de remediación. En el presente estudio, se utilizó el 

racimo de açaí (Euterpe oleracea) como precursor para la preparación de carbón activado de bajo costo, con el fin de 

eliminar el tinte amarillo ácido 17 (AY 17) en solución acuosa. La síntesis se llevó a cabo a temperaturas de 500, 600 y 

700°C, durante 2,0 h en una mufla. El mecanismo cinético y termodinámico del proceso de adsorción del tinte AY 17, 

y los efectos del pH, el tiempo de contacto y la concentración inicial se investigaron utilizando el tipo de carbón activado 

con la mayor capacidad de remoción. El carbón activado a 700 °C tuvo la mayor capacidad de adsorción, con un 99,9% 

de remoción AY 17. La capacidad de adsorción del AY 17 fue ligeramente dependiente del pH, alcanzando un valor 

máximo a pH 2,0. Los datos cinéticos muestran que el tiempo de equilibrio fue de 200 min, y la capacidad de adsorción 

del carbón activado fue del 99,9% a 50 mg L-1 y del 67,0 % a 150 mg L-1 de adsorbato, sugiriendo una alta capacidad 

de adsorción del material, incluso en la presencia de una alta concentración de tinte. El proceso de adsorción de AY 17 

se describe mediante el modelo cinético de pseudo-segundo orden, y las isotermas de adsorción experimentales se 

ajustan al modelo de Freundlich, lo que indica que la adsorción de AY 17 en carbón activado ocurre con la formación 

de multicapas. El presente estudio muestra que este material de bajo costo posee gran potencial para la remediación de 

efluentes textiles.  

Palabras clave: Adsorción; Carbón activado; Amarillo ácido 17. 

 

1. Introduction  

The contamination and degradation of the environment by polluting gases, residues from agricultural activities, organic 

waste, toxic chemical products and other polluting sources has been the subject of debate in today's society (Chen et al., 2020; 

Khattab et al., 2020; Kishor et al., 2021; Nambela et al., 2020; Sarkar et al., 2017; Ignachewski et al., 2010). These pollutants 

promote an imbalance in the environment, and have reduced drastically the quality of available drinking water (Kishor et al., 

2021; Munagapati et al., 2021; Hynes et al., 2020; Berradi et al., 2019; Sarkar et al., 2017; Ignachewski et al., 2010). Within the 

industrial sector, textiles are responsible for a large part of the economy of developed and some emerging countries (Haseeb et 

al., 2020). However, it is estimated that for the processing of about 12-20 tons of raw material are discarded daily between 1000 

and 3000 m3 of wastewater, thus promoting significant impacts on the environment (Ghaly, 2014). In addition, wastewater from 

activities in this sector has around 20% of dyes (Hynes et al., 2020; Khattab et al., 2020; Berradi et al., 2019), which are 

potentially toxic (Hynes et al., 2020; Benkhaya et al., 2020; Berradi et al., 2019; Verma et al., 2019; Obaid et al., 2016) 

generating negative impacts on the environment in terms of salinity, biological oxygen demand (BOD), chemical oxygen demand 

(COD), pH, temperature and others (Hynes et al., 2020; Berradi et al., 2019; Parveen & Rafique, 2018; Roy et al., 2018; Sarkar 

et al., 2017). 

Several studies have shown that the treatment of these residues in effluents represents one of the great challenges of the 

textile sector, since these chemical substances have high chemical and biological stability, making their degradation difficult 

(Hynes et al., 2020; Khattab et al., 2020; Berradi et al., 2019; Obaid et al., 2016). In addition, the presence of color significantly 

contributes to the pollution of water resources by drastically reducing the penetration of sunlight, and consequently the 

photosynthesis capacity of aquatic plants and algae (Hynes et al., 2020; Benkhaya et al., 2020). On the other hand, the chemical 

activity of these substances in the human body can cause breathing difficulties, eye irritation, impairment of the cardiovascular 

system, mutations, tumors and affect the nervous system ( Shindhal et al., 2021; Yusop et al., 2021; Bulca et al., 2021; Achour 

et al., 2021; Khatri et al., 2018; Hassaan et al., 2016; Vacchi et al., 2013). Therefore, many research groups have focused on the 
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development of efficient and low-cost methods that enable the removal and remediation of these pollutants, in order to alleviate 

possible environmental impacts and maintain the integrity of human health. 

