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Abstract  

In late 2019, a new type of coronavirus emerged in China and was named SARS-CoV-2. It first impacted the country 

where it emerged and then spread around the world. SARS-CoV-2 is the cause of COVID-19 disease that leaves 

characteristic impressions on chest CT images of infected patients. In this article, we propose a classification model, 

based on CNN and wavelet transform, to classify images of COVID-19 patients. It was named WCNN-COVID. The 

model was applied and tested in open and private TC image repositories. A total of 25534 images of 200 patients were 

processed. The confusion matrix was generated by calculating Accuracy (ACC), Sensitivity (Sen) and Specificity 

(Sp). The Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUCs) were also plotted and 

used for evaluation. Metric results were ACC = 0.9950, Sen = 99.16% and Sp = 99.89%. 

Keywords: CT images; Convolutional Neural Networks; COVID-19; Wavelets; WCN-COVID. 
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Resumo  

No final de 2019, um novo tipo de coronavírus surgiu na China e recebeu o nome de SARS-CoV-2. Primeiro impactou 

o país onde surgiu e depois se espalhou pelo mundo. O SARS-CoV-2 é a causa da doença COVID-19 que deixa 

impressões características nas imagens de TC de tórax dos pacientes infectados. Neste artigo, propomos um modelo 

de classificação, baseado em CNN e transformada wavelet, para classificar imagens de pacientes COVID-19. Ele foi 

denominado WCNN-COVID. O modelo foi aplicado e testado em repositórios de imagens de TC abertos e privados. 

Foram processadas 25534 imagens de 200 pacientes. A matriz de confusão foi gerada pelo cálculo de Acurácia (ACC), 

Sensibilidade (Sen) e Especificidade (Sp). A curva Receiver Operating Characteristic (ROC) e a Área Sob a Curva 

(AUCs) também foram plotadas e usadas para avaliação. Os resultados das métricas foram ACC = 0,9950, Sen = 

99,16% e Sp = 99,89%. 

Palavras-chave: Imagens de TC; Redes Neurais Convolucionais; COVID-19; Wavelets; WCNN-COVID. 

 

Resumen 

A fines de 2019, surgió un nuevo tipo de coronavirus en China y se denominó SARS-CoV-2. Primero impactó en el 

país donde surgió y luego se extendió por todo el mundo. El SARS-CoV-2 es la causa de la enfermedad COVID-19 

que deja impresiones características en las imágenes de TC de tórax de pacientes infectados. En este artículo, 

proponemos un modelo de clasificación, basado en CNN y transformada wavelet, para clasificar imágenes de 

pacientes con COVID-19. Se llamó WCNN-COVID. El modelo fue aplicado y probado en repositorios de imágenes 

TC abiertos y privados. Se procesaron 25534 imágenes de 200 pacientes. La matriz de confusión se generó calculando 

la Precisión (ACC), la Sensibilidad (Sen) y la Especificidad (Sp). La curva característica operativa del receptor (ROC) 

y el área bajo la curva (AUC) también se trazaron y utilizaron para la evaluación. Los resultados métricos fueron ACC 

= 0,9950, Sen = 99,16 % y Sp = 99,89 %. 

Palabras clave: Imágenes de TC; Redes Neuronales Convolucionales; COVID-19; Wavelets; WCN-COVID. 

 

1. Introduction 

The first official COVID-19 (COronaVIrus Disease 2019) case was of a patient hospitalized in Wuhan, province of 

Hubei, China, on December 12, 2019. Nonetheless, retrospective studies identified a clinical case with the same symptoms of 

the disease back on December 1st, 2019. Exams showed the existence of a virus in the patient’s lung fluids, which led to the 

discovery of a new coronavirus (CoV) which belongs to the Coronaviridae family. It was initially called Wuhan coronavirus 

(WHCV), then, 2019-nCoV, then, finally, SARS-CoV-2. 

Coronaviriadae can cause respiratory, enteric, liver, and neurological diseases in domestic animals and persons (Zhu 

et al., 2011). They also have a phylogenetic relation to coronaviruses that cause severe acute respiratory syndrome (SARS) and 

Middle East Respiratory Syndrome (MERS) (Zhu et al., 2020). COVID-19, SARS, and MERS had a zoonotic origin, and bats, 

civets, and camels, respectively transmitted their virus.  

Due to the COVID-19 global pandemic impact, there have been made international efforts toward simplifying the 

access to viral data and metadata through data repositories around the world, such 2019 Novel Coronavirus Resource 

(2019nCoVR) (Wu., 2013) and the National Center for Biotechnology Information (NCBI) (Sherry, et al., 2001). The more 

accessible the information is, the more likely it is that a set of medical countermeasures be developed quickly to control the 

disease around the world, as has happened with other diseases on other occasions (dos S Ribeiro, et al., 2018; Simon et al., 

2005; Ribeiro et al., 2018). Research in medical image processing is being performed to classify radiology image and clinically 

aid with the disease prognostic for patients who develop lung infection, using chest X-ray images or computed tomography 

(CT) scans (Zhang et al., 2020; Ozturk et al., 2020; Dai, et al., 2020). Radiology images show similarities amongst COVID-19 

patients and some other type of viral pneumonia, namely SARS and MERS. In the medical image processing field, research 

were conducted to develop machine learning methods to classify image COVID-19, either using CT scan images or chest X-

ray ones (Zhang et al., 2020; Ozturk et al., 2020; Sethy & Behera, 2020; Wang & Wong, 2020; Abbas et al., 2020; Narin et al., 

2020; Bassi & Attux, 2020; Chen, et al., 2020; Wu, et al., 2020; Yang, et al., 2020). 

Deep learning is a machine learning technique and has been used in research with radiology images since early 

Artificial Intelligence development stages (Zhang et al., 2020; Sethy & Behera, 2020; Wang & Wong, 2020; Abbas et al., 
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2020; Chen, et al., 2020). It allows computer models to learn how to represent data in various levels of abstraction and layers 

of processing (Zhang et al., 2020; LeCun et al., 2015; Martin, et al., 2020). Radiology images of patients with COVID-19 

presents common features that might show a pattern, but this pattern it is not visible for radiologist, so deep learning can be an 

effective tool to aid specialists to analyze great volumes of data generated by CT images (Zhang et al., 2020; Martin, et al., 

2020).  

