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Abstract  

Bayesian Belief Networks (BBN) modeling the water quality has become popular due to advances in computational 

techniques. For this instance, BBN is a useful tool to modeling the relationship between water quality data and 

population or urbanization parameters on a watershed scale. This method can combine primary water quality data and 

decision parameters and help scientists and decision-makers analyze several scenarios on a watershed, including the 

effect of scale. This paper aims to analyze and discuss the application of Bayesian Belief Network (BBN) on the 

relationship between watershed water quality and sanitary management indicators, studying a case on the Pantanal 

Wetland tributary watershed. Two scales BBN were constructed using ten years of water quality and sewage 

management datasets. Both BBNs were responsive and sensitive to water quality parameters. The Total Nitrogen and 

E. coli were de most essential parameters to simulate changes in water quality scenarios. The simulated scenarios 

showed structural limitations about the Pantanal Wetland Cities' sanitary system in the present study. We strongly 

recommend a review of the goals of sanitary structure and services and alert to the risk of a sanitary crisis in Pantanal 

Wetland. 

Keywords: Sewage; Urbanization; River ecology. 

 

Resumo  

Bayesian Belief Networks (BBN) modelar a qualidade da água tornou-se popular devido aos avanços nas técnicas 

computacionais. Para este caso, o BBN é uma ferramenta útil para modelar a relação entre dados de qualidade da água 

e parâmetros populacionais ou de urbanização em uma escala de bacia hidrográfica. Esse método pode combinar 

dados primários de qualidade da água e parâmetros de decisão e ajudar cientistas e tomadores de decisão a analisar 

vários cenários em uma bacia hidrográfica, incluindo o efeito de escala. Este artigo tem como objetivo analisar e 

discutir a aplicação da Bayesian Belief Network (BBN) na relação entre a qualidade da água de uma bacia 

hidrográfica e os indicadores de gestão sanitária, estudando um caso na bacia afluente do Pantanal. Duas escalas BBN 

foram construídas usando dez anos de conjuntos de dados de qualidade da água e gestão de esgoto. Ambos os BBNs 

foram responsivos e sensíveis aos parâmetros de qualidade da água. O Nitrogênio Total e E. coli foram os parâmetros 

mais essenciais para simular mudanças nos cenários de qualidade da água. Os cenários simulados mostraram 

limitações estruturais sobre o sistema sanitário das Cidades do Pantanal do presente estudo. Recomendamos 

fortemente a revisão das metas de estrutura e serviços sanitários e alertamos para o risco de crise sanitária no 

Pantanal. 

Palavras-chave: Esgoto; Urbanização; Ecologia do rio. 
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Resumen  

Las redes de creencias bayesianas (BBN) que modelan la calidad del agua se han vuelto populares debido a los 

avances en las técnicas computacionales. Para este caso, BBN es una herramienta útil para modelar la relación entre 

los datos de calidad del agua y los parámetros de población o urbanización a escala de cuenca. Este método puede 

combinar datos primarios de calidad del agua y parámetros de decisión y ayudar a los científicos y a los encargados de 

tomar decisiones a analizar varios escenarios en una cuenca, incluido el efecto de escala. Este artículo tiene como 

objetivo analizar y discutir la aplicación de Bayesian Belief Network (BBN) sobre la relación entre la calidad del agua 

de la cuenca y los indicadores de gestión sanitaria, estudiando un caso en la cuenca tributaria del Pantanal. Se 

construyeron dos BBN a escala utilizando diez años de conjuntos de datos de gestión de aguas residuales y calidad del 

agua. Ambos BBN respondieron y fueron sensibles a los parámetros de calidad del agua. El Nitrógeno Total y E. coli 

fueron los parámetros más esenciales para simular cambios en los escenarios de calidad del agua. Los escenarios 

simulados mostraron limitaciones estructurales sobre el sistema sanitario de las Ciudades de Humedales del Pantanal 

en el presente estudio. Recomendamos encarecidamente una revisión de las metas de estructura y servicios sanitarios 

y alertar sobre el riesgo de una crisis sanitaria en el Pantanal.  

Palabras clave: Aguas residuales; Urbanización; Ecología fluvial. 