On the other hand, dyes are chemical substances that play an essential role in various industry sectors, such as textiles, 

printing, food, plastics, cosmetics and pharmaceutical industries, whose main objective is to add color to various products 

(Benkhaya et al., 2020; Berradi et al., 2019; Verma et al., 2019; Castro et al., 2018). These compounds are classified according 

to several criteria, including the chemical structure, which is made up of chromophore and auxochrome groups (Benkhaya et al., 

2020; Berradi et al., 2019; Verma et al., 2019; Castro et al., 2018; Raman & Kanmani, 2016). Azo dyes, for example, which 

have the azo chromophore group (-N=N-) is the predominant class in the textile industry, representing 70% of the dyes used in 

this sector (Benkhaya et al., 2020; Berradi et al., 2019; Castro et al., 2018; Sarkar et al., 2017; Lang et al., 2013). This class of 

textile dye is highly water soluble and easily reacts with cellulosic, protein, polyester, acrylic and polyamide fibers (Castro et 

al., 2018; Guaratini & Zanoni, 2000). 

Currently, several techniques are used in order to treat wastewater contaminated by dyes, including adsorption, 

coagulation, electrochemical treatment, photocatalytic degradation, ozone treatment and biological treatment (Achour et al., 

2021; Shindhal et al., 2021; Yusop et al., 2021; Paredes-Quevedo et al., 2021; Verma et al., 2019; Khatri et al., 2018; Obaid et 

al., 2016;). However, a large portion are ineffective, as these substances have a very stable chemical structure and low 

biodegradation rate (Shindhal et al., 2021; Paredes-Quevedo et al., 2021; Benkhaya et al., 2020; Verma et al., 2019; Castro et 

al., 2018;). Among the most efficient techniques, adsorption stands out due to its ease of operation, simplicity of the project and, 

above all, to be economically viable (Achour et al., 2021; Bulca et al., 2021; Yusop et al., 2021; Paredes-Quevedo et al., 2021; 

Verma et al., 2019; Machrouhi et al., 2018), being, therefore, widely used to remove certain classes of contaminants from 

industrial effluents (Achour et al., 2021; Bulca et al., 2021; Yusop et al., 2021; Heidarinejad et al., 2020; Ugwu & Agunwamba, 

2020; Alam et al., 2020; Machrouhi et al., 2018). Studies in the literature have reported several efficient materials in the removal 

of aqueous contaminants such as activated carbon, zeolites, clays, biomass, fungi and bacteria (Achour et al., 2021; Heidarinejad 

et al., 2020; Ani et al., 2020; Alkathiri et al., 2020; Machrouhi et al., 2018). 

However, due to the high costs of commercial activated carbon, alternative adsorbents that guarantee the same 

adsorption efficiency have been studied, with emphasis on those produced from residues from agricultural and extractive 

activities (Achour et al., 2021; Alam et al., 2020; Alkathiri et al., 2020; Panwar and Pawar, 2020; Kannaujiya et al., 2021; 

Zoroufchi Benis et al., 2020; Reza et al., 2020). Several studies report the use of these materials in the synthesis of activated 

carbon for remediation of effluents, such as the study by Njoku et al. (2014) who studied the efficiency of activated carbon 

obtained from rambutan husk (Nephelium lappaceum) in the adsorption of acid yellow dye 17 (Reza et al., 2020). Other works 

address the removal of acid yellow dye 17 using activated carbon obtained from eggplant residues, achieving maximum removal 

of 99.58 % (Kannaujiya et al., 2021), and the removal of anionic acid yellow dye 17 using avocado seed powder, showing 

excellent removal over a wide pH (Munagapati et al., 2021), range and adsorption study of acid yellow dye 17 using activated 

carbon obtained from the rice husks, providing a maximum removal of 99.98% (Patil et al., 2015). However, most of these works 

use synthesis routes with inert gases, such as nitrogen and argon, which increase the cost of the process (Reza et al., 2020;.Patil 

et al., 2015). 