To create a model that achieves high measures of accuracy, we optimize the classification process in such way the 

wavelet transform decomposes and extracts images features. To determine the accuracy of the model, we classify CT images 

of patients affected by COVID-19. The images were obtained both from open and private repositories whose are further 

described. As the wavelet transform step is quite relevant, our model is named Wavelets and Convolutional Neural Network 

(WCNN-COVID). 

 

2. Methodology  

The methodology for development of WCNN-COVID was created based on ideas inspired in the work of  (Guo, 

Seyed Mousavi, Huu Vu, & Monga, 2017) and consists of five steps bellow.  

First step: preparing the development environment. WCNN-COVID was programmed and trained in  Python 

language with Keras library (Chollet, 2016). The model was developed using a I7-8750H Intel processor, 2.21GHz CPU, 16.0 

GB RAM and a GeForce GTX 1060 graphic card with Max-Q Design.  

Second step: Defining the network parameters. In the first training, weights are initialized randomly. The network 

was trained as per the ADAM model (Wani, Bhat, Afzal, & Khan, 2020). Standard parameters β_1= 0.9 and β_2= 0.999 were 

used (Kingma & Ba, 2014), as well as the initial learning rate α = 0.001 reduced by a factor of 10. To choose the input 

parameters suitable values and the batch size of WCNN-COVID, several tests were performed using the images repository of 

the Hospital São Lucas, from PUCRS. The tests considered the computation capacity of the available hardware. For 200x200 

and 220x220 entries, the lot size was 20. For larger entries, the batch-size was 10. The input tests were performed in 100 

epochs. The test that obtained the best accuracy result was the one that considered a 300x300 input and batch-size of 10, as 

depicted in Figure 1. 

 

Figure 1. Choice of WCNN-COVID Input Size (200x200, ..., 300x300). 

 

Source: Created by authors. 
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Third step: image pre-processing is responsible to generate the WCNN-COVID input. The images are decomposed 

into 3 approximate coefficients, horizontal and diagonal using the discrete wavelet transform Coiflet 5 family, with one level 

of decomposition. The combination of the coefficients creates a new digital image in which the Red, Green, and Blue (RGB) 

channels are replaced by the approximate, horizontal, and diagonal coefficients, respectively. 

Fourth step: network training. The network was trained through 10 training and testing cycles. In each cycle, the 

training and test bases were created, randomly selecting COVID and NON-COVID images from the available bases. The 

proportion of 70% of the images was respected for training, 15% for testing and 15% for validation. In the validation stage, the 

weights obtained by carrying out the tenth training and test cycle were considered. According to the progression of the cycles, 

the weights of the lowest error rate, or the highest accuracy value in training are used to start it up in the subsequent cycle. For 

example, the weights of the first cycle were used to initialize the network in the second cycle, and so on. This technique 

contributed to increase the accuracy of the model. Figure 2 illustrates our weight transfer strategy between cycles. 

 

Figure 2. Sequencing of the WCNN-COVID weights between cycles. 

 

Source: Created by the authors. 

 

Fifth step: Calculating the metrics used to measure the performance of the WCNN-COVID model. These metrics are 

commonly used to assess the performance of classification algorithms (Ruuska, et al., 2018; Skansi, 2018; Khatami et al., 

2017). There is a standard way to show the number of true positives (TP), false positives (FP), true negatives (TN) and false 

negatives (FN) to be more visual. This method is called confusion matrix. For a classification of two classes, the confusion 

matrix is presented on Table 1. 

 

Table 1. Example of a confusion matrix. 

 Classifier says YES Classifier says NO 

In reality YES True positives False positives 

In reality NO False negatives True negatives 

Source: Adapted from Skansi (2018). 
 

The confusion matrix allows to determine the following metrics (Narin et al., 2020; Ruuska, et al., 2018; Skansi, 

2018; Khatami et al., 2017): 

• Accuracy (ACC): accurate classification rate as per the total number of elements calculated by 

  

• Sensitivity (Sen): true positive rate calculated by   
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• Specificity (Sp): true negative rate calculated by    

• Receiver Operating Characteristic Curve (ROC curve): ROC accuracy ratio is a common technique for default 

probability models accuracy judging (Shirazi et al., 2018). 

 

3. Related Work 

WCNN-COVID was conceived to handle CT images; nonetheless, in this section we considered related works on 

dealing COVID-19 using chest CT images. Research papers (Chen, et al., 2020; Wu, et al., 2020; Yang, et al., 2020; Ozkaya et 

al., 2020; Barstugan et al., 2020; Wang, et al., 2020; Chen(a), et al., 2021) proposes to classify pneumonia caused by COVID-

19 in computed tomography (CT) images. All these papers were based on deep learning models, either a new model was 

developed, or a transfer learning technique was used in pre-existing models. The chest CT image repositories used were from 

different locations: 

• Renmin Hospital of Wuhan University (RHWU) (Chen, et al., 2020; Wu, et al., 2020). 

• The First Hospital of China Medical University (1st HCMU) (Wu, et al., 2020). 

• The Fifth Affiliated Hospital of Sun Yat-sen University (Chen(a), et al., 2021). 

• Beijing Youan Hospital (BYH) in China (Wu, et al., 2020). 

• Shanghai Public Health Clinical Center (Yang, et al., 2020). 

• Societa Italiana di Radiologia Medica e Interventistica (Ozkaya et al., 2020; Barstugan et al., 2020). 

• Picture Archiving and Communication System (PACS) from the radiology department (Union Hospital, Tongji 

Medical College, Huazhong University of Science and Technology) (Wang, et al., 2020). 

These papers presented various results, for instance, as far as accuracy was concerned, the lowest accuracy value was 

76%, and the highest, 99.68%. 

