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Abstract  

The consistent monitoring of rails is based on correctly identifying defects to support corrective measures. Recently, 

convolutional neural networks (CNN), a deep learning method, have been providing outstanding results for the 

automatic detection of defects. However, several aspects of CNN-based approaches such as network architecture, 

transfer learning and processing time remains not fully understood. In this work, we performed an in-depth 

assessment of ten widely used CNN models with the objective of finding the one with the best performance in 

identifying defects in rail surface images. The classification results are promising, reaching an average accuracy of 

83.7% on detection of mild defects and squat. The Inceptionv3 network provided the best results by correctly 

identifying 92% of images with severe squat defects.  

Keywords: Rail inspection; Squat; CNN. 

 

Resumo  

O monitoramento consistente dos trilhos baseia-se na identificação correta dos defeitos para apoiar as medidas 

corretivas. Recentemente, as redes neurais convolucionais (CNN), um método de aprendizado profundo, vêm 

apresentando excelentes resultados para a detecção automática de defeitos. No entanto, vários aspectos das 

abordagens baseadas em CNN, como arquitetura de rede, aprendizado de transferência e tempo de processamento, 

ainda não são totalmente compreendidos. Neste trabalho, realizamos uma avaliação aprofundada de dez modelos 

CNN amplamente utilizados, com o objetivo de encontrar aquele com melhor desempenho em identificar defeitos em 

imagens de superfície do trilho. Os resultados da classificação são promissores, atingindo uma acurácia média de 

83,7% na detecção de defeitos leves e agachamento. A rede Inceptionv3 forneceu os melhores resultados ao 

identificar corretamente 92% das imagens com defeitos graves de squat. 

Palavras-chave: Inspeção ferroviária; Squat; CNN. 
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Resumen  

El monitoreo consistente de los rieles se basa en identificar correctamente los defectos para respaldar las medidas 

correctivas. Recientemente, las redes neuronales convolucionales (CNN), un método de aprendizaje profundo, han 

proporcionado resultados sobresalientes para la detección automática de defectos. Sin embargo, varios aspectos de los 

enfoques basados en CNN, como la arquitectura de la red, el aprendizaje de la transferencia y el tiempo de 

procesamiento, aún no se comprenden por completo. En este trabajo, realizamos una evaluación en profundidad de 

diez modelos CNN ampliamente utilizados con el objetivo de encontrar el que tenga el mejor rendimiento en la 

identificación de defectos en las imágenes de la superficie del carril. Los resultados de la clasificación son 

prometedores, alcanzando una precisión media del 83,7 % en la detección de defectos leves y achaparrados. La red 

Inceptionv3 brindó los mejores resultados al identificar correctamente el 92 % de las imágenes con graves defectos de 

posición en cuclillas. 

Palabras clave: Inspección ferroviaria; Okupa; CNN. 

 

1. Introduction 

The propagation of cracks in railway tracks gives rise to fractures that could lead to catastrophic events. Therefore, 

one should conduct safety inspections to detect the crack formation and propagation before the fracture occurs. Moreover, 

consistent monitoring of railways is required to provide reliable data to maintenance teams for planning future corrective 

actions. Thus, achieving operational security and eliminate existing defects (MRS, 2008). 

 Recently, automated defect detection in railway tracks has been increasingly studied due to the development of 

computer vision and as an exciting alternative to manual monitoring, which is slow, exhausting, subjective, and costly (Yanan 

et al., 2018). Among the automated detection methods, those using railway images and convolutional neural networks (CNNs) 

are promising (Faghih-Roohi et al., 2016). CNNs constitute a class of deep artificial neural networks that rely on local linear 

operations (convolutions) followed by non-linear transformations, creating different representations of the input data. The 

convolutional layers are filters that extract low-level features (e.g., object edges) and high-level features (e.g., object shapes), 

considering the spatial context. A non-linear activation function is usually applied to the output of a convolutional layer, 

followed by a pooling (downsampling) operation to reduce its dimension. After several convolutional and pooling layers, a 

fully connected (FC) layer might be included to exploit the high-level features learned. The FC layer could be seen as hidden 

layers of a multilayer perceptron (MLP) network. Finally, the last layer is often a softmax classifier that outputs class 

membership probabilities for each class. A comprehensive overview of CNNs and deep learning can be found in Ponti et al. 