In view of the aforementioned, this study focuses on synthesizing activated carbon in an open atmosphere, with high 

adsorption capacity, from açaí bunch (Euterpe oleracea), to remove the disodium dye 2.5-dichloro-4-[3-methyl -5-oxo-4-(4-

sulfonatophenyl) diazenyl-diazyl-pyrazol-1-yl] benzenesulfonate in aqueous solution, commercially known as acid yellow 17, 

as well as characterize the kinetic and thermodynamic mechanism of adsorption.  
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2. Experimental Part  

2.1 Preparation of dye stock solution Acid yellow 17 

The acid yellow dye 17, namely (AY17) (C16H10Cl2N4Na2O7S2), CAS number: 6359-98-4, ID 329751987, was 

purchased from Sigma-Aldrich company, Saint Louis, USA, at 60% content. This dye has an intense yellow color, being 

characterized by an absorption maximum around 402 nm, molar absorption coefficient 14,000.00 mol ‒1 L cm‒1 and molecular 

weight equal to 551.29 g mol ‒1. Ultra-pure water with a resistivity of 18 MΩ cm, purified in a purifier (Milli-Q®, Merck 

Millipore), was used to prepare the solutions. The 1000 mg L‒1 standard stock solution was prepared by dissolving 1.6 g of the 

dye in 1000 mL of ultrapure water. Then, the solution was properly stored for the studies. 

 

2.2 Synthesis of adsorbents prepared from açaí bunch  

The raw material (açaí bunches) collected in the municipality of Marabá-PA, was initially washed in running water to 

remove unwanted solid residues and subjected to a drying process at a temperature of 80 ºC in an (SSD-11L, Solidsteel) oven 

for 48 h. Then, the material was crushed in a knife mill model NL-226/02 (NewLab, Brazil) and classified in a Tyler-type sieve 

(Bertel, Brazil) coupled to a stirrer in the pass-through mesh range above 28 (0.25 mm). After classification, 50 g samples of 

biomass were carbonized in a Magnus brand muffle oven at temperatures of 500, 600, 700 ºC for 2.0 h and heating rate of 10 ºC 

min‒1. After the carbonization process, all samples were again classified in 325 mesh (0.044 mm) opening sieves and reserved 

for adsorption tests. The carbonized adsorbents at temperatures of 500, 600 and 700 ºC were named CA-CA500, CA-CA600 and 

CA-CA700 respectively. 

 

2.3 Characterization of adsorbents by BE and BJH and IR 

The textural properties of activated carbon were determined by adsorption-desorption of N2 at 77.35 K using a surface 

analyzer (QUANTACHROME model NOVA 2200e) with liquid nitrogen of density 0.808 g cm‒3. Before taking the 

measurements, the sample was subjected to a thermal pre-treatment at 423 K for 2.0 h.  The adsorption of N2 in the sample was 

used to calculate the specific surface area (SBET) by the BET method (Brunauer – Emmett – Teller), while the diameter (Dp) and 

pore volume (Vp) were determined by the BJH method (Barrett – Joyner – Halenda).  

The infrared spectra of the in natura and carbonized samples and CA-CA700, both in a particle size of 325 meshes, 

were obtained by attenuated total reflectance (ATR), using a Thermo brand spectrometer, model Nicolet iS50 FT-IR, in the 

spectral region 4000-400 cm‒1, at 100 scans and 4 cm‒1 resolution. Data acquisition was performed using the OMNIC program, 

and the treatment using the origin program, version 8.0. As a pre-treatment, the samples were dried at 105 °C for 24 hours. 

 

2.4 Analytical curve  

From the 1000 mg L‒1 stock solution, solutions were prepared with a volume of 2.0 mL of the dye in the concentration 

range of 0 to 22 mg L‒1 for the construction of the analytical curve. The UV-Vis experiments were carried out in a Bel Spectro 

S05 spectrophotometer, at the maximum absorption wavelength (λmax) 400 nm. Sample absorbances were measured in a 1.0 mL 

quartz cuvette and 1.0 cm optical path.  

 

2.5 Adsorption experiments 

The adsorption measures were carried out in a 250 mL erlenmeyer flask, varying the mass of the adsorbents in the range 

of 0.1 to 1.0 g, in 100 mL of dye solution AY 17 in the concentration range of 25 to 300 mg L‒1, under stirring at 200 rpm at 

20 °C.  
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Initially, measurements were taken to evaluate the most efficient adsorbent, in which 0.20 g of each synthesized material 

was exposed to 100 mL of the dye at 25 mg L‒1, under agitation in an orbital shaking incubator (SL-223) for 200 min, at pH 7.0. 

