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Abstract 

Benzonitrile is a compound found in pesticides. The use of these pesticides can cause environmental contamination, 

and the search for non-aggressive methods to eliminate these residues is necessary. In this study, fungi Aspergillus 

isolated from cocoa were investigated for their benzonitrile bioremediation potential. The fungi were cultured in a 

solid medium supplemented with nitrile and glucose (a), nitrile (b), and glucose (c). Independent variables: time, 

inoculum, and nitrile were optimized using a central composite design to determine the best microbial growth and wet 

biomass (dependent variable) as a response in the bioremediation process. A. niger Tiegh 8285 showed good 

adaptation, especially in situation b in nitrile 5 days, 3 mycelial inoculums and 54 μL of benzonitrile for microbial 

growth, resulting in 1.83 ± 0.03 g of wet biomass, confirming the efficiency of the selected mathematical model. A. 

niger Tiegh 8285 proved to be a promising bioremediation agent for benzonitrile. 

Keywords: Biocatalysis; Central composite design; Microorganism; Optimization. 
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Resumo  

Benzonitrila é um composto encontrado em pesticidas. O uso desses agrotóxicos pode causar contaminação 

ambiental, exigindo a busca de métodos não agressivos para eliminação desses resíduos. Neste estudo, fungos 

Aspergillus isolados de cacau foram investigados quanto ao seu potencial de biorremediação de benzonitrila. Os 

fungos foram cultivados em meio sólido suplementado com nitrila e glicose (a), nitrila (b) e glicose (c). Variáveis 

independentes: tempo, inóculo e nitrila foram otimizados usando um planejamento Composto Central para determinar 

o melhor crescimento microbiano e biomassa úmida (variável dependente) como resposta no processo de 

biorremediação. A. niger Tiegh 8285 apresentou boa adaptação, principalmente na situação b em 5 dias, 3 inóculo 

micelial e 54 μL de benzonitrila para crescimento microbiano, resultando em 1,83 ± 0,03 g de biomassa úmida, 

confirmando a eficiência do modelo matemático selecionado. A. niger Tiegh 8285 provou ser um promissor agente de 

biorremediação para benzonitrila. 

Palavras-chave: Biocatalise; Microrganismos; Otimização; Planejamento composto central. 
 

Resumen 

El benzonitrilo es un compuesto que se encuentra en los pesticidas. El uso de estos pesticidas puede causar 

contaminación ambiental, siendo necesaria la búsqueda de métodos no agresivos para la eliminación de estos resíduos. 
En este estudio, los hongos Aspergillus aislados del cacao fueron investigados por su potencial para la 

biorremediación del benzonitrilo. Los hongos se cultivaron en medio sólido suplementado con nitrilo y glucosa (a), 

nitrilo (b) y glucosa (c). Variables independientes: tiempo, inóculo y nitrilo fueron optimizaron mediante un diseño de 

Central Composite para determinar el mejor crecimiento microbiano y biomasa húmeda (variable dependiente) como 

respuesta en el proceso de biorremediación. A. niger Tiegh 8285 mostró buena adaptación, principalmente en 

situación b en 5 días, 3 inóculo micelial y 54 μL de benzonitrilo para crecimiento microbiano, resultando 1.83 ± 0.03 

g de biomasa húmeda, confirmando la eficiencia del modelo matemático seleccionado. A. niger Tiegh 8285 demostró 

ser un agente de biorremediación prometedor para el benzonitrilo. 

Palabras clave: Biocatálisis; Microorganismos; Mejoramiento; Planificación compuesta central. 

 

1. Introduction 

Nitriles are organic compounds with toxic, mutagenic, and carcinogenic properties (Graham et al., 2020). They also 

cause adverse effects on human health, such as respiratory system inactivation (Heidari & Asoodeh, 2019), loss of hair cells 

(responsible for balance), neurobehavioral abnormalities, decreased hearing, altered serotonin levels, and corneal opacity 

(Saldanha-Ruiz, et al., 2012). However, nitriles are widely used as intermediates in organic synthesis reactions (Chmura, et al., 

2008; Santos, et al., 2021) such as hydrolysis (Mehtra, et al., 2017; Zhan, et al., 2018) and cycloaddition reactions (Umemoto, 

et al., 2020). They are also used as ingredients for obtaining plastics (An, et al., 2020), synthetic rubbers (Xiao, et al., 2019), 

and polymers (Lai et al., 2020), in addition to herbicides and pesticides (An, et al., 2018). 