(2017). To rail surface defect detection, some studies employed CNN-based methods for scene classification and object 

detection. Scene classification aims to identify a defect in the rail given an image as input (usually a grayscale photograph). At 

the same time, object detection approaches draw a bounding box around the defect, finding it in the image. Faghih-Roohi et al. 

(2016), for example, proposed three deep CNN (DCNN) for scene classification to identify defects in railway tracks. The 

authors successfully classified normal rail, small defects, and squats with almost 92% accuracy. 

Similarly, Jamshidi et al. (2017) developed a DCNN model to classify images representing normal rail, trivial defects 

(seed squats), and squats. For a binary classification problem (squat vs. normal), the authors obtained a classification accuracy 

of 96.9%. Object detection networks such as the YOLOv3 (Redmon and Farhadi, 2018) have been employed to retrieve rail 

surface defects in grayscale images. Yanan et al. (2018) detected defects in rails with 97% accuracy with YOLOv3. Yuan et al. 

(2019) combined YOLOv3 network with MobileNetV2 (Sandler et al., 2018) to retrieve three types of rail surface defects. The 

MobileNetV2 architecture is used as a backbone network to extract image features, whereas YOLOv3 works on the regression 

prediction. The experiments showed that the combination of MobileNetV2 with YOLOv3 achieves higher detection accuracy 

and robustness when compared to the YOLOv3 alone, achieving 87.40% of average accuracy. Rodrigues (2020) used the 

supervised machine learning algorithm SVM (Support Vector Machine) to detect defects on the surface of the billet through 

images. After training, the network was able to identify tracks in grinding condition and tracks with severe damage. The model 
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achieved more than 95% accuracy in image classification. 

Efforts have been made to detect irregularities in rail components, such as fasteners, for example. In a recent study, 

Yuan et al. (2021) designed a one-dimensional CNN to inspect the fasteners from the time domain recorded by the 

accelerometer of a rail with fasteners in different degradation conditions. The authors report that the model achieves high 

detection accuracy and good noise flexibility. 

Some studies employed CNNs for semantic segmentation, assigning a label to each image pixel, thus performing 

pixel-level classification of defects. Liang et al. (2018) proposed an image processing pipeline based on the SegNet 

(Badrinarayanan et al., 2017) semantic segmentation architecture and obtained results with a 100% detection rate. More 

recently, Kim et al. (2020) modified the AlexNet (Krizhevsky et al., 2012) and the visual geometry group (VGG) (Simonyan & 

Zisserman, 2014) networks for semantic segmentation and achieved 99% of accuracy. Given the outstanding results of CNN-

based methods to automatically detect rail surface defects in the last years, an in-depth assessment of the most used 

architectures is needed. Such an assessment may provide valuable insights for the real-world application of CNNs aiming at 

reliable and fast detection of rail defects. In this work, we assess ten CNN architectures. We focused on identifying a severe 

type of defect called squat, caused by rolling contact fatigue at the wheel-rail interface and is characterized by the shattering of 

the gauge corner (MRS, 2008). We trained the networks with and without transfer learning. We analyze features such as 

computation time, accuracy, and the number of model parameters. This is the first work that assessed different CNNs to 

identify rail surface defects to the best of our knowledge. Moreover, most studies have focused on detecting the presence or not 

of a defect, with its classification remaining a challenge. 

 

2. Methodology  

2.1 Image database and pre-processing 

The images used in this work were collected from a critical section of Barra do Piraí’s railway line in Rio de Janeiro, 

Brazil. The railway line is under the concession of MRS Logística S.A, which captured the images using a railway inspection 

vehicle (RIV) (Figure 1). The grayscale images captured by the RIV have a dimension of 1600×1200 pixels. A total of 244 

images were collected, of which 80 were taken from railways without any defects while the others presented some flaws. The 

image labeling was performed according to the fracture and defect identification guidelines of railways from MRS (2008) by 

an expert from the company. 

 

Figure 1. Rail Inspect Vehicle (RIV). 