 

1. Introduction 

Bayesian Belief Networks (BBN) modeling the water quality has become popular due to advances in computational 

techniques. Several studies demonstrated the importance of developing theses methods with or without another statistical 

approach (Ancione et. al., 2020; Farooqi et al., 2020; Kang et al., 2020; Mayfield et al., 2019; Panidhapu et al., 2019; Avila et 

al., 2018). 

As another emergent country in the global south, Brazil has many challenges about sanitary and water quality issues. 

As discussed by Borrero-Ramírez and Mosquera-Becerra, (2020) the current sanitary crisis on the global south is understood in 

the context of health systems that have experienced significant transformations in the last decades due to the market-driven 

actors to influence health policy decisions. A very complex scenario needs to be solved, and a decision can consider several 

physical, geographical, and policy variables. 

Differentially of well-developed nations of the world, scientific decision-based tools are needed urgently in these 

areas. For this instance, BN is a useful tool to modeling the relationship between water quality data and population or 

urbanization parameters on a watershed scale (Fasaee et al., 2021; Salman et al., 2021; Forio et al., 2015). This method can 

combine primary water quality data and decision parameters and help scientists and decision-makers analyze several scenarios 

on a watershed, including the effect of scale. 

Look at closing in Brazil, specifically in Pantanal Wetland, the world's largest wetland; one of the many 

environmental problems is sewage treatment. Recently, the wildfires call the attention of the world due to severity of the 

wildflife and extension of the burned area (Pivello et al., 2021). However, we attempt for another emergent disaster: the 

sanitary crisis. These can occur due to the disruption between policy decisions and scientific indicators, such as water quality 

index (WQI). 

A critical issue to modeling the relationship between the population and the urbanization effect over watershed water 

quality. In these situations, the decision-makers need a tool to compare different population levels and their impact on water 

quality goals.  

This scale effect is particularly significant when considering the practice effect of decision-makers over watershed 

management. In practical aspects, managers can be using the specific concept of jurisdiction to define the geographic limits of 

their actions. Several approaches used the hierarchy effect in space and time to understand these (Sha et al., 2014; Zhang et al., 

2018; Liu et al., 2019). Accordilig Wan et al. (2014) process-based watershed pollution models have proved useful to simulate 

complex processes, for example, a Bayesian hierarchical model that investigated the effects of air pollution on health over 

time. 
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This paper aims to analyze and discuss the application of Bayesian Belief Network (BBN) on the relationship between 

watershed water quality and sanitary management indicators, studying a case on the Pantanal Wetland tributary watershed. 

 

2. Methodology 

2.1 Study area characterization 

The study was carried out in the Vermelho River basin (15º30'/17º15' S and 53º45'/ 55º00' W), are located in the 

southeastern region of the State of Mato Grosso, Brazi (Figure 01). The basin occupies an area of approximately 150,802 ha. 

(Souza & Loverde-Oliveira, 2014) and is an essential contributor to the Pantanal Wetlands. The main uses and occupations are 

cattle raising, followed by soybean, corn, and cotton crops, in addition to urbanized areas. The city of Rondonópolis. It has the 

largest population in the basin with 232,491 inhabitants, with a demographic density of 47.00 inhab./km². 

The Rio Vermelho Basin has high ecological complexity and needs priority attention. Included in the area are three 

indigenous communities (Tadarimana, Jarudore, and Tereza Cristina), with the Tadarimana indigenous land covering about 

9,785 ha, equivalent to the current urban area of the Municipality of Rondonópolis. Two large state conservation units are also 

located (Dom Osório Stoffel State Park, 6,421.69 ha and RPPN João Basso 3,624.57 ha). Two hydropower plants (Ponte de 

Pedra, 176 MW and Rondonópolis 26.60 MW) also share in the territory of the basin. 

 

Figure 1: Vermelho River Basin and Pantanal Wetland. 

 

Source: Elaborated by the authors (2022). 

 

2.2 Water quality database 

The Vermelho River Water quality Dataset was obtained from governmental water quality databases (Secretaria 

Estadual de Meio Ambiente – SEMA MT) and the official sanitary management indicators by the national database of 

sanitation (National System of Sanitation Information -SNIS). Complementary hydraulic data (river discharge) was obtained 

by the National Water Authority (Agencia Nacional de Águas – ANA). The period selected to study was between 2006 and 

2017 due to previous database consistency study (Garcia, et al. 2020). A total of 1778 points of dataset over 14 variables were 

select to study. 
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The original dataset variables were paired by supervisoned and manual selection, when inconsistent and no-data cases 

were excluded from making the cases. Nodes named each select variable, and thus, the Conditional Probability Table (CPT) 

was created. To evaluate the watershed's scale effect in this study, we created two CPTs from the total basin dataset (BBNw) 

and only the Rondonopolis city influence area (BBNc).  