Adsorbent removal capacity (%) was measured using Equation 1: 

 

𝑹𝒆𝒎𝒐çã𝒐(%) =
𝑪𝟎−𝑪𝒆

𝑪𝟎
× 𝟏𝟎𝟎                                     (1) 

Where C0 (mg L‒1) and Ce (mg L‒1) are the dye concentrations initially and at equilibrium, respectively (Munagapati et al., 2021). 

 

In a second step, measurements were carried out to evaluate the effect of the adsorbent mass in the range (0.1 to 1.0 g), 

pH (2.0 to 9.0) and initial concentration of adsorbate (25 to 150 mg L‒1), under the same conditions as in step 1, at 20 °C and 

200 rpm.  The pH of the solutions was adjusted according to the studies by Salleh et al., 2011, Reza et al., 2020 and Salleh et al., 

2011 in which small volumes of 0.1 mol L‒1 HCl or 0.1 mol L‒1 NaOH solutions were added until reaching the investigated pH 

value. 

Therefore, the adsorption kinetics experiments of AY17 were carried out at concentrations of 50, 75, 100 and 150 mg L‒

1 and volume of 100 mL, in time intervals from 0 to 300 min, in the presence of 0.5 g of CA-CA700, at 20 °C, pH 6.0 and 200 

rpm, while the equilibrium measurements were made with an interaction time of 200 min, in a wider concentration range, from 

25 to 300 mg L‒1, to improve the acquisition of equilibrium isotherms. The ability to remove AY17 at equilibrium qe (mg g‒1) 

was calculated from Equation 2: 

 

𝒒𝒆(𝒎𝒈 𝒈−𝟏) =
[𝑪𝟎(𝒎𝒈 𝑳−𝟏)−𝑪𝒆(𝒎𝒈 𝑳−𝟏)]𝑽(𝑳)

𝒎(𝒈)
                           (2) 

where C0 (mg L‒1) and Ce (mg L‒1) are the concentrations of the initial and equilibrium AY17 respectively, V (L) is the volume 

of solution and m (g) is the mass of adsorbent (Munagapati et al., 2021). 

 

3. Results and Discussion  

3.1 Adsorption efficiency of materials  

Table 1 shows the adsorption capacity of the three adsorbents synthesized from the açaí bunch as a function of 

carbonization temperature. 

 

Table 1 - Adsorption capacity of adsorbents obtained from the açaí bunch. Tests performed 

with 0.20 g of absorbent, at 20 ºC, pH 6.0, in the presence of 100 mL of AY17 solution, 25 mg 

L‒1, and contact time of 200 min. 

Adsorbents Mesh Removal (%) 

CA-CA500 325 38.0 

CA-CA600 325 61.7 

CA-CA700 325 99.9 

 

Source: Authors (2021). 

 

Under these conditions, the data show that the increase in temperature significantly contributes to the adsorption 

efficiency, with removal rates of 38.0, 61.7 and 99.9 % being observed for CA-CA500, CA-CA600 and CA-CA700, respectively 

(Table 1). The increase of 200 ºC granted an increase of 61.9 % in the AY17 removal (Table 1). This removal index obtained 

for the CA-CA700 is very similar to other studies such as Kannaujiya et al., 2021 and Patil et al., 2015.  Studies in the literature 
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show that the increase in carbonization temperature produces two main effects, the first is the significant increase in the surface 

area of the carbonized material, and consequently a greater adsorption efficiency, and second, a significant loss of synthesis yield 

(Ani et al., 2020; Machrouhi et al., 2018), corroborating the data reported in the present study.  

Thus, the following experiments were carried out only with the adsorbent with the highest adsorption capacity, CA-

CA700. 

 

3.2 CA-CA700 characterization  

Figure 1 shows the adsorption-desorption isotherm of N2 at 77 K for activated carbon from the açaí bunch (CA-CA700). 

A The isotherm obtained presents a characteristic profile of the type IV isotherm, according to the classification of the International 

Union of Pure and Applied Chemistry (IUPAC), (Foo and Hameed, 2012; Sing, 1982) with an H4-type hysteresis cycle in the P/P0 

range from 0.4 to 0.99 , suggesting that the surface of CA-CA700 is predominantly constituted by mesopores (Munagapati et al., 

2021; Sing, 1982; Shoaib et al., 2020; Hamza et al., 2018). The textural properties obtained by the BET and BJH methods, indicate 

that the material has a surface area of 353 m2 g‒1, average pore diameter of 3.628 nm and pore volume of 0.046 cm3g‒1 corroborating 

the presence of mesopores in the structure, since for this type of isotherm the diameter range for mesoporous material is between 

2.0 and 50 nm. (Munagapati et al., 2021; Shoaib et al., 2020; Mahmoud et al., 2020; Berradi et al., 2019; Jedynak et al., 2019; 

Hamza et al., 2018). 