Benzonitrile (C6H5CN) is an aromatic nitrile found in the composition of herbicides such as dichlobenil (2,6-

dichlorobenzonitrile), bromoxynil (3,5-dibromo-4-hydroxybenzonitrile) and ioxynil (3,5-diiodo-4-hydroxybenzonitrile) (Pei, et 

al., 2017). Dichlobenil is commonly used in plant and garden nurseries, while bromoxynil and ioxynil are generally used for 

weed pest control (Pei, et al., 2017). The metabolites from benzonitrile herbicides are hazardous to human health due to their 

toxicity and they are considered a risk for soil and groundwater contamination (Pei, et al., 2017). 

Any chemical contamination in a natural environment, such as rivers and groundwater, is undesirable in any 

circumstance. Therefore, the environmental pollution problems associated with social and technological development have 

spurred the search for different methods of water treatment, the most promising of which is bioremediation (Fu, et al., 2020). 

Bioremediation is a branch of biotechnology in which microorganisms such as bacteria and fungi (Quintella, et al., 2019) are 

used to transform contaminating and toxic compounds, such as dioxins (Dao, et al., 2019), agricultural effluents (Neoh, et al., 

2016), soil contaminated with oil (Chaudhary, et al., 2019; Li, et al., 2020) or heavy metals and pesticides (Zhang, et al., 2020), 

and wastewater from the pharmaceutical industry (Shah, et al., 2020) into compounds of low or zero toxicity, while obtaining 

water and carbon dioxide during the process (Liu, et al., 2017). Moreover, bioremediation has been extensively explored in 

wastewater treatment (Lu, et al., 2014; Catania, et al., 2020; Hubabillah, et al., 2020; Zhou, et al., 2020) and can be 
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characterized as a renewable process since it uses living organisms. Another advantage is that this process does not require the 

use of chemical catalysts and the reactions can be carried out at approximate room temperature (Zhang, et al., 2013).  

Studies have been carried out involving the bioremediation of several compounds such as Myceliophthora 

thermophile (Salami, et al., 2018) and Coriolopsis gallica (Vidal-Limon, et al., 2012) in the bioremediation of environmental 

contaminants, Sinanaonta woodiana, a freshwater mollusk, in the bioremediation of aquaculture effluents (reservoirs for 

breeding marine species, such as fish and shellfish) (Sicuro, et al., 2020), and Bacillus velezensis in the bioremediation of 

textile dyeing residues (Gowri, et al., 2020). 

In bioremediation, each microorganism reacts differently depending on the conditions. Therefore, it is important to 

provide ideal conditions for the microorganism to increase its bioremediation potential. For this purpose, chemometric 

techniques are considered useful alternatives. Thus, the aim of this study was to investigate the bioremediation potential of 

fungi of the genus Aspergillus, isolated from the stem and leaves of cocoa in southern Bahia, in the presence of benzonitrile 

and to optimize the conditions of bioremediation using central composite design (CCD) using the variables time, inoculum, 

and volume of nitrile. 

 

2. Materials and Methods 

2.1 Microorganisms 

Aspergillus niger Tiegh. 8068, A. parasiticus Speare 7967 and A. niger Tiegh. 8285 were isolated from the exterior 

part of conventional post-harvest and post-fermentation cocoa beans, respectively, in the city of Arataca (Bahia, Brazil), and 

the endophytic fungi, Aspergillus Tiegh. 8066 and A. niger Tiegh. 8067 were isolated from stems and leaves at the Matinha 

Municipal Park (Itapetinga, Bahia, Brazil). The fungal strains are stored in mineral oil, PDA, except A. parasiticus Speare 

7967, which was stored in mineral oil, Malt, in the URM library of the Mycology Center, Biological Sciences Department at 

the Federal University of Pernambuco (UFPE, Brazil). 