 

2.3 Conceptual model and basic network algorithm 

The essential criteria to define the structure of the network are described in Ramin et al. (2012), Wijesiri et al. (2018), 

and Panidhapu et al. (2020). In synthesis, we used a supervised conceptual model to design the basic algorithm using in the 

construction of BNN (Figure 2). The model was constructed based on previous studies (Silva, et al, 2020) when was 

demonstrated the effect of seasonality (rain and dry seasons) on the water quality variables. The effect of urbanization and 

sanitation systems at the river basin scale on the water quality was discussed in another previous study (Garcia, et al. 2020). 

The analysis considered the multivariate statistical correlation between the water quality variables on time and space scales. In 

the synthesis, the major water quality driving forces at Rio Vermelho basis are the seasonality that changes turbidity, 

suspended solids, and total coliforms. Urbanization and Population growth change majority Nitrogen, Phosphorus, C.O.D. 

Colour, and E. coli. Finally, all these variables change de W.Q.I. index.  

 

Figure 2: Conceptual model used as a basic algorithm to design the Bayesian Belief Network (BBN) in this study, based on 

limnological and ecological concepts. In the left the general model, and in the right the river water quality sub-model. 

 

Source: Elaborated by the authors (2022). 

 

2.4 BBN model construction and validation 

A typical mathematical representation of a Bayesian Belief Network is (BBN), can be formulated by BBN= (G, Θ), 

where BBN G is a directed acyclic graph (DAG), in which its nodes X1, X2, …Xn, represents random variables (nodes) and 

their links represent direct dependencies between these variables, and Θ represents the set of BBN parameters, P (Xi|Ai) (i = 1, 
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2, …, n) for each Xi conditioned on the set of Ai (parents of Xi in G). The conditional dependence and P(X) described by 

Eqquation (1):  

 

………………………………….(1) 

 

The goal of these modeling is to create scenarios for simulation when the decision-makers evaluate the impact of the 

sewage system and urbanization on the water quality. The Bayesian Belief Network (BNN) was constructed using the primary 

data along 10 years of a dataset. We construct two CPT based on historical datasets to evaluate the basin-scale effect: BBN to 

whole watershed (BBNw) and BBN to greatest city basin (Rondonópolis City) called BBNc.  

In both cases, two entrance variables (node) are the Population With Sanitary System (PWS), which means the 

absolute value of the people that access adequate wastewater disposal and, Water Consumption (WCS), means the total volume 

(m3) of water consumption by the population in the study. These entrances nodes were considered the best to the goals because 

are clear to decision-makers and other stakeholders create executive action plans. 

To construct the two BNNs for testing the basin-scale effect, the whole watershed (BBNw), and the greatest city basin 

(Rondonópolis City) called BBNc, we adjusted the cases and the CPT to the nodes PWS, WCS, and VST. In both cases, we 

use the validation criteria described below. The other nodes of the river water quality are the same in both scenarios.  

The final node is the Water Quality Index (WQI), which means the goal of water quality management. We used the 

software NETICA (Norsis, version 6.07) to construct and-run the BNN. The primary data was used to construct the 

Conditional Probabilities Table (CPT) and the discretization criteria into three levels, was conducted by expert analysis. All 

nodes and their value characteristics are described in Table 1. 

 

Table 1: Nodes of the BNNs in this study. Range values are the discretization criteria. 