 

Figure 1 - N2 adsorption-desorption isotherm for CA-CA700. 

 

Source: Authors (2021). 

 

The infrared spectra in the range from 4000 to 450 cm‒1 for in natura sample of the açaí bunch and for the CA-CA700 

adsorbent are shown in Figure 2. The FTIR spectrum of the açaí bunch biomass is characterized by the presence of a band of 

greater intensity at 3,385 cm‒1 associated with the stretching of the hydroxyl group with hydrogen bonds in the cellulose (-OH). 

Other less intense bands centered at 2920 cm‒1, due to axial CH2 deformation characteristic of the methyl group, 1740 cm‒1 

associated with the presence of the natural carbonyl group (C=O) of hemicellulose, 1610 cm‒1 attributed to the stretching of the 

C bond = C of aromatic compounds, 1518 cm‒1 contribution of primary and secondary amines, 1,160 and 1,056 cm‒1 contribution 

of COC binding in hexoses, are observed. Carbonization promotes drastic changes in the functional groups of the biomass, 

characterized by an intense reduction in the contributions of oxygenated groups, which suggest the dehydration of the material. 
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The CA-CA700 spectrum presents bands at 1420, 1040 and 870 cm‒1 that are associated with the cellulose structure and indicate 

the partial degradation of the material in pyrolysis. 

 

Figure 2 - Infrared spectra for samples of açaí biomass (Euterpe oleracea) in natura and carbonized at 700 °C (CA-CA700). 

 
Source: Authors (2021). 

 

3.3 Effect of contact time and initial concentrations on AY 17 adsorption 

 Figure 3 shows the effect of contact time (min) and initial concentrations in the adsorption process of acid yellow dye 

17 for concentrations of 50, 75, 100 and 150 mg L‒1.  

 

Figure 3 - Effect of initial concentrations and contact time on the adsorption process of AY 17, at 20 °C, 200 rpm, pH 6.0 and 

0.5 g of CA-CA700. 

 

Source: Authors (2021). 

 

At the beginning of the process, the adsorption rate increases rapidly up to 25 min, followed by a gradual increase until 

reaching the equilibrium state, in 200 min (Figure 3). (Munagapati et al., 2021; Reza et al., 2020; Abdulhameed et al., 2019). 
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The rapid adsorption of the dye at the beginning of the process is associated with the large availability of empty sites and the 

reduction in the rate with increasing interaction time indicates the increase in repulsive forces between the adsorbate molecules 

as the sites are occupied, as well as the saturation of the sites available for adsorption (Munagapati et al., 2021; Reza et al., 2020; 

Patil et al., 2015; Srivastava et al., 2006). The adsorption capacity of CA-CA700 for acid yellow dye 17 increased from 47.9 ± 

0.1 mg g ‒1 to 100.2 ± 0.2 mg g ‒1 when the initial concentration of dye increased from 50 to 150 mg L‒1, suggesting that this 

material is suitable for the treatment of textile effluents. 

 

3.4 Effect of pH on adsorption  

The effect of pH on the removal capacity of CA-CA700 is shown in Figure 4. The result shows that the AY 17 removal 

index decreases from 99 % at pH 2.0 to 92% at pH 9.0, indicating a promising applicability of the material under real conditions 

for textile effluents.  

 

Figure 4. Effect of pH on the adsorption of AY 17, at 20 °C, 200 rpm, equilibrium time of 200 min, 0.5 g and 150 mg L‒1. 

 
Source: Authors (2021). 