 

4. The WCNN-COVID model  

The WCNN-COVID was created to integrate the digital image pre-processing and processing by decomposing images 

using wavelet transform and machine learning with deep neural networks. Such integration happened aiming at better accuracy 

and classification optimization. The following subsections describe both the integration workflow and the components and 

techniques used. We can see the integration workflow presented on Figure 3. 

 

Figure 3. Diagram of the proposed methodology to classify COVID-19. 

 

Source: Created by authors. 

 

The next section presents the activities of WCNN-COVID’s database creation. 
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5. Database Creation 

The database used to train and evaluate the WCNN-COVID is composed by 200 patients, subdividided into two sub-

databases: i) COVID, composed by 100 positively tested patients for COVID-19; and ii) NON-COVID, composed by 100 

negatively tested patients. The images patient came from five repositories, being four open source and one private: 

• COVID-19 CT scans data set (KAGGLE) (Maranhão, 2020). 

• MosMedData dataset: COVID19_1000 Dataset (MosMedData, 2020). 

• NIH Clinical Center dataset: dataset of 32,000 CT images (Summers, 2020). 

• Data set UESTC-COVID-19 (Wang(d), et al., 2020). 

• COVID-19 (private) data set formed by CT images from PUCRS Hospital São Lucas (HSL-PUCRS). As this repository is 

from a private university, we submitted a request to its respective Ethics Committee Board (ECB) to use the images. ECB 

analyses our demand, approved it, granted us access and give us the Certificate of Presentation of Ethical Appreciation number 

30791720.5.0000.5336. 

From the set of 100 patients of the COVID sub-base, 70% of them were used in training phase, 15% in test phase and 

the remaining 15% used in validation phase. The same distribution was made in the sub-base NON-COVID, as shown in Table 

2. The patient images used in training were not used again in testing and validation, that is, the patients were disjointedly 

divided. 

 

Table 2. Distribution of images in databases used by WCNN-COVID. 

Sub-base Patients/ images Training patients/images Test patients/images Validation patients/images 

COVID 100/12767 70/8937 15/1915 15/1915 

NON-COVID 100/12767 70/8937 15/1915 15/1915 

Source: Created by authors. 

 

Once the creation of the database is completed, images pre-processing tasks are performed as detailed in the next 

section. 

 

6. Wavelet 

The wavelet transform was used for image multiscale decomposition so that different scales can be manipulated and 

inserted as an input for WCNN-COVID. Moreover, training in wavelet domain can boost up the training and testing 

procedures. Using wavelet coefficients encourages activation sparsity in hidden layers, as well as in the output layer. 

Moreover, by using residuals, wavelet coefficients themselves become sparser and, therefore, easier for the network to learn 

sparse maps rather than dense ones. The histograms in Figure 4 illustrate the sparse distribution of the horizontal, vertical, and 

approximation coefficients. This high level of sparsity further reduces the training time required for the network and it results 

in more accurate classification results (Guo et al., 2017). 
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Figure 4. Example of histogram from the original image and corresponding horizontal, vertical, and approximation 

coefficients. 

 

Source: Created by authors. 

 

The wavelet theory is referred as a wavelet at different scales and positions. The Discrete Wavelet Transform (DWT) 

can be regarded as a sequence of numbers which sample a certain continuous function. When digital images are handled at 

multiple resolutions, the DWT is a viable mathematical tool. In addition to its efficient and highly intuitive framework to 

represent and store multiresolution images, the DWT provides powerful insights into an image’s spatial and frequency 

characteristics (Rafael, 2006; Jansen, 2012; Williams & Li, 2016). Given the following image, , the DWT 

bidimensional transformation pair is defined as (Rafael, 2006; Jansen, 2012; Williams & Li, 2016):  

 (1) 

For a discrete signal of N points, the integral above can have an approximate value from a summation, such as: 

 (2) 

Function , called wavelet, is a derivative from a function  through the following transformation: 

 (3) 

where ,  and  are the base of the wavelet. Where b represents the wavelet position or translation 

and a is called the scale parameter associated to the width of the window. There is a wide range of choice for function , 

called mother wavelet e.g. Daubechies, Symlets, Coiflet, amongst others. The scaled and shifted versions of this mother 

wavelet correspond to bandpass filters with different bandwidths and different time durations. The wavelet transform runs a 

transform stage in every row, thus yielding a matrix; the left side contains down sampled lowpass (L) coefficients of every row 

and the right side contains the high-pass (H) coefficients. Then, it is applied to every column resulting in four types of 

coefficients, as per Figure 5 (Rafael, 2006; Jansen, 2012; Williams & Li, 2016). 

• Coefficients that result from a convolution with high pass in both directions (HH) represent diagonal features of the 

image. 

• Coefficients that result from a convolution with high pass on the columns after a convolution with low pass on the 

rows (HL) correspond to horizontal features of image structures. 

• Coefficients from high pass filtering on the rows, followed by low pass filtering of the columns (LH) reflect vertical 

features information. 
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• Coefficients from low pass filtering in both directions further processed in the next step reflect approximation 

information. 

 

Figure 5. Overall diagram of Wavelet transform. 

 

Source: Created by authors. 

 

A. Analysis of Decomposition Coefficients  

The analysis used a sample of 500 images from the COVID database and 500 images from the NON-COVID 

database. The Friedman test was used to assess significance for these two classes, as this is a heterogeneous, independent, and 

non-parametric dataset (Zimmerman & Zumbo, 1993; Ishitaki, Oda, & Barolli, 2016). This statistic test was applied to verify 

whether the classes present values which are statistically similar when compared to one another, and about each coefficient 

resulting from wavelet decomposition (approximation, horizontal, vertical, and diagonal coefficients from the corresponding 

images). Version 5.3 of BioEstat, a biostatistical analysis software, was used to input hypothesis and significance tests and 

data.  

All tests considered α = 0.05. For the Friedman analysis, the standard deviation from the wavelet decomposition 

(standard deviation of the approximation, horizontal, vertical, and diagonal coefficients) highlighted that every wavelet 

coefficient standard deviation from the COVID database images compared with the NON-COVID database images has 

presented significant statistical differences, except for the diagonal coefficient. Thus, the three coefficients (approximation, 

horizontal, and vertical) were used as inputs for WCNN-COVID, for they presented more statistically significant intergroup 

differences. 