Variable 
Code 

name 
Unity 

Mean (+ S.D.) 

database BBNc 

Mean (+ S.D.) 

database BBNw 

BBNc Range 

Values 

BBNw Range 

Values 
Discretization 

Population With 

Sanitary System 
PWS 

Number of 

people 

68457,24 86174,67 52.664 to 

106.214 

55.000 to 

110.249 
Low 

± ± 

Population With 

Sanitary System 
PWS 

Number of 

people 
18149,08 43301,07 

106.214 to 

159.765 

110.249 to 

165499 
Medium 

Population With 

Sanitary System 
PWS 

Number of 

people 
    

159.765 to 

213.316 

165.499 to 

220.749 
Height 

Water Consumption WCS m3 
10907,5 12701,51 7.413,6 to 

9.846,86 

8.773,82 to 

10.973,64 
Low 

± ± 

Water Consumption WCS m3 2184,41 1986,31 
9.846,86 to 

12.280,13 

10.973,64 to 

13.173,46 
Medium 

Water Consumption WCS m3     
12.280,13 to 

14.713,4 

13173,46 to 

15.373,28 
Height 
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Volume Sewage 

Treated 
VST m3 

4137,05 4627,04 2.977 to 

5.125,66 

3.029 to 

5.195,32 
Low 

± ± 

Volume Sewage 

Treated 
VST m3 933,55 1482,02 

5.125,66 to 

7.274,32 

5.195,32 to 

7.361,64 
Medium 

Volume Sewage 

Treated 
VST m3     

7.274,32 to 

9.423 

7.361,64 to 

9.527,97 
Height 

Quarterly Average 

Flow 
QAF m³/s 

144,17 96,01 56.86 to 

144,23 
6 to 115 Low 

± ± 

Quarterly Average 

Flow 
QAF m³/s 86,38 83,01 

144,23 to 

239,16 
115 to 124 Medium 

Quarterly Average 

Flow 
QAF m³/s     

239,16 to 

334,097 
224 to 335 Height 

Color COL UC 
67,14 62,83 

6 to 136 2 to 133 Low 
± ± 

Color COL UC 59,44 56,2 136 to 266 133 to 264 Medium 

Color COL UC     266 to 396 264 to 397 Height 

Biochemical Oxygen 

Demand 
BOD mg/L.O2 

21,52 24,47 
6 to 44 6 to 44 Low 

± ± 

Biochemical Oxygen 

Demand 
BOD mg/L.O2 10,79 15,68 44 to 82 44 to 82 Medium 

Biochemical Oxygen 

Demand 
BOD mg/L.O2     82 to 120 82 to 120 Height 

Total Nitrogen TNI mg/L.N 
1,14 1,28 

0,05 to 1,46 0,05 to 1,9 Low 
± ± 

Total Nitrogen TNI mg/L.N 1,13 1,23 1,46 to 2,88 1,9 to 3,8 Medium 

Total Nitrogen TNI mg/L.N     2,88 to 4,3 3,58 to 5,6 Height 

Total Coliforms TCO NMP/100ml 
20103,76 18708,29 1.986 to 

9.389,33 
435 to 8355 Low 

± ± 

Total Coliforms TCO NMP/100ml 7163,67 7817,89 
9.389,33 to 

16.792,66 

8.355 to 

16.275 
Medium 

Total Coliforms TCO NMP/100ml     
16.792,66 to 

24.196 

16.275 to 

24.196 
Height 

Non-filterable 

Residue 
NFR mg/L 

106,93 88,77 
2 to 446 1 to 445 Low 

± ± 

Non-filterable 

Residue 
NFR mg/L 213,55 176,03 446 to 890 445 to 889 Medium 
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Non-filterable 

Residue 
NFR mg/L     890 to 1.334 889 to 1.334 Height 

Escherichia coli ESC NMP/100ml 
9549,17 6764,29 201 to 

8.202,66 
20 to 8078 Low 

± ± 

Escherichia coli ESC NMP/100ml 9648,21 8387,85 
8.202,66 to 

16.199,33 
8.078 to 16137 Medium 

Escherichia coli ESC NMP/100ml     
16.199,33 to 

24.196 

16.137 to 

24.196 
Height 

Total Phosphorus TPH mg P/L 
0,21 0,27 

0,05 to 0,61 0,02 to 0,82 Low 

± ± 

Total Phosphorus TPH mg P/L 0,16 0,38 0,61 to 1,17 0,82 to 1,63 Medium 

Total Phosphorus TPH mg P/L     1,17 to 1,74 1,63 to 2,44 Height 

Turbidity TUR NTU 
209,64 171,12 

1,5 to 1.251 0,07 to 1250 Low 
± ± 

Turbidity TUR NTU 657,53 495,58 
1.251 to 

2.501,16 
1.250 to 2.500 Medium 

Turbidity TUR NTU     
2.501,16 to 

3.751 
2.500 to 3.752 Height 

Total Residue TRE mg/L 
210,52 213 

20 to 513 20 to 513 Low 
± ± 

Total Residue TRE mg/L 237,6 234,3 513 to 1.006 513 to 1.006 Medium 

Total Residue TRE mg/L     1.006 to 1.499 1.006 to 1.500 Height 

Water Quality Index WQI   
55,76 57,74 

0 to 50 0 to 50 Bad 

± ± 

Water Quality Index WQI   9,35 10,86 50 to 70 50 to 70 Medium 

Water Quality Index WQI       70 to 100 70 to 100 Good 

Source: Elaborated by the authors (2022). 

