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Abstract 

ADHD (attention deficit hyperactivity disorder) is a neurodevelopmental disorder characterized by harmful levels of 

inattention, disorganization, and/or hyperactivity-impulsivity. In childhood, these symptoms often overlap with those 

of other disorders, and they tend to persist into adulthood, interfering with relationships and academic and work life. 

Diagnosis, traditionally made by assessing the patient, i.e., testing and listening to relatives and teachers, has already 

been aided by neuroimaging. However, the visual analysis of such images to make a psychiatric diagnosis is a 

complex and sometimes time-consuming task. For this reason, computer-aided diagnostic tools have increasingly 

evolved that, when combined with machine learning (ML) techniques, can accelerate, facilitate, and maximize the 

accuracy of diagnoses. Nevertheless, research evaluating ML models for classifying ADHD considering severity using 

images of the brain SPECT (Single Photon Emission Computed Tomography) is still very sparse. For this reason, this 

article aims to evaluate the performance of the ML methods: k-NN (k-Nearest Neighbors), Naive Bayes, Decision 

Tree, MLP (Multilayer Perceptron) and SVM (Support Vector Machine) in the classification of ADHD. The main goal 

of this analysis is to check whether the subjects have the disorder or not, and to classify the severity of those who have 

it using SPECT images. A database was created from SPECT images and diagnostic reports. After pre-processing 

these data, the best hyperparameters for the ML methods were searched, trained/tested and finally statistically 

compared. The best results were obtained with SVM and k-NN, with 98% accuracy. Although ADHD diagnosis by 

neuroimaging is not yet a standard clinical procedure, we argue that this study can contribute to ADHD diagnosis 

research and support methods for the development of CAD (computer-aided diagnosis) systems. 

Keywords: ADHD assisted diagnosis; Computer-aided diagnosis; Machine learning; Nuclear medicine; SPECT. 

 

Resumo  

O TDAH (transtorno de déficit de atenção e hiperatividade) é um transtorno do neurodesenvolvimento caracterizado 

por níveis prejudiciais de desatenção, desorganização e/ou hiperatividade-impulsividade. Na infância, esses sintomas 

muitas vezes se sobrepõem aos de outros transtornos e tendem a persistir na vida adulta, interferindo nos 

relacionamentos e na vida acadêmica e profissional. O diagnóstico, tradicionalmente feito pela avaliação do paciente, 

ou seja, testando e ouvindo familiares e professores, já tem sido auxiliado pela neuroimagem. No entanto, a análise 

visual de tais imagens para fazer um diagnóstico psiquiátrico é uma tarefa complexa e às vezes demorada. Por esse 

motivo, têm evoluído cada vez mais ferramentas de diagnóstico auxiliadas por computador que, quando combinadas 

com técnicas de aprendizado de máquina (ML), podem acelerar, facilitar e maximizar a precisão dos diagnósticos. No 

entanto, pesquisas avaliando modelos de ML para classificar o TDAH considerando a gravidade usando imagens do 
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cérebro SPECT (Tomografia Computadorizada por Emissão de Fóton Único) ainda são muito escassas. Por esse 

motivo, este artigo tem como objetivo avaliar o desempenho dos métodos de ML: k-NN (k-Nearest Neighbors), Naive 

Bayes, Decision Tree, MLP (Multilayer Perceptron) e SVM (Support Vector Machine) na classificação do TDAH. O 

principal objetivo desta análise é verificar se os sujeitos têm ou não o transtorno e classificar a gravidade daqueles que 

o têm usando imagens SPECT. Um banco de dados foi criado a partir de imagens SPECT e relatórios de diagnóstico. 

Após o pré-processamento desses dados, os melhores hiperparâmetros para os métodos de ML foram pesquisados, 

treinados/testados e por fim comparados estatisticamente. Os melhores resultados foram obtidos com SVM e k-NN, 

com 98% de acurácia. Embora o diagnóstico de TDAH por neuroimagem ainda não seja um procedimento clínico 

padrão, argumentamos que este estudo pode contribuir para a pesquisa do diagnóstico de TDAH e apoiar métodos 

para o desenvolvimento de sistemas CAD (computer-aided diagnosis).  

Palavras-chave: Diagnóstico assistido de TDAH; Diagnóstico auxiliado por computador; Aprendizado de máquina; 

Medicina nuclear; SPECT. 