 

According to the literature, adsorption is favored in an acidic medium for anionic dyes, because the surface protonation 

favors the interaction with the sulfonic groups of the dye through electrostatic forces (Bouhadjra et al., 2021; Felista et al., 2020; 

Jain et al., 2020; Cardoso et al., 2011). This phenomenon is due to the presence of sulfonate groups (-SO3Na) in the structure of 

the acid yellow dye 17, which, in an aqueous medium, makes available the sulfonic groups (-SO3
‒), allowing the occurrence of 

electrostatic interactions with the functional groups present on the surface of the CA-CA700. At pH below 7.0, the initially 

negative functional groups of CA-CA700 are partially neutralized by the addition of protons (H+), enabling an electrostatically 

favorable interaction of the adsorbent with the anionic form of the dye in an aqueous medium, thus increasing the index of 

removal (Bouhadjra et al., 2021; Bhomick et al., 2018; Li et al., 2018). Higher removal rates of the acid yellow dye 17 at lower 

pH values is in accordance with the study by Patil et al., 2015, using rice husk as an adsorbent, in which a removal of 72.1% was 

obtained at pH 2, value lower than that found in this study, being 99.8% at the same pH. 

In addition, Reza et al., 2020 and Munagapati et al., 2021 studied the adsorption of AY 17 on activated carbon, with a 

high removal capacity being reported in the pH range between 2.0 and 7.0.  
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3.5 Kinetic models 

The characterization of the adsorption kinetics provides important information about the adsorption mechanism, which is 

essential to evaluate the adsorption efficiency (Munagapati et al., 2021). Experimental data were fitted using pseudo-first-order 

and pseudo-second-order models. The linearized mathematical expression for the pseudo-first order model is shown in Equation 

3 (Veit et al., 2014). 

 

𝐥𝐧( 𝒒𝒆 − 𝒒𝒕) = 𝒍𝒏𝒒𝒆 − 𝒌𝟏𝒕                                           (3) 

 

where, qt (mg g‒1) and qe (mg g‒1) are the amount of solute adsorbed over time t and the amount adsorbed when equilibrium is 

reached, respectively, k1 (min‒1) is the pseudo-first order adsorption rate constant and e t (min) is the contact time. Likewise, the 

linearized mathematical expression for pseudo-second order adsorption is shown in Equation 4. 

 

𝒕

𝒒𝒕
=

𝟏

𝒒𝒆
𝟐𝒌𝟐

+
𝟏

𝒒𝒆
𝑡                                                          (4) 

 

where k2 (g mg ‒1 min‒1) is the pseudo-second order adsorption rate constant. 

Figure 5 shows the fits using Equations 3 and 4 of the experimental data for the pseudo-first order (Figure 5a) pseudo-

second order (Figure 5b) models. The kinetic parameters obtained from the adjustments are shown in Table 2. 

From Figure 5a and the parameters presented in Table 2, the pseudo first order kinetic model is not adequate to describe 

the adsorption process of dye AY 17 in CA-CA700. Considering the linear regression coefficients (R2
adj) for all concentrations 

in this study, the pseudo-second order model better describes the adsorption process of AY 17 and suggests that the dye 

adsorption rate on the surface of CA-CA700 is strongly dependent on the number of species adsorbed on the surface of the 

adsorbent (availability of free sites), than the concentration of dye in the solution (Table 2). This behavior is evidenced in the 

low dependence on the velocity constant (k2), Table 2, as a function of concentration, in which almost no significant change is 

observed as a function of the concentration in the range from 75 to 150 mg L‒1. 
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Figure 5 - Adjustments to kinetic process of acid yellow dye 17 adsorption in CA-CA700, 0.5g, 20 °C at pH 6.0. 

 

Source: Authors (2021). 

 

 

Source: Authors (2021). 

 

Another parameter used to identify the kinetic controlling mechanism of the adsorption process is the proximity between 

the values of qe calculated by the theoretical (qe, cal) and experimental (qe, exp) model, in this case, the closer the proximity between 

these parameters, the greater it is the applicability of the model (Munagapati et al., 2021; Habibi et al., 2018). Table 2 shows 

that the values of qe1, cal obtained by the pseudo-first model are much lower than the values of qe, exp for all concentrations, 

Table 2 - Kinetic parameters for pseudo-first and pseudo-second orders models for acid yellow dye 17 (AY 17), 0.5 g of CA-

CA700 at 20 °C, pH 6.0. 

