An assessment of serological techniques for the identification of asymptomatic visceral leishmaniasis in blood donors in Northeastern Brazil

Avaliação de técnicas sorológicas para identificação da leishmaniose visceral assintomática em doadores de sangue no Nordeste do Brasil

Una evaluación de las técnicas serológicas para la identificación de la leishmaniasis visceral asintomática en donantes de sangre en el noreste de Brasil

Abstract

Background: Visceral leishmaniasis (VL) is a neglected disease caused by species of the *Leishmania donovani* complex and transmitted mainly by the bite of infected sandflies. A less frequent form of transmission is the transfusion route, important in countries lacking screening procedures for VL in blood banks. Methods: To identify asymptomatic infection by *Leishmania* sp, our goal here was to evaluate and compare the performance of three different serological techniques: Flow Cytometry (FC); Direct Agglutination Test (DAT); and Immunoenzymatic Test (ELISA). Thirty-one asymptomatic carriers of *L. infantum* were selected, from a single blood bank located in Recife, northeastern Brazil. Results: Foi avaliada a frequência de amostras positivas assintomáticas nos testes, no ELISA baseado no antígeno solúvel de Leishmania (25,8%), FC (22,8%), DAT (9,7%) e ELISA baseado em uma única proteína recombinante (12,9%). A sensibilidade dos testes também foi avaliada, o FC (22,58%) e o ELISA com o antígeno solúvel (22,58%) apresentaram os maiores valores de sensibilidade que o DAT (6,45%) e o ELISA recombinante (12,9%). Apenas a CF apresentou baixa especificidade (22,22%), em contraste com as demais técnicas (100% de especificidade). Conclusion:
Given the results presented, we highlight the low effectiveness of serological techniques for the identification of asymptomatic individuals, thus emphasizing the need to develop more accurate methods for this purpose.

Keywords: Flow cytometry; Direct agglutination test; ELISA; Recombinant ELISA.

1. Introduction

Visceral Leishmaniasis (VL) is a neglected human disease, caused by protozoa belonging to the *Leishmania donovani* complex (*L. donovani* and *L. infantum*), whose main form of transmission is the bite of infected female sandflies (Michel et al., 2011). VL diagnosis is based on the observation of clinical symptoms aligned with the results of laboratory tests (Chappuis et al., 2006). It is characterized by the classic triad: fever, hepatosplenomegaly and pancytopenia. The asymptomatic condition, where the individual does not show symptoms, remains an important epidemiological challenge. Afflicted individuals in most cases are characterized by a low parasitemia (Brazil, 2009), but reactivation of the disease may occur during the course of the infection. In addition, asymptomatic individuals can act as reservoirs for the parasite and facilitate VL transmission through transfusion, a fact important in countries that lack detection procedures for this disease. So far, there is still no gold standard method for the identification of asymptomatic individuals, thus emphasizing the need to develop more accurate methods for this purpose.
uses lyophilized antigen to visualize agglutination in positive cases and is considered a promising tool for the VL diagnosis, especially in VL-HIV coinfections and immunosuppressed individuals (Cota et al., 2013; Assis et al., 2016; Kühne et al., 2020). Alternatively, recombinant proteins have been identified and evaluated as potential antigens for the detection/capture of antibodies against Leishmania proteins. They can be applied in Cytometry (FC), used for the quantification of anti-Leishmania antibodies (Gomes et al., 2010; Pedro-sampaio et al., 2016; Ker et al., 2019).

In summary, there is a clear need for precise tools to be used for the VL screening in blood banks. However, few studies have compared the performance of available techniques for VL diagnosis in asymptomatic blood donors (Silvestre et al., 2008; Carvalho et al., 2018; Thakur et al., 2020). In this context, the present study aims to evaluate different serological techniques to identify asymptomatic Leishmania infection in blood donors.