 

The validation of BNN modeling was conducted accordingly Marcot et al. (2006). In synthesis, we create de CPT for 

nodes and discretize using expertise-based criteria. All the nodes appear with their states (height, medium, or low) based on the 

maximum, medium, and minimum value. Next, using NETICA®, the directed acyclic graph (DAG) was created hen arcs 

connect the nodes according to the basic conceptual model described in Figure 2. To the network learning, we use the 

expectation-maximization (EM) algorithm. The WQI node was used as a reference to test with cases, evaluating the prediction 

accuracy of BNN model by analysis of confusion matrix comparing predicted with actual outcomes. Additionally, the Error 
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rate (%), Logarithmic loss, Quadratic loss and, Spherical payoff parameters were used as model quality criteria. Finally, by 

specialist judgment, the DAG was adjusted by ordering the arcs and nodes for the maximum fit of network parameters 

described above. The final BBN is shown in Figure 3. 

 

Figure 3: The BBN developed in this study. The structure were used in both BBNw and BBNc. 

 

Source: Elaborated by the authors (2022). 

 

3. Results and Discussion  

3.1 BBNs performance and validation 

We discuss the results in two ways: the performance of two BNNs and the potential of clearance water quality and 

sewage management scenarios. As shown in Table 02, the results of the validation parameters for two BNNs can be viewed as 

a scalar effect. Adjusting the cases from BBNw (126 cases) to BBNc (64 cases) was reduced due to some data that don't cover 

the watershed area under the influence for Rondonópolis city.  

 The 3x3 confusion matrix (Table 02) shown the accuracy of both BBN. The overall error rate can be considered 

acceptable for both BBNs (26,98% and 13,79 %, from BBNw and BBNc, respectively). In the BBNw the Medium state can't 

predict correctly at 16,6% level. In the BNNc the most important error is Bad state at 12,5%. In both cases, as expected, the 

good state doesn't show results to predicted, due to the river WQI don't have sufficiently good states data to machine learning. 

The WQI of the Vermelho river doesn't have good quality state, as demonstrated by database analysis.  

As discussed by Marcot et al. (2006), the confusion matrix is shown how the number of known cases that were 

correctly classified. This approach is a parameter of the quality of the capture model and can be used to interpret the 

simulations. In this case, the average of correct classifications of both models is around 79,5%. 

This result can be to infer too the effect of the watershed scale on the model accuracy. The BNNc is more accurate 

due to BNNw, probably due to the effect of Rondonópolis city on the water quality is more pronounced when compared with 

the whole basin. In other words, the loss of water quality (WQI) can be explained by changes on population parameters (PWS, 

WC, and VST). In BBNw we consider the particular effect to waste disposal on the loss of accuracy of the model. In Brazilian 

small cities, as a Vermelho river basin, is common the urban wastewater disposal occurs by septic tanks or open defection, and 

don't result in a significative change on the surface waters.  

http://dx.doi.org/10.33448/rsd-v11i3.26309
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Table 2: Confusion matrix, Error rate, Logarithmic loss, Quadratic loss, and Spherical payoff to BBNw and BBNc to evaluate 

the accuracy of the models. 

Confusion Matrix from WQI 

Predicted BBNw (126 cases) Predicted BBNc (64 cases) 
Actual 

    Bad     Medium      Good      Bad     Medium      Good  

      22         10              0          8              1               0      Bad  

       3          70              0             2             17              0     Medium 

       0          21              0             0              1               0      Good 

Error rate = 26.98% Error rate = 13.79% 

Scoring Rule Results: 

Logarithmic loss = 0.5778 Logarithmic loss = 0.3035 

Quadratic loss   =   0.3718 Quadratic loss   =   0.1878 

Spherical payoff = 0.7869 Spherical payoff = 0.8963 

Source: Elaborated by the authors (2022). 