 

B. Mother Wavelet and Decomposition Level 

The decision to associate Coifltes 5 with WCNN was taken based on the work of    work of (da Costa Junior & 

Patrocinio, 2019) in which wavelets were used to reduce noise in dense breast radiography images. In the mentioned work, the 

wavelet transforms of the Daubechies, Symlets, Coiflets, Fejer-Korovkin and dMeyer families were tested, and the Coiflets 5 

family presented the best noise reduction results. Thus, in an analogous way, we associate the Coiflets 5 family to the WCNN 

model. In addition, we chose to define a decomposition level to avoid loss of information needed for image classification 

Thus WCNN-COVID model development used the Coiflets family. Coiflets are also build by I. Daubechies on the 

request of R. Coifman wavelets are orthogonal compactly supported wavelets with the highest number of vanishing moments 

for both the wavelet and scaling function for a given support width. The Coiflet wavelets are more symmetric and have more 

vanishing moments than the Daubechies wavelets (Merry, 2005). The Coiflets family approximation, horizontal, vertical, and 

diagonal coefficients can be used to infer more structural information about the image. Hence, three coefficients were selected 

for WCNN-COVID input - approximation, horizontal, and vertical - and generated by Coiflet 5 mother wavelet in one level of 

decomposition, as per Figure 6. 
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Figure 6. Wavelet decomposition process. 

 

Source: Created by authors. 

 

According to He and Sun (He & Sun, 2015), convolutional layers represent usually 90-95% of the computational cost. 

The computational complexity of convolutional layers was analyzed here. For a given CNN, the total complexity of all 

convolutional layers can be represented as: 

 (4) 

Here,  is the index of a convolutional layer, and  is the depth (number of convolutional layers);  is the number of 

filters (also known as “width”) in the -th layer;  is also known as the number of input channels of the -th layer;  is the 

spatial size (length) of the filter;  is the spatial size of the output feature map. For this paper, the WCNN-COVID input is the 

image resulting from the wavelet transform. That means, the input image is half the spatial resolution of the original image. 

Thus,  (the spatial size of the output feature map) is also reduced in half. So, the WCNN-COVID complexity is reduced by 

50% compared with a conventional CNN using original images and without the wavelet transform decomposition. 

 

7. WCNN-COVID Model 

A CNN is composed of two stages: feature extraction stage and classification stage. In the CNN, the pooling and 

convolution layers act as a stage of feature extraction, whereas the classification stage is made of one or more fully connected 

layers followed by a sigmoid function layer (Wani et al., 2020), which are presented below.  

A new convolution operation was created for the convolutional layer, in which a kernel is used to map the activations 

from one layer into the next. The convolution operation places the kernel in each possible position in the image (or hidden 

layer) so that the kernel overlaps the entire image and executes a dot product between the kernel parameters and its 

corresponding receptive field - to which a kernel is applied - in the image. The convolution operation is executed in every 

region the image in order to define the next layer (in which activations keep their spatial relations in the previous layer) 

(LeCun et al., 2015; Aggarwal & others, 2018; Ponti & da Costa, 2018). There may be several kernels in the convolutional 

layer. Every kernel uncovers a feature, such as an edge or a corner. During the forward pass, every kernel is slid to the width 

and the height of the image (or hidden layer), thus generating the feature map (LeCun et al., 2015; Balas et al., 2019; Aggarwal 

& others, 2018; Ponti & da Costa, 2018). 

WCNN-COVID uses Adaptive Moment Estimation (ADAM), an adaptive optimization technique which saves an 

exponentially decaying average of previous squared gradients . In addition to that, ADAM also computes the average of the 

second moments of the gradients . Average and non-centered 

variance values are presented in (5) and (6), respectively:  

 (5) 

  (6) 
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ADAM updates exponential moving averages of the gradient and the squared gradient where the hyperparameters β1, 

β2 ∈ [0, 1] control the decay rates of these moving averages (7) and (8):  

 (7) 

  (8) 

The final equation for update is presented in (9): 

  (9) 

where  is the learning rate and  is a constant added to the denominator for quick conversion methods in order to 

avoid the division by 0 (Wani et al., 2020; Kingma & Ba, 2014). 

WCNN-COVID uses the Dropout technique, the most popular technique to reduce overfitting. Dropout refers to 

dropping out neurons in a neural network during training. Dropping out a neuron means temporarily disconnecting it, as well 

as all its internal and external connections, from the network. Dropped-out neurons neither contribute to the forward pass nor 

do they contribute to the backward pass. By using the dropout technique, the network is forced to learn the most robust features 

as the network architecture changes with every input (Balas et al., 2019; Wani et al., 2020). 

The output of every convolutional layer is fed by an activation function. The activation function layer consists of an 

activation function which uses the feature map produced by the convolutional layer and generates the activation map as the 

output. The activation function is used to change a neuron activation level in an output signal. Thus, it performs a mathematical 

operation and generates the neuron activation level at a specific interval, for instance, 0 to 1 or -1 to 1 (Wani, Bhat, Afzal, & 

Khan, 2020). The functions used were the following: 

• Sigmoid / Logistic activation function: The sigmoid function  is a curve shaped like an S (Ponti & da 

Costa, 2018). 

• The activation function  is called Rectified Linear Unit – ReLU (Ponti & da Costa, 2018) and 

generates a non-linear activation map. 

The pooling layer, or down sampling layer, is used to reduce the receptive field spatial size, thus reducing the number 

of network parameters. The pooling layer selects a reduced sample of each convolutional layer feature map. Max-pooling was 

the technique used for this work; it generates the maximum value in the receptive field. The receptive field is 2x2, therefore, 

max-pooling will issue the maximum of the four input values (Wani et al., 2020). 