 

Source: Adapted from Loram (2018). 
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The dataset contains many defects such as head checking, flaking spalling, and squat. The railway lines without 

defects were grouped in a class called “Normal” (Figure 2a). The less severe superficial defects were arranged in “Mild 

Defects” (Figure 2b). Images with squat defects were arranged in a group called “Squat” (Figure 2c).  

 

Figure 2. Examples of the dataset (a) class “Normal” (b) class “Moderate” (c) Squat. 

  

Source: MRS (2020). 

 

As shown in Figure 2b, the “moderate” class is represented by a slight loss of billet material due to the high stresses of 

the wheel-rail contact. The “Squat” class (Figure 2c) is represented by cracks and holes in a large area on the rail surface, 

caused by contact fatigue and rail irregularities, such as weld and billet widening (MRS, 2008). 

We cropped 300 pixels from each side of the original images to avoid processing areas without the railway. The 

cropped images have a dimension of 1001 x 1200 pixels that should be reduced by half, i.e., 500 x 600 pixels, to reduce the 

processing time. Moreover, we improved the contrast of the images to highlight the railway. We performed a simple linear 

contrast enhancement, excluding the bottom 1% and the top 1% of all pixel values. The original and final images are shown in 

Figure 3. 

 

Figure 3. (a) Original image and (b) after pre-processing. 

 

Source: Adapted from MRS (2020). 
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Through Figure 3b, it is possible to observe that the contrast change performed made the light colors of the image 

lighter and the dark colors darker, improving the visual quality of the image and, consequently, facilitating the identification of 

the defect by the neural network. 

 

2.2 CNNArchitectures 

We assessed ten CNN architectures widely used in computer vision and image classification tasks. Table 1 summarizes 

the characteristics of each architecture, including depth (number of layers), size, parameters, image input size, and the 

reference work. 

 

Table 1. List of CNN architectures investigated. 

Network 
Depth (n. 

layers) 
Size (MB) 

Parameters 

(Million) 

Image input size 

(pixels) 
Reference 

Squeezenet 18 5,2 MB 1.24 227-by-227 Iandola et al. (2016) 

Googlenet 22 27 MB 7 224-by-224 Szegedy et al. (2015) 

Inceptionv3 48 89 MB 23.9 299 by 299 Lin et al. (2019) 

Densenet201 201 77 MB 20 224-by-224 Huang et al. (2017) 

Mobilenetv2 53 13 MB 3.5 224-by-224 Sandler et al (2018) 

Resnet18 18 44 MB 11.7 224-by-224 He et al. (2016) 

Resnet50 50 96 MB 25.6 224-by-224 He et al. (2016) 

Resnet101 101 167 MB 44.6 224-by-224 He et al. (2016) 

Xception 71 85 MB 22.9 299 by 299 Chollet (2017) 

Efficientnetb0 82 20 MB 5.3 224-by-224 Tan & Quoc (2019) 

Source: MATHWORKS (2020). 

 

2.3 Experimental setup 

We first evaluated the use of transfer learning, which refers to initializing the weights of the CNN models with values 

obtained after training them for a different classification problem. Transfer learning proved helpful in reducing computation 

time and improving accuracy in several image classification tasks (Shin et al., 2016). We initialized the weights of the 

networks using pre-trained values of the ImageNet database (Deng et al., 2009) and with random values following a uniform 

distribution, which we refer to from "scratch." We used a desktop computer with an Intel Core i7-8700 3.2GHz CPU, 24GB of 

main memory, and an NVIDIA® GeForce Titan V GPU with 12GB of dedicated memory for training and inference. We 

implemented all image processing procedures in the MATLAB® environment. 

Due to the small number of images, we used image augmentation on the training dataset, which is composed of 244 

images or 80% of the total number of images. The augmentation methods comprised image rotations between -10◦ and 10◦ and 

a translation of three pixels on the y- and x-axes. The augmented dataset was composed of 1025 images. Details of the dataset 

and samples that went through the process are shown in Table 2 and Figure 4, respectively. 
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Table 2. Number of training and testing images. 

Class Nº of training images 
Nº of training images after 

augmentation 

Nº of Test 

images 

Normal 80 320 16 

Moderate 76 304 15 

Squat 88 352 18 

Source: MATHWORKS (2020). 

 

Figure 4. Examples of training images after augmentation. 

 

Source: Adapted from MRS (2020). 