Co  

(mg L‒1) 

qe, exp  

(mg g‒1) 

pseudo-first order pseudo-second order 

k1 (min‒1) 

x 10‒3 

qe1, cal  

(mg g‒1) 

R2
adj k2 (g mg‒1)  

x10‒3  

qe2, cal 

 (mg g‒1) 

R2
adj 

50.0 47.9 ± 0.1 39 ± 5 11.2 0.8487 17 ± 2 48.7 ± 0.2 0.9999 

75.0 64.1 ± 0.3 40 ± 4 17.6 0.8849 9.5 ± 0.5 65.3 ± 0.1 0.9998 

100.0 78.7 ± 0.2 24 ± 3 23.3 0.8780 6 ± 1 79.3 ± 0.1  0.9996 

150.0 100.2 ± 0.2 27 ± 4 23.7 0.7709 8 ± 1 100.4 ± 0.1 0.9999 
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confirming that this model does not describe the kinetic mechanism of adsorption of AY 17 in CA -CA700. On the other hand, 

it was observed that the values of qe2, cal for the pseudo-second order model are very close to the experimental values, confirming 

that the adsorption process follows pseudo-second order kinetics. Studies in the literature for different dyes indicate that the 

adsorption process on activated carbon is described by the pseudo-second order model (Karthik et al., 2019). Njoku et al., 2014, 

studied the activated carbon adsorption kinetics of AY 17 in a concentration range of 50 to 400 mg L‒1 and reported that the 

pseudo-second order model best describes the kinetic process of AY 17.  Likewise, recent studies carried out by Munagapati et 

al., 2021 show that the adsorption of AY17 obeys the pseudo-second order model, with R2
adj greater than 0.99 for six study 

temperatures. Other works involving adsorption of AY 17 on activated carbon also portray better adjustments to this model 

(Jedynak et al., 2019; Patil et al., 2015; Ahmad et al., 2014). 

 

3.6 Adsorption isotherms  

To evaluate the adsorption capacity of CA-CA700, adsorption isotherms obtained by the graphical relationship between 

qe and Ce were used. The experimental data were adjusted according to the Langmuir, Freundlich and Temkin models, in order 

to obtain information regarding the specific surface properties and nature of the interactions between the adsorbate and the 

adsorbent (Munagapati et al., 2021; Njoku et al., 2014; Karthik et al., 2019). The Langmuir model (1918) suggests that the 

adsorption process occurs in monolayers and that the energy of the available sites is homogeneous (Njoku et al., 2014; Srivastava 

et al., 2006; Karthik et al., 2019). The mathematical expression for the linearized form of this model is shown in Equations 5 

(Langmuir, 1918; Al-Ghouti & Da’ana, 2020). 

 

𝑪𝒆

𝒒𝒆
=

𝟏

𝒌𝒃𝒒𝒎
+

𝟏

𝒒𝒎
𝑪𝒆                                            (5) 

where qm (mg g‒1) and qe (mg g‒1) are the maximum adsorption capacity per monolayer and the amount of solute adsorbed at 

equilibrium respectively, Ce (mg L‒1) is the concentration of adsorbate at equilibrium and kb (L mg‒1) is the Langmuir constant 

associated with the free energy of the adsorption process. 

Unlike the Langmuir model, the isotherm model proposed by Freundlich (1906) (Munagapati et al., 2021; Karthik et 

al., 2019); proposes that the adsorption occurs in multilayers, and that the adsorption energy decreases logarithmically as the 

surface of the adsorbent is covered (Munagapati et al., 2021; Kannaujiya et al., 2021; Njoku et al., 2014; Karthik et al., 2019; 

Al-Ghouti and Da’ana, 2020). Equation 6 shows the linearized form of the Freundlich model. 

 

𝒍𝒏𝒒𝒆 = 𝒍𝒏𝒌𝒇 +
𝟏

𝒏
𝒍𝒏𝑪𝒆                                             (6) 

Where kf (mg g‒1) (L mg‒1) 1/n and n are the Freundlich constant, related to adsorption capacity, and adsorption intensity, 

respectively (Al-Ghouti & Da’ana, 2020; Piccin et al., 2011; Inyinbor et al., 2016). 

The Temkin isotherm model, on the other hand, assumes that the heat of adsorption of all molecules in the layer 

decreases linearly with surface coverage and that the adsorbent sites are heterogeneous (Njoku et al., 2014; Inyinbor et al., 2016; 

Mane et al., 2007; Kataria et al., 2016). The mathematical expression of this model is shown in equation 07 (Saadi et al., 2015). 