After the convolution and pooling processes, the next step is to add one or more fully connected layers at the end. In 

the fully connected layer, each neuron from the previous layer is connected to each neuron from the following layer, and all the 

values contribute to predict how strong a value correlates to a given class (Wani et al., 2020). The fully connected layers may 

be layered on top of one another to learn even more sophisticated combinations of features. The output of the last fully 

connected layer is fed by an activation function which generates the class scores. The sigmoid activation function is the one 

used for WCNN-COVID. It produces class scores, and the class with the highest score is treated as the correct one (Wani et al., 

2020). 

Convolutional Neural Networks (CNNs) were proposed to assess image data. The name comes from the convolution 

operator, an easy way of doing complex operations using the convolution kernel (Ravı̀, et al., 2016). Many variations of the 

CNN were proposed, such as AlexNet (Krizhevsky et al., 2012), Clarifai (Zeiler & Fergus, 2014), GoogleNet (Szegedy, et al., 

2015). The WCNN-COVID structure is also a variation of a CNN which contains a pre-processing stage with a wavelet 

transform and the following architecture: an input layer, a convolutional layer, a dense layer, and an output layer, as per Figure 

7. 
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Figure 7. WCNN-COVID classification scheme. 

 

Source: Created by authors. 

 

The WCNN-COVID detailed architecture to classify an image as COVID-19 is illustrated in Table 3. The network 

consists of conventional layers, including the input layer, the convolution layer, the max-pooling layer and the fully-connected 

layers. Besides, a rectified linear unit (ReLU) activation function is used after each convolution layer (1st, 3rd, 5th and 7th) and 

dense layers (9th, 10th, 11th and 12th). In order to reduce the possibility of overfitting, a dropout rate of 20% was implemented to 

the first four fully-connected layers (9th, 10th, 11th and 12th). 

 

Table 3. WCNN-COVID architecture. The network contains the input (I), the convolution (C),  the max-pooling (M) layers and the fully 

connected network (F). 

Layer WCNN-COVID 

Filter Dimensions Input/Output Dimensions 

0 I  300x300x3 

1 C 5x5x256 296x296x256 

2 M 2x2 148x148x256 

3 C 3x3x128 146x146x128 

4 M 2x2 73x73x128 

5 C 3x3x64 71x71x64 

6 M 2x2 35x35x64 

7 C 3x3x32 33x33x32 

8 M 2x2 16x16x32 

9 F 16x16x32x256 1x256 

10 F 1x1x256x128 1x128 

11 F 1x1x128x64 1x64 

12 F 1x1x64x32 1x32 

13 F 1x1x32x1 1x1 

Source: Created by authors. 

 

8. Results 

In this section we present the results of the application of WCNN-COVID according to parameters, data, methodology 

and metrics described in above sections. 

Through the WCNN-COVID weight evolution as described in the previous section, the WCNN-COVID from the last 

training session was chosen to be applied in the validation phase. Thus, the confusion matrix was generated with 1915 images 

from the COVID sub-base and 1915 images from the NON-COVID sub-base. This resulted in a total of 3830 images for 

validating WCNN-COVID. Therefore, as per the confusion matrix from Figure 8, we can see that i) true positives (TP) = 1899; 
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ii) true negatives (TN) = 1913; iii) false positives (FP) = 2; and iv) false negatives (FN) = 16. 

 

Figure 8. WCNN-COVID confusion matrix.  

 

Source: Created by authors. 

 

Using the TP, TN, FP and FN parameters, the following metrics were calculated: accuracy, sensitivity, specificity, and 

F1 Score, as per Table 4. 

 

Table 4. metrics RESULTS. 

Class Accuracy Recall /sensitivity Specificity 

COVID-19 0,9953 0,9916 0,9989 

Source: Created by authors. 

 

To evaluate the methodology performance used in input images pre-processing tasks, through the wavelet transform – 

which decomposes the image into 4 sub-images –, different networks were trained using the COVID and NON-COVID image 

repositories, with and without pre-processing. 

The ROC curves for the two tests were constructed. The first test did not use the described methodology intended to 

pre-process and to decompose images using wavelet, as illustrated in Figure 9(A). However, the second test followed all the 

image pre-processing, as shown in Figure 9(B). 

The ROC curve A and ROC curve B were calculated in the validation stage of the tenth training and test cycle. Thus, 

based on the analysis of the ROC curves, the area of the curve without preprocessing is 0.9229 and the area of the curve with 

preprocessing is 0.9950, as shown in Figure 9. 

 

Figure 9. WCNN-COVID ROC curves: A) Data Set without wavelet/AUC = 0.9229 B) Data Set with wavelet/AUC=0.995. 

 

Source: Created by authors. 

 

For every 10 training and testing cycles, 1000 epochs were applied. This generated the following result: the lowest 

accuracy was 0.9830 and the highest, 0.9987. A média geral do teste para WCNN-COVID mostrou acurácia de 0,9953 e 
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desvio padrão de 0.005284, conforme Figura 10. 

 

Figure 10. WCNN-COVID results: results for each test and overall average (avg) of all 10 tests. 

 

Source: Created by authors. 

 

It was also confirmed that the image classification as COVID or NON-COVID follow the normal distribution. The 

continuous variable (x) represents success or failure when classifying images and the probability density function is denoted by 

Equation (9), as follow (Pinheiro et al., 2009): 

 

 (9) 

 

Normal distribution is described by the following parameters: average  and standard deviation ; the value of 

, as well as the curve is represented in Figure 11 which also includes important areas, the total area under the 

curve being 1 (Pinheiro et al., 2009). 

 

Figure 11. Normal distribution typical curve. 

 

Fonte: Pinheiro et al., (2009) 

 

To calculate the area under the normal curve, a standardized normal distribution, also known as folded normal 

distribution, is used. It is the normal distribution with  and  Given that  for accuracy, when the 

value of the normal distribution area of the curve standardized between 0 and , considering , is calculated, the result is 

the probability of an image being wrongly classified by the model. This can be calculated by the normal probability function 
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, as per Equation (10). 

 (10) 

So we found  . That said, there is a 0.210% chance the image be classified 

incorrectly, which denotes the high trustworthy of our model.  

The validation result step in the tenth cycle of training and testing was compared with the state-of-the-art methods 

presented in Section 3. The best ACC result was 99.53%, as shown in bold in Table 5. 