 

2.2 Screening in a minimal solid mineral medium in the presence of benzonitrile 

Screening was carried out in a minimal solid mineral medium [Na2HPO4 (1 g/L); MgCl2.7H2O (0.5 g/L); KCl (0.5 

g/L); FeSO4.7H2O (0.01 g/L); CoCl2.6H2O (0.001 g/L); ZnSO4.7H2O (0.0067 g/L); agar (15 g/L) supplemented with glucose 

(15 g/L) and nitrile (200 µL/L) (De Oliveira et al., 2014) in Petri dishes (10x1 cm) and pH 7 in three different situations: 

glucose and nitrile (a), nitrile without glucose (b), and glucose without nitrile (c). After microbial growth in a BOD incubator 

(TE-371, Tecnal, Piracicaba, Brazil) at 30ºC for 192 hours, the number of spores was counted using a Neubauer chamber and 

binocular microscope (BIOVAL L1000). 

 

2.3 Central composite design for optimization of bioremediation of water contaminated with benzonitrile 

Aspergillus niger Tiegh 8285, previously grown in a minimum solid mineral medium a, was inoculated in a minimum 

liquid mineral medium (De Oliveira, et al., 2013), situation a. An Erlenmeyer flask (250 mL) containing 100 mL of minimal 

liquid mineral medium supplemented with glucose (1.5 g) was autoclaved (CS Prismatec, Itu, Brazil) at 121°C for 15 min. 

When it reached room temperature, benzonitrile was added. In parallel, small slices of the minimum solid medium containing 

the fungus mycelia were cut from the stock culture and inoculated. Then, the experiment was incubated in an orbital shaker 

(Tecnal, Piracicaba, São Paulo, Brazil) at 30°C at 120 rpm. Finally, the reaction was filtered using a vacuum pump (Prismatec, 

Itu, Brazil), and the wet biomass was weighed. 

The procedure was optimized using a central composite design (CCD) (Dos Santos et al., 2016; Marques et al., 2018) 

with the independent variables reaction time (t), quantity of inoculum (In), and volume of nitrile (Nit) (Table 1) and the 

dependent variable wet biomass.  

http://dx.doi.org/10.33448/rsd-v11i8.31078
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Table 1. Experimental factors and variable levels used in the central composite design (CCD) for optimizing 

bioremediation of benzonitrile by Aspergillus niger Tiegh 8285. 

Variables Unity Codification 
Variable level 

-α -1 0 +1 +α 

Time day t 2.6 4.0 6.0 8.0 9.3 

Inoculum mm In 1.3 2,0 3.0 4.0 4.7 

Nitrile μL/100 mL Nit 16.5 30.0 50.0 70.0 83.5 

Source: Authors. 

 

The experimental project was modeled and analyzed using Statistica v.12.0 software (Statsoft, USA). The CCD 

obtained for the maximum biomass production was quadratic, as suggested by the software, and presented in equation 1. In the 

experimental matrix, the coded values of all parameters vary in five levels (-α, -1, 0, +1, α) (Table 1), totaling 17 experiments 

(Table 2). At the beginning and end of each reaction, pH was measured only as a reaction indicator. 

 

Y = β0 + β1X1 + β2X2 + β3X3 + β11X1
2 + β22X2

2 + β33X3
2 + β12X1X2 + β13X1X3 + β23X2X3 (1) 

 

Where Y is the predicted value, β0 is constant, β1, β2, β3 are linear coefficients, β12, β13, β23 are coefficients between 

products, and β11, β22, and β33 are quadratic coefficients. All experiments were performed in triplicate and expressed as 

average values. 

 

Table 2. Results obtained in the central composite design (CCD), pH measured in the experiments and experimental and 

predicted results for optimizing bioremediation of benzonitrile by Aspergillus niger Tiegh 8285. 

Essay Factors Damp mass (g) 

 t In Nit pH  Experimental values Predicted values 

1 4.0 2.0  30.0  6.84  1.75 1.70 

2 4.0 4.0 70.0 6.91  1.87 
1.87 

3 8.0  2.0  70.0 6.83  1.73 
1.71 

4 8.0 4.0  30.0  6.98  1.64 
1.66 

5 6.0 3.0 50.0 6.52  1.80 
1.81 

6 4.0 2.0 70.0 6.91  1.82 
1.86 

7 4.0 4.0 30.0  6.80  1.71 1.78 

8 8.0 2.0 30.0  6.88  1.47 
1.53 

9 8.0 4.0  70.0 7.12  1.65 
1.76 

10 6.0  3.0 50.0 6.90  1.83 
1.81 

11 2.6 3.0  50.0 6,83  1.52 
1.52 

12 9.3  3.0 50.0 7,82  1.37 
1.29 

13 6.0 1.3  50.0 6.52  1.56 1.57 

14 6.0 4.7  50.0 6.53  1.78 
1.68 

15 6.0  3.0  16.5 6.50  2.11 
2.08 

16 6.0  3.0 83.5  6.50  2.35 
2.30 

17 6.0  3.0 50.0 6.52  1.79 1.81 

Source: Authors. 
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2.4 Model adequacy and validation 