 

Resumen  

El TDAH (trastorno por déficit de atención con hiperactividad) es un trastorno del neurodesarrollo caracterizado por 

niveles nocivos de falta de atención, desorganización y/o hiperactividad-impulsividad. En la infancia, estos síntomas a 

menudo se superponen con los de otros trastornos y tienden a persistir en la edad adulta, interfiriendo con las 

relaciones y la vida académica y laboral. El diagnóstico, tradicionalmente realizado valorando al paciente, es decir, 

testeando y escuchando a familiares y profesores, ya ha sido ayudado por la neuroimagen. Sin embargo, el análisis 

visual de tales imágenes para hacer un diagnóstico psiquiátrico es una tarea compleja y, a veces, lenta. Por esta razón, 

las herramientas de diagnóstico asistidas por computadora han evolucionado cada vez más y, cuando se combinan con 

técnicas de aprendizaje automático (ML), pueden acelerar, facilitar y maximizar la precisión de los diagnósticos. Sin 

embargo, la investigación que evalúa los modelos ML para clasificar el TDAH considerando la gravedad utilizando 

imágenes del cerebro SPECT (tomografía computarizada por emisión de fotón único) es todavía muy escasa. Por ello, 

este artículo tiene como objetivo evaluar el desempeño de los métodos ML: k-NN (k-Nearest Neighbors), Naive 

Bayes, Decision Tree, MLP (Multilayer Perceptron) y SVM (Support Vector Machine) en la clasificación del TDAH. 

El principal objetivo de este análisis es comprobar si los sujetos tienen el trastorno o no, y clasificar la gravedad de los 

que lo tienen mediante imágenes SPECT. Se creó una base de datos a partir de imágenes SPECT e informes de 

diagnóstico. Después de preprocesar estos datos, se buscaron, entrenaron/probaron y finalmente se compararon 

estadísticamente los mejores hiperparámetros para los métodos de ML. Los mejores resultados se obtuvieron con 

SVM y k-NN, con un 98% de precisión. Aunque el diagnóstico de TDAH por neuroimagen aún no es un 

procedimiento clínico estándar, argumentamos que este estudio puede contribuir a la investigación del diagnóstico de 

TDAH y apoyar métodos para el desarrollo de sistemas CAD (diagnóstico asistido por computadora). 

Palabras clave: Diagnóstico asistido por TDAH; Diagnóstico asistido por computadora; Aprendizaje automático; 

Medicina nuclear; SPECT. 

 

1. Introduction 

According to CDC (CDC, Data and Statistics About ADHD, 2021), ADHD (attention-deficit/hyperactivity disorder) 

is one of the most common neurodevelopmental disorders in childhood, often persisting into adulthood. This disorder is 

characterized by problems in directing attention, controlling impulsive behavior, or being overly active. It occurs in most 

cultures and affects about 5% of children and 2.5% of adults. The Diagnostic and Statistical Manual of Mental Disorders or 

DSM (American Psychiatric Association, 2013) establishes three possible levels of “current severity” of ADHD: mild, 

moderate, and severe, depending on the degree of impairment or symptoms observed in the patient. According to De Silva, et 

al. (2019), early diagnosis minimizes long-term effects and helps in the development of intellectual skills. Clinical diagnosis 

involves several steps without a single test. It usually includes a checklist to assess symptoms and consideration of the child's 

history from the perspective of parents and teachers (CDC, What is ADHD? 2021). 

Kautzky, et al. (2020) warn of a likely challenge to ADHD diagnosis. This is based primarily on behavioral symptoms 

rather than objective biomarkers because of  overlap with symptoms of other disorders. Another difficulty is studying ADHD 

in adults and trying to retrospectively assess symptoms in childhood. One of the solutions lies in the use of neuroimaging, 

where the use of EEG (electroencephalogram) and MRI (magnetic resonance imaging) in ADHD diagnosis, also using 

machine learning (ML) methods, is well established (Pulini, et al., 2019). ADHD significantly affects quality of life, especially 

from a parent's perspective. Individuals with ADHD have lifelong impairment in psychosocial, educational, and 
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neuropsychological functioning. It is very important that the disorder is identified early to prevent and treat it effectively to 

improve the quality of life of those affected (Biederman, et al., 2012; Danckaerts, et al., 2010). 

Regarding the areas of the brain whose functions are impaired by ADHD, Amen and Blake (1997), using images of 

the brain SPECT (Single Photon Emission Computed Tomography), demonstrated that blood flow to the prefrontal cortex is 

decreased in children and adolescents with ADHD. Kaya, et al. (2003) demonstrated that individuals with ADHD may have 

significant hypoperfusion in the medial and lateral temporal cortex in the right hemisphere. Goldberg, et al. (1999) found that 

ADHD is associated with significant dysfunction of the frontal and temporal lobes. Santra and Kumar (2014) also observed 

hypoperfusion in these regions and found evidence of normalization of prefrontal activity in post-therapy scans available after 

successful treatment. Several other brain regions are also being studied in ADHD patients, such as the parietal, cingulate gyrus, 

cerebellum, caudate, and thalamus. Nevertheless, the frontal region predominates in research (Santra & Kumar, 2014). 