  

The sensitivity of findings to target node WQI in table 03, reported the variance reduction of WQI nodes (as variables 

on the dataset) due to a finding another single node. The top five nodes of both BBN represents the same variables, including 

the importance ordering of these. These result can be interpreted as both BBN scale approaches can be suitable for the 

conceptual model. At watershed-scale analysis (BBNw) E. coli is more important to WQI variance reduction while compared 

when city-scale (BBNc). Another hand, the total nitrogen changes impact the WQI on the watershed scale (BBNw). 

  

Table 3: Sensitivity of findings from capture the WQI of Vermelho River basin in two watershed scales. (BBNw and BBNc). 

BBNw 

Node Variance Reduction Percent 

TNI 33.69 7.69 

ESC 23.08 5.27 

COL 19.45 4.44 

TCO 2.862 0.653 

BOD 2.087 0.476 

BBNc 

Node Variance Reduction Percent 

TNI 79.94 16.3 

ESC 17.79 3.64 

COL 4.862 0.994 

TPH 4.367 0.893 

BOD 2.344 0.479 

Source: Elaborated by the authors (2022). 

 

3.2 Scenario simulations 

For water quality simulations, three major scenarios were selected into entrance conditions: Sewage Services, Sewage 

Structure, and Water consumption om BBNw. The beliefs of WQI index changes were analyzed. Other scenarios were 

conducted (not shown here). The results are shown in Table 04. In synthesis, high sanitary services and structure reduce beliefs 

of states Bad and Medium WQI and increase the Good ones. Another hand, high water consumption increases the beliefs of 

Bad and Medium states of WQI. 

These results can be interpreted as a result of the impact of management decisions on water quality. In Brazil the 

sewage structure is different by their services ones. The structure is a physical extension of the sewage network, and the 
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services are the number of people who use these services. Another result is the changes of WQI is a majority over Bad and 

Medium states. As described in 2.1 section, the Good state doesn't frequently appear in the data set, and the network learing 

captures these. 

Finally, Best and Worst Scenarios was created combining the conditions of entrances nodes: Best scenario: High 

Structure and sewage services with Low Water Consumption. Worst Scenario, Low Structure and Sewage Services with High 

Water consumption. The results show in Table 04 reveals the same tendency as other scenarios, when the best management 

practices reduce the beliefs over Bad and Medium states of WQI. However, don't increase the Good state of WQI significantly. 

 

Table 4: Beliefs of WQI changes by selected scenarios. 

WQI index 
WQI Scenarios - Beliefs 

Low Sewage Services Hight Sewage Services 

Bad 0,21 0,24 

Medium 0,62 0,58 

Good 0,17 0,18 

   

 Low Sewage Structure Hight Sewage Structure 

Bad 0,20 0,24 

Medium 0,62 0,56 

Good 0,18 0,19 

   

 Low Water Consumption Hight Water Consumption 

Bad 0,21 0,24 

Medium 0,61 0,60 

Good 0,17 0,17 

 Best Scenario Worst Scenario 

Bad 0,24 0,20 

Medium 0,56 0,62 

Good 0,19 0,18 

Source: Elaborated by the authors (2022). 

 

4. Conclusion  

Both BBNs were responsive and sensitive to water quality parameters. In two analyzed scales (whole watershed and 

city influence) Total Nitrogen and E. coli were de most essential parameters to simulate changes in water quality scenarios.  

The simulated scenarios showed a structural limitations about the Pantanal Wetland Cities' sanitary system in the 

present study. Probably, even in the best scenario, the beliefs don't indicate a Good state of WQI of Vermelho River due to 

limitations of dataset or the insufficient sanitary system structure. We strongly recommend a review of the goals of sanitary 

structure and services and alert to the risk of a sanitary crisis in Pantanal Wetland. 

As a suggestion for future research, it is the application of the methodology in other river basins, with some 

adaptations of the intrinsic variables. This method is scalable to consider large geographical areas because the same decisions 

can cover several river basins. However, the gap effect of decisions will need to be considered an essential factor in model 

adjustments. Some environmental effects do not model by decision-making presupposes because they are not a result of 

decisions but by an absence of initiatives. This paradox addresses a future scientific discussion. 
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