 

Figure 4 shows eight training images generated with the application of rotation and translation. These images were 

created within the network and discarded after its training. The greater the number of examples available for training the 

network, the greater its ability to generalize learning to new situations, reducing the occurrence of overfitting, a natural 

tendency that networks have to memorize training examples (Demuth, 2000). 

We tested all CNN models with and without transfer learning. To use transfer learning, we replaced the FC layer with 

a new one with the number of classes of our dataset. Initial tests performed with the Resnet-18 network revealed that low 

initial learning (< 0.001) produced overfitting. The best accuracy in the network was achieved using an initial learning rate of 

0.01 with a decaying factor of 0.5 after 90 epochs with a minibatch of 12 and 200 epochs. We trained all networks with these 

settings. To avoid biased training due to class imbalance, we used class weights. 

 

2.4 Accuracy assessment 

We performed the accuracy assessment with the testing images that were not used to train the models. We computed the 

mean accuracy and F1-score for each class. To evaluate the network accuracy in a binary classification, the classes “Mild 

defects” and “Squats” were considered one group. 
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3. Results and Discussion 

Tables 3 and Figure 5 show the multi-class classification result of the trained CNNs. The untrained versions are 

identified by the ending “Scratch”. The Inceptionv3 obtained the best classification Median accuracy, F1-score "Normal" and 

F1-score "Squat" from the test set, reaching 83.67%, 86,49%, and 91,89%, respectively. Its training time was 4.419 seconds, 

5.5 times more than the fastest network, SqueezeNet. On the other hand, the network with the worst performance was 

Mobilenetv2_Scratch, with 40% accuracy in classifying railway lines with mild defects, 63.15% accuracy for normal tracks, 

and 40% for the ones with squat defects. 

 

Table 3. Classification accuracy results using transfer learning. 

 CNN 

Multi-

class 

accuracy 

F1-score 

"Normal" 

F1-

score 

"Mild 

defects" 

F1-

score 

"Squat" 

Run 

Time 

(s) 

Relative 

Run 

Time  

1 Densenet201_Scratch 71.42% 76.92% 60.00% 75.86% 86,733 108.6 

2 Densenet201 77.55% 88.88% 62.06% 78.78% 43,791 54.9 

3 Efficientnetb0_Scratch 73.46% 82.05% 62.06% 73.33% 18,781 23.5 

4 Efficientnetb0 81.63% 84.21% 69.23% 88.23% 9,718 12.2 

5 Googlenet_Scratch 75.51% 84.21% 54.54% 78.94% 3,353 4.2 

6 Googlenet 77.55% 88.88% 68.75% 73.33% 2,166 2.7 

7 Mobilenetv2_Scratch 48.97% 63.15% 40.00% 40% 5,084 6.4 

8 Mobilenetv2 81.63% 84.21% 64.00% 91.42% 3,813 4.8 

9 Resnet101_Scratch 61.22% 80% 51.42% 43.47% 11,108 13.9 

10 Resnet101 81.63% 86.48% 66.66% 88.23% 8,009 10.0 

11 Squeezenet_Scratch 61.22% 75.67% 46.66% 58.06% 2,158 2.7 

12 Squeezenet 73.46% 88.88% 60.00% 68.75% 798 1.0 

13 Xception_Scratch 69.38% 78.04% 51.85% 73.33% 10,04 12.6 

14 Xception 77.55% 84.21% 58.33% 83.33% 5,148 6.4 

15 Inceptionv3_Scratch 79.59% 91.42% 68.75% 77.41% 6,54 8.2 

16 Inceptionv3 83.67% 86.48% 66.66% 91.89% 4,419 5.5 

17 Resnet18_Scratch 67.34% 76.19% 55.17% 66.66% 1,012 1.3 

18 Resnet18 81.63% 88.88% 69.23% 83.33% 943 1.2 

19 Resnet50_Scratch 67.34% 76.19% 55.17% 66.66% 4,287 5.4 

20 Resnet50 79.59% 84.21% 66.66% 84.84% 3,604 4.5 

Source: Author himself (2021). 
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Figure 5. Median accuracy and Run time. 

 

Source: Author himself (2021). 