2. Methodology

Study population and serum samples

The asymptomatic donors whose sera were evaluated in the present study are all voluntary donors at the Pernambuco Foundation for Hematology and Hemotherapy (HEMOPE), located in the city of Recife, state of Pernambuco, Brazil. Blood samples from all Leishmania-positive individuals were previously screened and found to be positive for Leishmania spp. infection using a qPCR test, as previously reported (Silva et al., 2020). All 31 samples were previously tested and found to be negative for Hepatitis, Syphilis, HIV, HTLV and Chagas Disease. The control group (n = 18) consisted of sera from healthy individuals, negative for leishmaniasis (ELISA, DAT, IIF) and/or PCR, residing in non-endemic areas for VL, from the biorepository of the Laboratory of Immunopathology and Molecular Biology (LIBM) of Instituto Aggeu Magalhães (IAM) - Fiocruz. To calculate the cutoff point, 45 sera, negatives for VL were selected from the same biorepository mentioned above.

Enzymatic immunoassay test (ELISA)

The ELISA tests were performed based on the protocol described by Oliveira et al. (2011). Where microplates (NUNC, Maxisorp, Roskilde, Denmark) were sensitized with 600 ng of soluble L. infantum antigen and chimeric protein Q5 by Santos et al. (2020) and peroxidase-conjugated anti-human IgG antibody (Sigma, St. Louis, MO) was used at the dilution of 1:10000. The conventional ELISA were those in which the soluble antigen was applied in the assay, whereas in the recombinant ELISA the Q5 protein was used.

Production of the L. infantum soluble antigen extract

Promastigote forms of L. infantum, from the MHOM/BR/BH46 strain, were maintained and expanded in Schneider's medium until reaching exponential phase. The parasites were harvested by centrifugation at 400 g, 10 min, washed with PBS and resuspended in (50mM NaCl, 10mM EDTA, 50mM Tris–HCl, pH 8.0) supplemented with 1mM of the protease inhibitors N-ethylmaleimide (NEM) and phenylmethylsulfonyl fluoride (PMSF). Cell lysis was performed through successive steps of freeze/thawing in liquid nitrogen and water bath (36°C). Cellular lysis was monitored in a light microscope followed by centrifugation at 10,000 g at 4°C, for 15 min, with the supernatant (the soluble fraction) quantified with Bradford's reagent, aliquoted and frozen at -80°C until use. The pellet (consisting of insoluble antigens) was resuspended in PBS and stored.

Q5 production
The expression and purification of the chimeric Q5 was performed as previously described by Santos et al. (2020). Briefly, the recombinant plasmid with the Q5 gene was transformed into *E. coli* RosettaTM 2 DE3 bacteria (from Novagen), with the transformed bacteria cultured in LB medium supplemented with ampicillin (50 μg/ml) and chloramphenicol (34 μg/ml) at 37°C. Recombinant protein expression was induced with 0.5 mM IPTG at 30°C. Bacterial cells were resuspended in denaturing lysis buffer (100 mM NaH$_2$PO$_4$, 10 mM Tris, 8 M Urea, 20 mM imidazole, pH 8.0) and lysed by ultrasonication. Proteins were purified with Ni-NTA agarose beads (Qiagen, catalog #30210), with washes and elution carried out with the same lysis buffer supplemented with different concentrations of imidazole (100 mM for washes and 1 M for elution).

Direct Agglutination Test (DAT)

The test was performed on 96-well plates with V-bottom, with serial dilutions from 1:50 to 1:51200, according to the manufacturer's specifications (Royal Tropical Institute, Amsterdam, Netherlands). The plaque was read by visualizing the agglutination, where those with a titration equal to or above 1:6400 were considered positive. The values referring to the dilutions and the cut-off were performed according to Harith et al. (1986).

Flow Cytometry

The flow cytometry (FC) assay for the detection of anti-promastigote antibodies of *L. infantum*, was carried out as previously described by Rocha et al. (2002). Briefly, 96-well plates were sensitized with sera samples diluted from 1:64 to 1:32,768 in PBS plus 10% fetal calf serum, followed by incubations with a parasite suspension and anti-human IgG conjugated to fluorescein isothiocyanate-FITC (Sigma Chemical Corp., St. Louis, MO) at a 1: 200 dilution. Labeled parasites were washed, fixed and kept for 30 minutes at 4°C, protected from light, prior to reading on a FACScalibur flow cytometer (Becton Dickinson) using the Cell Quest Pro software. The labeled parasites were acquired in 20,000 events per sample and identified based on their specific frontal (FSC) and lateral (SSC) light scattering properties. The relative FITC fluorescence intensity of each event was analyzed in histograms, delimited by the FITC conjugate internal control histogram and applied to all samples, in order to determine the percentage of positive fluorescent parasites (PPFP) for each sample.