 

Table 5 - Comparison of WCNN-COVID with state-of-the-art methods (chest computed tomography - CT). 

 

 

 

 

 

 

 

 

Source: Created by authors. 

 

9. Discussion 

The results shows that WCNN-COVID model has relevant performance for medical digital images processing and 

some applications area, including: 

1. Predictability and trust. 

2. Unprecedented accuracy amongst classification models which use convolutional neural networks. 

3. Outcomes with few tests. The trust in the results of a method or a technique is an indispensable characteristic in a 

classification model. It is crucial that images classification be trustworthy.  

It is important to carefully choose the approaches and parameters that the network will use during its execution. About 

the adaptive learning rate optimizer, our option fell on the ADAM algorithm. This algorithm leverages both AdaGrad and 

RMSProp, whose are the ability of dealing with sparse gradients and non-stationary objectives respectively (Wani et al., 2020). 

Beyond that the method is straightforward to implement and requires low memory levels to execute.  

The standard image size generated by CT scans equipment’s is 512x512 pixels. Therefore, it was necessary to conduct 

a study to identify the size to which the original CT images should be converted to fit the WCNN-COVID input parameters. 

We observed that the higher the input size, the more accurate the network was, therefore more studies should be conducted to 

validate or to refute that empirical observation. As showed in Figure 1, when the input size was 300x300, the accuracy was 

0.7203. 

The model that uses image pre-processing provides rapid convergence of the network weights. The convergence 

indicates that the wavelet decomposition, in the pre-processing phase, contributes to obtaining the best weights during the 

training and testing phases of the model. The execution of the 10 training and test cycles also contribute to assess the stability 

of the model's accuracy values. 

The average ACC value from the 10 training and test cycles was 0.9941. Besides, it is worth mentioning that the 

Methods Type ACC Sen Sp 

(Wu, et al., 2020) Xiangjun Wu et al. CT 0.7600 0.8110 0.6150 

(Wang, et al., 2020) Xinggang Wang et l.  CT 0.9010 0.8400 0.9820 

(Yang, et al., 2020) Shuyi Yang et al. CT 0.9200 0.9700 0.8700 

(Chen(a), et al., 2021) Hongtao Chen(a) et al. CT 0.9408 0.9487 0.8846 

(Chen, et al., 2020) Jun Chen et al. CT 0.9524 1.000 0.9355 

(Ozkaya, Ozturk, & Barstugan, 2020) Umut Ozkaya et al. CT 0.9827 0.9893 0.9760 

(Barstugan, Ozkaya, & Ozturk, 2020) Mucahid Barstugan et al. CT 0.9968 0.9772 0.9967 

WCNN-COVID model X-ray 0.9953 0.9916 0.9989 
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accuracy of all tests went over 0.98. The weights used by WCNN-COVID in the 10th training session were used in the 

validation step, and the ACC value was 0,9953. The WCNN-COVID input was sub-images generated from the wavelet 

decomposition coefficients which are half the resolution size of the original image. Thus, the spatial size of the output feature 

map is also reduced in half which accelerates the classification process. Moreover, using wavelet coefficients encourages 

activation sparsity in hidden layers as well as in output layer. Moreover, by using residuals, wavelet coefficients themselves 

become sparser and therefore easier for the network to learn sparse maps rather than dense ones, thus speeding up the WCNN-

COVID classification process. 

The wavelet decomposition in the pre-processing input network contribute to WCNN-COVID training performance 

and high accuracy of model proposed in Figure 9A and Figure 9B. Figure 9A depicts that the area of the ROC curve for tests 

with images without preprocessing is 0.9229 and Figure 9B shows that the area of the ROC curve using preprocessing is 

0.9950, which represents an increase of 7.8% in the tests, using pre-processing in relation to the ROC curve area of the tests 

using images without pre-processing. 

 

10. Conclusion 

This paper proposed and validated a new automated classification model called WCNN-COVID. It is based on a deep 

neural network using wavelet transform to extract features to classify image patients with COVID-19, who already present 

lung changes (or pneumonia). The WCNN-COVID results have shown that analyzing CT images using deep learning methods 

have provided quick and highly accurate results, when applied to classify pneumonia caused by COVID-19. The automated 

classification results were calculated separately for the testing and validation steps. The proposed model was used to classify a 

set of real images selected from repositories both public and private. A total of 10 training and test cycles were performed.  

The results we obtained with this work indicates that the association of CNNs and transform wavelets is promising for 

creating classification models. That way, beyond the scope of this work, we are principally committed with further research 

involving neural network improvements, using the model to rather classify medical digital images of others specialties than 

pulmonary diseases, and furthermore, using the model in specific images of several areas such as agriculture and metallurgy.  

 

11. Conflict of Interest and Ethical Standards 

All authors declare no conflict of interest, and this article does not contain studies with human or animal participants 

performed by any of the authors. 

 

Acknowledgements 

This study was financed in part by the “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil 

“(CAPES) – Finance Code 001. 

 

References 

Abbas, A., Abdelsamea, M., & Gaber, M. (2020, 4). Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. 

https://doi.org/10.1101/2020.03.30.20047456 
 

Aggarwal, C. C., & others. (2018). Neural networks and deep learning. Springer https://doi.org/10.1007/978-3-319-94463-0 

 
Balas, V. E., Roy, S. S., Sharma, D., & Samui, P. (2019). Handbook of deep learning applications (Vol. 136). Springer. https://doi.org/10.1007/978-3-030-

11479-4 

 
Barstugan, M., Ozkaya, U., & Ozturk, S. (2020). Coronavirus (covid-19) classification using ct images by machine learning methods. arXiv preprint 

arXiv:2003.09424. 
 

http://dx.doi.org/10.33448/rsd-v11i5.27919


Research, Society and Development, v. 11, n. 5, e2411527919, 2022 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v11i5.27919 
 

 

16 

Bassi, P. R., & Attux, R. (2020). A Deep Convolutional Neural Network for COVID-19 Detection Using Chest X-Rays. arXiv preprint arXiv:2005.01578. 