 

𝒒𝒆 = 𝑩𝒍𝒏(𝑨𝑪𝒆)                                                               (7) 

In linearized form, the equation that describes the Temkin isotherm is commonly expressed as: 

 

𝒒𝒆 = 𝑩 𝒍𝒏𝑨 + 𝑩 𝒍𝒏𝑪𝒆                                              (8) 
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where B = RT/b and b (J mol – 1) is the Temkin constant related to the heat of adsorption, A (L g  – 1) is the Temkin isotherm 

constant, R (8.314 J mol – 1 K – 1) is the universal gas constant and T (K) is the absolute temperature (Njoku et al., 2014; Piccin 

et al., 2011; Inyinbor et al., 2016; Kataria et al., 2016). 

The adjustments using the Langmuir, Freundlich and Temkin (Saadi et al., 2015) models for the adsorption of AY 17 

at 20 ºC, obtained from Equations 5, 6 and 8, are shown in Figure 6. The parameters obtained from the adjustments are shown 

in Table 3. The results show that the adsorption equilibrium data of AY17 is better described by the Freundlich model, whose 

R2
adj of the adjustments was 0.9873 and the adsorption capacity constant kf equal to 47.9 (mg g–1) (L mg–1)1/n (Table 3). The 

value of the Freundlich constant (n) equal to 5.95 suggests that the adsorption process between AY 17 and CA-CA700 is 

favorable, because the higher the value of n (smaller the 1/n ratio), the stronger it is the interaction between the adsorbate and 

the adsorbent (Obaid et al., 2016; Lang et al., 2013; Al-Ghouti and Da’ana, 2020; Piccin et al., 2011; Inyinbor et al., 2016; Saadi 

et al., 2015; Delle Site, 2001). In addition, this model assumes that the process of adsorption of AY17 occurs mostly in 

multilayers (Njoku et al., 2014; Patil et al., 2015; Ahmad et al., 2014; Ashraf et al., 2013), a non-homogeneous surface, where 

the energy distribution in the sites is heterogeneous and strictly exponential (Al-Ghouti and Da’ana, 2020; Piccin et al., 2011; 

Inyinbor et al., 2016; Delle Site, 2001; Febrianto et al., 2009; Ahmad et al., 2014). Patil et al., 2015 when studying the models 

of Langmuir and Freundlich in the adsorption of dye AY 17, they also identified that the Freundlich model, in its linearized form, 

better adjusted to the experimental data, obtaining n equal to 1.85 and R2
adj equal to 0.996 confirming that the adsorption of AY 

17 occurs preferentially in multilayers. Ashraf et al., 2013 studied the adsorption of AY 17 on activated carbon produced from 

T. Angustata L. finding excellent fits to the Freundlich model. 

 

Figure 6 - Linear adjustment by Langmuir, Freundlich and Temkin models of the adsorption isotherm of AY 17 at 20 °C, Ph 6.0 

and 0.5 g of CA-CA700. 

 

Source: Authors (2021). 
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Table 3 - Adjustment parameters for the acid yellow dye adsorption isotherm models 17 at 20 °C, pH 6.0 and 0.5 g of CA-

CA700. 

Langmuir Freundlich Temkin 

Kb 

(L mg–1) 

qm 

(mg g‒1) 
R2

adj kf * n R2
adj 

A 

(L g‒1) 

B 

(J mol‒1) 
R2

adj 

0.467 98.8 0.9236 47.9 5.95 0.9873 537.5 280 0.8717 

 

* (mg g–1) (L mg–1)1/n. Source: Authors (2021). 

 

4. Conclusion  

The data reported in this study indicated that the charcoal produced from the açaí bunch in an open atmosphere, without 

the use of inert gases that make the synthesis route more expensive, is promising for the treatment of effluents and, therefore, is 

an important alternative for the reduction of these waste in the environment. CA-CA700 is effective for the removal of acid 

yellow 17, showing high adsorptive capacity under the conditions studied. The equilibrium time is reached with 200 min and the 

adsorption process of AY 17 in the CA-CA700 is described by the pseudo-second order kinetic model while the Freundlich 

isotherm model indicates that the interaction between adsorbent and adsorbate is favorable and occurs in multilayers. 

Our results represent a nice contribution and an important and necessary step in the low-cost materials adsorbents for 

removal dyes in the aqueous solutions. In future publications, the authors propose the use of adsorbent materials obtained from 

the plant biomass of the Amazon biome, mainly from extractivism, and composite materials for the treatment of textile effluents, 

heavy metals, drugs and other contaminants in water bodies and soil. 
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