Nuclear medicine imaging PET (positron emission tomography) and SPECT have been used to diagnose ADHD 

(Kautzky, et al., 2020; Vázquez-Abad, et al., 2020). Nuclear medicine involves administering a radiopharmaceutical to the 

patient, the radioactive energy of which is sufficient to penetrate the patient's body and reach a radiation detector that converts 

it into images (O'malley, et al., 2020). According to Jales and Santos-Filho (2020), PET and SPECT are powerful weapons for 

the professionals who use them. According to Daniel Amen, MD, adding neuroimaging to patients' medical histories leads to 

more targeted treatments (Amen, 2012). Technetium-99 is commonly used in SPECT imaging due to its relatively short half-

life in the form of the radiopharmaceuticals HMPAO (HexaMetilPropilenAminaOxima) and ECD (Ethyl Cysteinate Dimer). 

For all of them, the manual evaluation of all these image details by a simple visual analysis is not a trivial task to 

make a diagnosis. In Alzheimer's disease (AD), for example, visual diagnosis in early stages is a difficult task that requires 

experienced specialists (Chaves, et al., 2009). In Parkinson's disease (PD), very subtle changes can be detected on magnetic 

resonance imaging of the brain by visual analysis (Haller, et al., 2012). According to Illán, et al. (2012), semiquantitative 

parameters can be used in the studies of PD with SPECT images, where the accuracy of quantification is important to monitor 

disease progression and therapeutic effects. All these aspects motivate the development of automated quantification techniques 

that provide similar performance to human operators. Therefore, to assist physicians in their diagnostic work with medical 

images, it is essential to use a computer-aided diagnosis (CAD) technique. In CAD systems, ML methods have been 

increasingly used in clinical research with promising results (Dubreuil-Vall, et al., 2020). 

There are several studies that evaluate automatic diagnostic methods based on the analysis of images of the brain 

SPECT (Horn, et al., 2009; Segovia, et al., 2010; Illán, et al., 2012). According to Horn, et al. (2009), this type of tool can help 

physicians in their daily practice, especially when visual assessment is inconclusive. Segovia, et al. (2010) emphasize that 

CAD tools are desirable. Illán, et al. (2012) believe that the requirements for a diagnostic tool are potentially met by machine 

learning techniques for developing CAD systems. 

Machine learning (ML) is a set of methods that can automatically detect patterns in data and use them to predict future 

data (Murphy, 2012). It is a process that induces a function approximation (hypothesis) from a set of sample data (experience) 

provided to it (Faceli, et al., 2021). After the methods have been trained and learned the hypothesis induction rule, they need to 

be evaluated. There are two major ML approaches: predictive or supervised and descriptive or unsupervised. In this study, only 

the predictive methods were used: k-Nearest Neighbors (k-NN), Naive Bayes (NB), Decision Trees (DT), Artificial Neural 

Networks (ANN) and Support Vector Machines (SVM). The k-NN algorithm classifies a new object based on training 

examples that are close to it. NB is based on computing probabilities under the assumption that the attribute values of an 

instance are independent of its class. DT recursively divides a decision problem into subproblems whose solutions can be 

combined in the form of a tree. ANNs are distributed computing systems consisting of densely connected units (neurons) 

arranged in layers that process mathematical functions. SVM searches for a hyperplane that best separates instances by their 
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classes. For more information on these ML methods, see Murphy (2022). 

Whether diagnosing ADHD or another psychiatric disorder based on neuroimaging and CAD, research faces similar 

challenges, but not always in an appropriate manner. Some difficulties can be highlighted: the number of available samples 

related to the high dimensionality of the image attributes, the imbalance between the frequencies of the classes, and the lack of 

appropriate methods to validate the results. In particular, about the evaluation of ML methods for automatic ADHD diagnosis, 

including classification of the severity levels of the disorder, using brain images SPECT, is a lack of previously published 

studies, suggesting that this is a topic that requires further investigation. Therefore, this is the central topic of this study. Our 

aim was to evaluate and compare the performance of different ML methods using SPECT imaging modality, in classifying 

ADHD patients and determining severity for those who suffer from it. 

The article is organized as follows: The next subsections provide an overview of related research; Section 2 explains 

relevant details of our methodology; Section 3 discusses the results found; and Section 4 concludes. 

 

1.1 Related research 

Research related to this study is then analyzed, first in the context of diagnosing various psychiatric disorders and then 

specifically in the context of ADHD. 