The adjustment quality of the statistical model was verified by the coefficient of determination (R2), and the 

significance of the model was tested by Fisher's test (F-value) through analysis of variance (ANOVA), according to Ferreira et 

al 2007. Model adequacy was analyzed using the observed vs predicted graph. The interactions between the variables and their 

influence on the response obtained were analyzed using a Pareto chart, and the optimal point of maximum bioremediation was 

obtained using equation two and the response surface graph. The selected statistical model was validated by running the 

experiment under optimized conditions and comparing it with the expected response (Ferreira, et al., 2007; Bezerra, et al., 

2020). 

 

3. Results and Discussion 

3.1 Screening in a minimal solid medium in the presence of benzonitrile 

Fungi of the genus Aspergillus from different biomes in the state of Bahia with biocatalytic potential in the presence 

of aromatic nitriles were selected through screening in a minimal solid mineral medium supplemented with glucose and 

benzonitrile, according to situations a, b, and c, using quantitative evaluation through the number of spores (Table 3). As 

observed in Table 3, the fungi showed microbial growth in situations a, b, and c and a better adaptation in media supplemented 

with benzonitrile (a and b), indicating the inducing role of nitrile since it is the only source of nitrogen, as well as the possible 

biocatalytic potential of the respective fungi. These results corroborate data from the literature that stress the importance of 

nitriles as an inducer in microbial growth (Coady, et al., 2013; De Oliveira, et al., 2013; De Oliveira, et al., 2014), in particular, 

benzonitrile (Agarwal, et al., 2017; Serra, et al., 2019). 

 

Table 3. Results obtained from screening in minimal solid mineral medium for benzonitrile by counting spores using a 

Neubauer chamber and binocular microscope. 

Fungi Glucose and nitrile 

(spores x mL-1) 

Nitrile without glucose 

(spores x mL-1) 

Glucose without nitrile 

(spores x mL-1) 

A. niger Tiegh. 8068 14.2 x 104 19.1 x 104 14.3 x 104 

A. niger Tigeh. 8285 19.4 x 104 63.2 x 104 1.8 x 104 

A. parasiticus Speare 7967 12.6 x 104 7.73 x 104 5.8 x 104 

A. niger Tiegh. 8066 27.7 x 104 21.5 x 104 13.0 x 104 

A. niger Tiegh. 8067 23.6 x 104 13.8 x 104 7.3 x 104 

Source: Authors. 

 

According to Table 3, A. niger Thiegh 8285 showed a significant increase in spores in the situation that only 

contained benzonitrile b (63.2 x 104 spores x mL-1), which represents an increase of approximately 35 times compared to 

situation c. The good adaptation of A. niger Thiegh 8285 revealed that the addition of benzonitrile alone in a medium with 

minimal amounts of nutrients was sufficient to supply the needs of the microorganism. 

 

3.2 Optimization of bioremediation 

From the results obtained from screening in minimal solid mineral medium (Table 3), A. niger Tiegh 8285 was 

selected to evaluate its potential in the benzonitrile bioremediation process through the central compound design with 17 

experiments (Table 2). 

http://dx.doi.org/10.33448/rsd-v11i8.31078
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The analysis of variance (ANOVA) calculated model efficiency and adequacy for the experimental design used, as 

shown in Table 4. The computed F value (22.80) for the model was considerably higher than in the Table 4 (3.67), showing 

that the model was significant. 

 

Table 4. Analysis of variance to adjust the quadratic model with a 95% confidence level. 

Factor SS df MS F calc. F tab. 

Model 0.82 9 0.091 22.80 3.67 

Residue 0.028 7 0.003985   

Lack of fit 0.027 5 0.005405   

Pure error 0.000867 2 0.000433   

Total 0.845612 16    

R2 0.97     

R2-adj 0.92     

SS - Sum of squares; DF= Degree of freedom; MS = Medium square 

Source: Authors. 