 

Chen(a), H., Guo, S., Hao, Y., Fang, Y., Fang, Z., Wu, W., & Li, S. (2021). Auxiliary Diagnosis for COVID-19 with Deep Transfer Learning. Journal of 
Digital Imaging, 1–11. 

 
Chen, J., Wu, L., Zhang, J., Zhang, L., Gong, D., Zhao, Y., et al. (2020). Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-

resolution computed tomography: a prospective study. MedRxiv. 

 
Chollet, F. (2016). Building powerful image classification models using very little data. Keras Blog. Retrieved from https://blog.keras.io/building-powerful-

image-classification-models-using-very-little-data.html 

 
Cui, J., Li, F., & Shi, Z.-L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Reviews Microbiology, 17, 181–192. 

https://doi.org/10.1038/s41579-018-0118-9 

 
da Costa Junior, C. A., & Patrocinio, A. C. (2019). Performance Evaluation of Denoising Techniques Applied to Mammograms of Dense Breasts. XXVI 

Brazilian Congress on Biomedical Engineering, (pp. 369–374). 

 
Dai, W.-c., Zhang, H.-w., Yu, J., Xu, H.-j., Chen, H., Luo, S.-p., et al., (2020). CT imaging and differential diagnosis of COVID-19. Canadian Association of 

Radiologists Journal, 71, 195–200. https://doi.org/10.1177/0846537120913033 

 
dos S Ribeiro, C., van Roode, M. Y., Haringhuizen, G. B., Koopmans, M. P., Claassen, E., & van de Burgwal, L. H. (2018). How ownership rights over 

microorganisms affect infectious disease control and innovation: A root-cause analysis of barriers to data sharing as experienced by key stakeholders. PLoS 

One, 13, e0195885. https://doi.org/10.1371/journal.pone.0195885 
 

Guo, T., Seyed Mousavi, H., Huu Vu, T., & Monga, V. (2017). Deep wavelet prediction for image super-resolution. Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition Workshops, (pp. 104–113). 
 

He, K., & Sun, J. (2015). Convolutional neural networks at constrained time cost. Proceedings of the IEEE conference on computer vision and pattern 

recognition, (pp. 5353–5360). 
 

Ishitaki, T., Oda, T., & Barolli, L. (2016). A neural network based user identification for Tor networks: Data analysis using Friedman test. 2016 30th 

International Conference on Advanced Information Networking and Applications Workshops (WAINA), (pp. 7–13). https://doi.org/10.1109/waina.2016.143 
 

Jansen, M. (2012). Noise reduction by wavelet thresholding (Vol. 161). Springer Science & Business Media. https://doi.org/10.1007/978-1-4613-0145-5 

 
Khatami, A., Khosravi, A., Nguyen, T., Lim, C. P., & Nahavandi, S. (2017). Medical image analysis using wavelet transform and deep belief networks. Expert 

Systems with Applications, 86, 190–198. https://doi.org/10.1016/j.eswa.2017.05.073 

 

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. 

 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in neural information 
processing systems, (pp. 1097–1105). 

 

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521, 436–444. https://doi.org/10.1038/nature14539 
 

Maranhão, A. (2020). COVID-19 CT: scans20 CT scans and expert segmentations of patients with COVID-19. Retrieved 02 02, 2021, from Kaggle: 

https://www.kaggle.com/andrewmvd/covid19-ct-scans 
 

Martin, D. R., Hanson, J. A., Gullapalli, R. R., Schultz, F. A., Sethi, A., & Clark, D. P. (2020). A deep learning convolutional neural network can recognize 

common patterns of injury in gastric pathology. Archives of pathology & laboratory medicine, 144, 370–378. https://doi.org/10.5858/arpa.2019-0004-OA~ 
 

Merry, R. J. (2005). Wavelet theory and applications: a literature study. DCT rapporten, 2005. 

 
MosMedData. (2020). MosMedData: COVID19_1000 Dataset:Chest CT Scans with COVID-19. Retrieved from https://mosmed.ai/en/ 

 

Narin, A., Kaya, C., & Pamuk, Z. (2020). Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. 
arXiv preprint arXiv:2003.10849. 

 

Ozkaya, U., Ozturk, S., & Barstugan, M. (2020). Coronavirus (COVID-19) Classification using Deep Features Fusion and Ranking Technique. arXiv preprint 

arXiv:2004.03698. 

 
Ozturk, S., Ozkaya, U., & Barstugan, M. (2020). Classification of coronavirus images using shrunken features. medRxiv. 

https://doi.org/10.1101/2020.04.03.20048868 

 
PINHEIRO, J. I., CUNHA, S. B., CARVAJAL, S. R., & GOMES, G. C. (2009). Estatı́stica Básica: A arte de trabalhar com dados. Rio de Janeiro–RJ. 

Estatı́stica Básica: A arte de trabalhar com dados. Rio de Janeiro–RJ. Editora Elsevier. 

 
Ponti, M. A., & da Costa, G. B. (2018). Como funciona o deep learning. arXiv preprint arXiv:1806.07908. 

 

Rafael, C. (2006). Gonzalez, and Richard E. Woods. Digital image processing. 
 

Ravı̀, D., Wong, C., Deligianni, F., Berthelot, M., Andreu-Perez, J., Lo, B., & Yang, G.-Z. (2016). Deep learning for health informatics. IEEE journal of 

biomedical and health informatics, 21, 4–21. https://doi.org/10.1109/JBHI.2016.2636665 
 

Ribeiro, C. d., Koopmans, M. P., & Haringhuizen, G. B. (2018). Threats to timely sharing of pathogen sequence data. Science, 362, 404–406. 

https://doi.org/10.1126/science.aau5229 

http://dx.doi.org/10.33448/rsd-v11i5.27919
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://blog.keras.io/building-powerful-image-classification-models-using-very-little-data.html
https://www.kaggle.com/andrewmvd/covid19-ct-scans


Research, Society and Development, v. 11, n. 5, e2411527919, 2022 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v11i5.27919 
 

 

17 

 