Statistical Analysis

All conclusions were taken at the 5% significance level. For the analysis of the results of the ELISA and FC test, we used version 7.0 of GraphPad Prism (GraphPad Prism Inc., San Diego, California, USA). The cutoff point for FC was defined using the PPFP, where we evaluated the positive and negative results for the test. For this, we built the Receiver Operating Characteristic (ROC) curve, from the values of specificity on the x axis and sensitivity on the y axis. Sensitivity and specificity values were calculated using the Open Source Epidemiologic Statistics for Public Health (OpenEpi) version 3.01 program. To assess the agreement of the tests performed, the Kapp identification measure was used, which helps to determine the concordant results of the tests. According to Landis JR & Koch GG (1977)

3. Results and Discussion

Performance of FC, DAT and ELISA in asymptomatic blood donors

When analyzing the performance of the tests with the 31 sera from the asymptomatic group previously classified as VL positive using a PCR based assay in the study by Silva et al. (2020). We observed a greater positivity using FC, although with
only 22.6% (7) of the sera tested having a VL positive result, while 77.4% (24) of those were negative, in the negative control group. 77.7% (14) of the samples were positive while 22.2% (4) remained negative. In contrast, the DAT test gave a positive test for only 9.7% (3) of the sera tested, with 90.3% (28) of those testing negative, in the negative control group none of the 100% samples (18) were positive. The ELISA assay using whole soluble *Leishmania* proteins performed similar to FC, with 22.6% (7) positive sera and 77.4% (24) negative, as in the DAT test, none of the samples from the negative control group were positive. Using only the Q5 recombinant protein decreased the efficiency of the assay with 12.1% (4) of the sera testing positive and 87.1% (27) negative. In addition, there was no positive sample from the negative control group. In table 1, the sensitivity and specificity values for the different test are shown. Noteworthy is the much-reduced specificity observed for FC in comparison with the other assays evaluated here. In the supplementary table we have the results of all tests.

Table 1. Sensitivity and specificity of FC, DAT, ELISA with soluble antigen and ELISA with Q5 protein in the 31 positive samples.

<table>
<thead>
<tr>
<th></th>
<th>FC</th>
<th>DAT</th>
<th>ELISA Soluble antigen</th>
<th>ELISA Q5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>22.58%</td>
<td>6.45%</td>
<td>22.58%</td>
<td>12.9%</td>
</tr>
<tr>
<td>Specificity</td>
<td>22.22%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Author's elaboration (2022)

Agreement between the tests used to identify the asymptomatic in the blood donor population.

After all tests were performed, an agreement assessment was performed using the Kappa measure. If the result less than zero means that there was no agreement between the tests. Said that, no agreement between the tests evaluated was observed when compared to qPCR (Kappa = 0).

Performing a routine laboratory screening for VL detection in blood banks is a major challenge for control of the disease (França et al., 2013; Fukutani et al., 2014). To this end, it is crucial the correct identification of asymptomatic individuals who may be potential blood donors and that, if unidentified, may transmit the disease through transfusion. Here, samples from donors known to be asymptomatic, diagnosed by qPCR (Silva et al., 2020), were subjected to different serological tests that included FC, DAT, and two different ELISA assays. Of the techniques used, the one that showed the greatest positivity and specificity was the ELISA based on soluble *Leishmania* proteins.

In the absence of a gold standard diagnosis, qPCR can be considered one of the most promising techniques for the diagnosis of VL, as it has high values of sensitivity and specificity (Landis e Koch, 1977; Sakkas et al., 2016). Despite being the technique used as an initial screening to identify asymptomatic cases, the costs associated with its use still limit its use in the routine screening of blood banks, especially in endemic countries (Silva et al., 2020). This highlights the importance of studying the performance of different serological techniques for the identification of this population, as performed in this study.