 

All networks reached better classification accuracy in their pre-trained versions, with an average deviation of 12% 

concerning the untrained ones. Mobilenetv2 is the network that deviates the most, with an accuracy difference of 32.7% 

between the untrained and pre-trained versions (Figure 6). Similarly, all networks reached a shorter run time in their pre-

trained versions. Densenet201 is the network with the greatest run time difference between the versions (53,8 h), as shown in 

Figure 7.  
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Figure 6. Accuracy difference between pre-trained and untrained neural networks. 

 

Source: Author himself (2021). 

 

Figure 7. Run time difference between pre-trained and untrained neural networks. 

  

Source: Author himself (2021). 

 

Figure 8 shows that the networks were not able to identify images containing railway lines with mild defects. 

Conversely, railway lines with Squat were easier to identify. 
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Figure 8. F1-score of trained CNNs. 

 

Source: Author himself (2021). 

 

Figure 9 and Figure 10 show the influence of network depth (number of layers) on the validation accuracy and training 

time, respectively. 

 

Figure 9. Median accuracy x depth (n. layers). 

 

Source: Author himself (2021). 

 

The median accuracy x depth graph, illustrated in Figure 9, arranges the CNNs in descending order according to the 

number of layers. It is possible to observe that the line representing the average accuracies obtained by the networks in the 

classification of the test images does not decrease as the number of layers decreases. The highest average accuracy was 
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achieved by the 48-layer Inceptionv3 and the lowest average accuracy, but not far from the Inceptionv3, was achieved by the 

18-layer squeezenet. 

 

Figure 10. Run time x depth (n. layers). 

 

Source: Author himself (2021). 

 

The run time x depth graph, illustrated in Figure 10, arranges the CNNs in descending order according to the number of 

layers. It is possible to observe that the line representing the training time used by the networks tends to decrease as the number 

of layers decreases. 

Finally, Table 4 presents a binary classification of the accuracy of “Normal railway lines” and “Railway lines with 

defects”. In the binary classification, the methodology correctly predicted 88.48% of the images using Inceptionv3. 
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Table 4. Binary accuracy values of CNNs. 

DCNN 
Binary 

accuracy 

Binary 

F1-score 

Densenet201_Scratch 78,94% 0.7142 

Densenet201 83,82% 0.7755 

Efficientnetb0_Scratch 80,59% 0.7346 

Efficientnetb0 86,95% 0.8163 

Googlenet_Scratch 82,22% 0.7551 

Googlenet 83,82% 0.7755 

Mobilenetv2_Scratch 59,01% 0.4897 

Mobilenetv2 86,95% 0.8163 

Resnet101_Scratch 70,31% 0.6122 

Resnet101 86,95% 0.8163 

Squeezenet_Scratch 70,31% 0.6122 

Squeezenet 80,59% 0.7346 

Xception_Scratch 77,27% 0.6938 

Xception 83,82% 0.7755 

Inceptionv3_Scratch 85,4% 0.7959 

Inceptionv3 88,48% 0.8367 

Resnet18_Scratch 75,57% 0.6734 

Resnet18 86,95% 0.8163 

Resnet50_Scratch 75,57% 0.6734 

Resnet50 85,4% 0.7959 

Source: Author himself (2021). 

 

4. Conclusion  

We analyzed the performance of ten untrained and pre-trained artificial neural network structures in detecting rails 

without defects, with mild defects, and squat. The pre-trained networks were trained with more than 1 million images from the 

ImageNet dataset, and they learned features to classify 1000 object classes. An augmentation technique was employed to 

increase the number of images used during training. Additionally, the images underwent some pre-processing to crop the non-

important regions and improve the contrast.  

The best median accuracy was 83.67% with Inceptionv3, the highest F1-score “Squat” (91.89%). The 

Mobilenetv2_Scratch showed lower performance with a median accuracy of 48.98% and the Resnet-18 an excellent cost of 

time x accuracy with a median of 81.63% and 1,2 of Relative Run Time. 

Defect segmentation should be fast and accurate. In our experiment, we conclude that simple network and transfer 

learning can be applied in the effective rail surfaces defect detection, how the squat can achieve promising results in mild 

defects detection. We suggest increasing the number of examples of mild defects to affect the methodology as a preventive 

maintenance tool in future works. 
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