 

The model’s capacity was assessed using the R2 determination coefficient, which was calculated to be 1.0. The value 

found for R2 (0.97) indicates that the model reported 97% of the experimental data, and there were only 3% of errors, to which 

noise can be attributed. The observed vs. predicted graph (Figure 1) corroborates the model's adjustability, with experimental 

values close to the predicted values, indicating the authenticity of the polynomial model.  

 

Figure 1. Observed vs. predicted graph showing the approximation between the results obtained experimentally from wet 

biomass in each of the experiments of the central composite design (CCD) and the theoretically indicated values (red line). 

 

 

According to the analysis of the Pareto chart (Figure 2), the variables that most influence the response (P <0.05) were 

quadratic effect of time and nitrile. The quadratic variable time was the most significant variable, with a negative correlation, 

Source: Authors. 
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indicating that an increase in time reacts negatively to the response and results in a decrease in wet biomass, revealing that all 

the nutrient is bioconsumed in a short time; therefore, A. niger Thieg 8285, in addition to being resistant, needs little time to 

bioremediate nitrile. The quadratic variable had a positive correlation, indicating that, as the volume of nitrile increased, the 

expected response (biomass) also increased since the culture medium is deficient in nutrients and the only source of nitrogen is 

the benzonitrile itself. This result shows that A. niger Thieg 8285 was induced to consume nitrile to survive, thus proving it 

adapted to the established conditions. 

 

Figure 2. Pareto chart for optimization of bioremediation of water contaminated with nitrile according to independent 

variables time, inoculum, and volume of nitrile. 

 

 

The analysis of the Pareto chart allowed selection of statistically significant terms at 95% significance and removed 

the non-significant terms (P >0.50) from the mathematical model. After being the adequacy of the model approved using 

ANOVA, response surfaces (Figure 3a, b and c) were obtained, making it possible to observe the influence of combinations 

between the independent variables.  

Polynomial Eq. 2 was used to express the relationship between the coded independent variables and to predict a 

response: 

 

Y = 1.81 - 0.067X1 + 0.034X2 + 0.066X3 - 0.146X1
2 - 0.066X2

2 + 0.134X3
2 + 0.01X1X2 + 0.005X1X3 - 0.02X2X3 (2) 

 

Based on equation 2 and the response surface, the maximum biomass production point of reaction was 5 days and 12 

hours, inoculum 3.38 mm and 54.31 μL of benzonitrile with theoretical production of 1.82 g of wet biomass. The reaction time 

obtained (5 days and 12 hours) is within the average time interval for several species of A. niger, which is between 5 (Sattar, et 

al., 2019; Papadaki, et al., 2020; Putri, et al., 2020) and 7 days (Khan, et al., 2019; Aboyeji, et al., 2020). The volume of nitrile 

obtained from the statistical design used (CCD) revealed that the microorganism studied has resistance to nitrile since 

microorganisms generally have limited tolerance to high concentrations of nitriles due to their toxicity (Sattar, et al., 2019). 

 

Source: Authors. 

http://dx.doi.org/10.33448/rsd-v11i8.31078
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Figure 3. Response surface for the dependent variable (wet biomass) considering the interactions between (a) nitrile volume 

versus time, (b) nitrile volume versus inoculum and (c) inoculum versus time. The figures were obtained with Statistica v.12.0 

software (Statsoft, USA). 

 

 

3.3 Statistical validation of bioremediation 

For model validation, experiments at the optimum point were performed in triplicate using the ideal conditions 

provided by equation 2 and the response surface (Figure 3). The wet biomass value predicted by the model was 1.82 g. By 

performing the optimal point experiment in triplicate, it was possible to obtain an average of 1.83 ± 0.03 g and a recovery of 

approximately 100% between the theoretical and the experimental value. These results corroborate those obtained in the 

central composite planning and validate the use of the proposed method for the bioremediation of water contaminated with 

benzonitrile by A. niger Tiegh 8285. 

 

4. Conclusion 

The role of benzonitrile as an inducer was confirmed with fungi of the genus Aspergillus of the state of Bahia, 

particularly Aspergillus niger Tiegh 8285, isolated from cocoa beans. This study has a high scientific value since a 

chemometric tool (central compound design) was used for the statistical optimization of bioremediation of water contaminated 

with benzonitrile by A. niger Thiegh 8285. Moreover, this study is relevant in terms of environmental preservation concerns by 

presenting a promising method for the treatment of water contaminated with residual nitriles. The result is encouraging for 

future studies on the bioremediation of aromatic nitriles. 
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