DAT is a simple, semi-quantitative test that does not require the use of sophisticated equipment, in addition to being a low-cost method. In a meta-analysis developed by Chappuis et al. (2006), the sensitivity of the test for the diagnosis of VL reached 94.8%, being classified as an excellent test. However, in our study with asymptomatic patients, the sensitivity of the test was the lowest in comparison with the other techniques tested. Also evaluating asymptomatic patients, a previous study saw no positive results, reaching the conclusion that the test has a low sensitivity for detecting subclinical or past infections (Garcez et al., 1996). DAT has thus been advised to be performed in combination with the patient's clinical evaluation (Terán-Angel et al., 2007). However, there is no standard method for evaluating the test result and there is also no standard antigen (Srivastava et al., 2011). More validation studies would be needed for DAT to be applied for the identification of asymptomatic individuals.
Unlike DAT, the ELISA based on the soluble *Leishmania* antigens had the highest frequency of positive samples, however, published studies state that this test may cross-react with other endemic diseases (Caballero et al., 2007; Srividya et al., 2012). Our results corroborate a previous study, in which in a group of 115 asymptomatic individuals, 13% (15) of the samples were positive in a ELISA with soluble antigens (Porcino et al., 2019). Fukutami et al. (2014) reinforce that when the soluble antigen is used, the test will become more sensitive, but less specific. The results of these studies differ from the study by Lima et al. (2010), where the test had a sensitivity of 100% and a specificity of 91.2%. Similar results were also presented by Mettler et al. (2005). However, the differences in results between the studies, can be attributed to the origin of the antigen used (Mohammed et al., 1985; Reithinger et al., 2002; Singh et al., 2003). When comparing the ELISA with the soluble antigen with the recombinant Q5 protein (Santos et al., 2020), we observed a lower positivity for the ELISA Q5. One of the great advantages of this test, however is a much reduced chance of cross-reaction with sera from individuals exposed to other diseases.

Regarding the results shown here using FC, these are associated with a very low specificity, due to similar results seen for the tested sera and the negative control group. We emphasize that the use of FC has been an innovation for the diagnosis of parasitic diseases such as Leishmaniasis (Silva et al., 2019). Previous studies have shown that FC is a valuable diagnostic technique, with good sensitivity and specificity (Nolan et al., 2013; McKinnon et al., 2018; Ker et al., 2019). Silva et al. (2019) showed that when compared to other serological techniques, FC presented a better sensitivity for the diagnosis; however, the study was carried out with symptomatic patients. Regarding our results, we can take into account the work of Gama Ker et al. (2013), where they carried out a study involving FC and the antigens used. The authors state in the discussion that dilution can be one of the important points to avoid false negative and positive results; however, the study was carried out with canine samples.

When comparing the tests evaluated in the present study, we observed that each test performed differently. This variation in results can be justified by the methodological differences that are the basis for each approach (Elmahallawy et al., 2014. In addition, the evaluation of asymptomatic individuals, with reduced or even null humoral and cellular responses to the parasite (Riera et al., 2004; Gadisa et al., 2012; Sundar et al., 2018), might impact significantly on the efficiency of each test. This justifies the low agreement seen between the tests. Due to this difficulty, so far the best way to identify the asymptomatic population in the population is the combination of more than one diagnostic technique (Ibarra-Menénes et al., 2017).

4. Conclusion

Serological techniques have not been able to satisfactorily identify asymptomatic *L. infantum* infection. Further studies using more sensitive diagnostic approaches are needed for this group. It would also be important to conduct a study to estimate the prevalence of asymptomatic *Leishmania* spp. infection in blood donors using different antigens.

Acknowledgments

The Universidade Federal da Grande Dourados (UFGD) supported the English review. We thank the supported financial by Programa de Excelência em Pesquisa (PROEP) [PROCESS 400325/2019-5, Call No. 39/2018 - Track B PROEP/IAM].

References