Ruuska, S., Hämäläinen, W., Kajava, S., Mughal, M., Matilainen, P., & Mononen, J. (2018). Evaluation of the confusion matrix method in the validation of an 

automated system for measuring feeding behaviour of cattle. Behavioural processes, 148, 56–62. https://doi.org/10.1016/j.beproc.2018.01.004 
 

Sethy, P. K., & Behera, S. K. (2020). Detection of coronavirus disease (covid-19) based on deep features. Preprints, 2020030300, 2020. 
https://doi.org//10.20944/preprints202003.0300.v1 

 

Sherry, S. T., Ward, M.-H., Kholodov, M., Baker, J., Phan, L., Smigielski, E. M., & Sirotkin, K. (2001). dbSNP: the NCBI database of genetic variation. 
Nucleic acids research, 29, 308–311. https://doi.org/10.1093/nar/29.1.308 

 

Shirazi, A. Z., Chabok, S. J., & Mohammadi, Z. (2018). A novel and reliable computational intelligence system for breast cancer detection. Medical & 
biological engineering & computing, 56, 721–732. https://doi.org/10.1007/s11517-017-1721-z 

 

Simon, J. H., Claassen, E., Correa, C. E., & Osterhaus, A. D. (2005). Managing severe acute respiratory syndrome (SARS) intellectual property rights: the 
possible role of patent pooling. Bulletin of the World Health Organization, 83, 707–710. 

 

Skansi, S. (2018). Introduction to Deep Learning: from logical calculus to artificial intelligence. Springer. doi:https://doi.org/10.1007/978-3-319-73004-2 
 

Summers, R. (2020). NIH Clinical Center:dataset of 32,000 CT images. Retrieved from https://www.nih.gov/news-events/news-releases/nih-clinical-center-

releases-dataset-32000-ct-images 
 

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., & Rabinovich, A. (2015). Going deeper with convolutions. Proceedings of the IEEE 

conference on computer vision and pattern recognition, (pp. 1–9). https://doi.org/10.1109/CVPR.2015.7298594 
 

Wang(d), G., Liu, X., Li, C., Xu, Z., Ruan, J., Zhu, H., & Zhang, S. (2020). A Noise-robust Framework for Automatic Segmentation of COVID-19 Pneumonia 

Lesions from CT Images_. IEEE Transactions on Medical Imaging. https://doi.org/10.1109/TMI.2020.3000314 
 

Wang, L., & Wong, A. (2020). COVID-Net: A Tailored Deep Convolutional Neural Network Design for Detection of COVID-19 Cases from Chest X-Ray 

Images. arXiv preprint arXiv:2003.09871. 
 

Wang, X., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., & Zheng, C. (2020). A Weakly-supervised Framework for COVID-19 Classification and Lesion 

Localization from Chest CT. IEEE Transactions on Medical Imaging. https://doi.org/10.1109/tmi.2020.2995965 
 

Wani, M. A., Bhat, F. A., Afzal, S., & Khan, A. I. (2020). Advances in deep learning (Vol. 57). Springer. https://doi.org/10.1007/978-981-13-6794-6 

 
Weiss, S. R., & Leibowitz, J. L. (2011). Coronavirus pathogenesis. In Advances in virus research (Vol. 81, pp. 85–164). Elsevier. 

https://doi.org/10.1016/B978-0-12-385885-6.00009-2 

 

Williams, T., & Li, R. (2016). Advanced image classification using wavelets and convolutional neural networks. 2016 15th IEEE international conference on 

machine learning and applications (ICMLA), (pp. 233–239). https://doi.org/10.1109/icmla.2016.0046 

 
Wu, J. (2013). Institute of Genomics, Chinese Academy of Science, China National Center for Bioinformation & National Genomics Data Center. Institute of 

Genomics, Chinese Academy of Science, China National Center for Bioinformation & National Genomics Data Center. China. Retrieved from 

https://bigd.big.ac.cn/ncov/?lang=en 
 

Wu, X., Hui, H., Niu, M., Li, L., Wang, L., He, B., et al. (2020). Deep learning-based multi-view fusion model for screening 2019 novel coronavirus 

pneumonia: a multicentre study. European Journal of Radiology, 109041. 
 

Yang, S., Jiang, L., Cao, Z., Wang, L., Cao, J., Feng, R., & Shan, F. (2020). Deep learning for detecting corona virus disease 2019 (COVID-19) on high-

resolution computed tomography: a pilot study. Annals of Translational Medicine, 8. https://doi.org/10.21037/atm.2020.03.132 
 

Yang, W., Cao, Q., Qin, L., Wang, X., Cheng, Z., Pan, A., & others. (2020). Clinical characteristics and imaging manifestations of the 2019 novel coronavirus 

disease (COVID-19): A multi-center study in Wenzhou city, Zhejiang, China. Journal of Infection. https://doi.org/10.1016/j.jinf.2020.02.016 
 

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. European conference on computer vision, (pp. 818–833). 

https://doi.org/10.1007/978-3-319-10590-1_53 
 

Zhang, J., Xie, Y., Li, Y., Shen, C., & Xia, Y. (2020). Covid-19 screening on chest x-ray images using deep learning based anomaly detection. arXiv preprint 

arXiv:2003.12338. 

 

Zhu, N., Zhang, D., Wang, W., & others. (n.d.). China Novel Coronavirus Investigating and Research Team. A novel coronavirus from patients with 
pneumonia in China, 2019 [published January 24, 2020]. N Engl J Med. doi:https://doi.org/10.1056/NEJMoa2001017 

 

Zimmerman, D. W., & Zumbo, B. D. (1993). Relative power of the Wilcoxon test, the Friedman test, and repeated-measures ANOVA on ranks. The Journal 
of Experimental Education, 62, 75–86. https://doi.org/10.1080/00220973.1993.9943832 

http://dx.doi.org/10.33448/rsd-v11i5.27919
https://www.nih.gov/news-events/news-releases/nih-clinical-center-releases-dataset-32000-ct-images
https://www.nih.gov/news-events/news-releases/nih-clinical-center-releases-dataset-32000-ct-images
https://bigd.big.ac.cn/ncov/?lang=en