 

1.1.1 Mental illnesses classification by ML methods and SPECT images 

Table 1 lists several studies using classic ML methods to investigate automated diagnostic methods for various 

psychiatric disorders using a series of images of the brain SPECT. There are studies on Alzheimer's disease, frontotemporal 

dementia, Parkinson's disease, cocaine addiction, autism, and disorders with amnestic symptoms. These studies were analyzed 

and some key aspects are highlighted in Table 1: the disease studied, the size of the dataset, the distribution of classes, the ML 

methods used, and whether a statistical test was used to validate the results. 
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Table 1 - Related research in the diagnosis of various psychiatric illnesses. 

Author Diseases Number of 

subjects 

Class Distribution ML Methods Statistical 

Validation 

Horn, et al. (2009) Alzheimer and 

frontotemporal 

dementia 

173 47% AD 

53% FTD 

Logistic regression, linear discriminant analysis, SVM, k-

NN, multilayer perceptron and kernel logistic PLS 

No 

Chaves, et al. (2009) Alzheimer 79 51% NOR 

49% ATD 

SVM No 

Segovia, et al. (2010) Alzheimer 91 45% Normal 

55% AD 

SVM No 

Abdi, et al. (2012) Alzheimer and 

frontotemporal 

dementia 

104 34% Normal 

35% AD 

31% FTD 

MUBADA, SVM, PCA-LDA, PLS-DA No 

Haller, et al. (2012) Parkinson 40 43% PD 
23% Others 

SVM Yes 

Illán, et al. (2012) Parkinson 208 48% Control 

52% PS 

SVM, k-NN, NM No 

Padilla, et al. (2012) Alzheimer 97 42% NOR 

58% AD 

SVM No 

Palumbo, et al.  

(2014) 

Parkinson 90 38% non-PD 

62% PD 

SVM No 

Oliveira & Castelo-

Branco (2015) 

Parkinson 654 32% Control 

68% PD 

SVM No 

Salas-Gonzalez, et al. 

(2016) 

Alzheimer 70 Not specified SVM No 

Prashanth, et al. 

(2016) 

Parkinson 584 31% Normal 

69% PD 

Naive Bayes, SVM, Boosted Trees, Random Forests Yes 

Mete, et al. (2016) Cocaine addiction 162 43% Control 

57% Dependent 

SVM No 

Höller, et al. (2017) Disorders with 

amnestic 

symptoms 

220 18% AD 

31% DCI 

32% aMCI 
19% aSCC 

Linear SVM No 

Rondina, et al. 

(2017) 

Alzheimer 38 47% Control 

53% AD 

SVM and Multiple kernel learning (MKL) Yes 

Ferreira, et al. (2017) Alzheimer 38 47% Control 
53% AD 

SVM Yes 

Tagare, et al. (2017) Parkinson 658 32% Control 

68% PD 

Logistic Lasso No 

Amen, et al. (2017) Autism 928 50% HC 
50% ASD 

Random Forests, Logistic regression, SVM No 

Oliveira, et al. (2018) Parkinson 652 32% Control 

68% PD 

SVM, k-NN and Logistic regression Yes 

Castillo-Barnes, et al. 
(2018) 

Parkinson 388 50% Control 
50% PD 

Performance-weighted ensemble classification model Yes 

Jin, et al. (2019) Parkinson 600 33% Control 

67% PD 

Relief-SVM Yes 

Nicastro, et al. 
(2019) 

Parkinson 578 36% Control 
64% PD 

SVM Yes 

Segovia, et al. (2019) Parkinson 189 50% Control 

50% PD 

SVM Yes 

Hsu, et al. (2019) Parkinson 202 03% Normal 
11% HYS I 

13% HYS II 

26% HYS III 
43% HYS IV 

03% HYS V 

Logistic regression and SVM No 

Huang, et al. (2020) Parkinson 634 27% Normal 
20% Nearly 

normal 

13% Potentially 
Abnormal 

40% Abnormal 

SVM, Naive Bayes, random forests, XGBoost, logistic 
regression, linear discriminant analysis 

No 

Shiiba, et al. (2020) Parkinson 200 50% NC 

50% PD 

SVM No 

Castillo-Barnes, et al. 

(2020) 

Parkinson 386 50% HC 

50% PD 

SVM, Naive Bayes, MLP No 

Source: Author’s own. 

 

From the “Diseases” column in Table 1, it appears that the scientific community has paid more attention to 

Parkinson's disease (PD) and Alzheimer's disease (AD). This is understandable considering that AD is among the 10 diseases 
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that cause the most deaths in the United States of America (Xu, et al., 2010), and the number of PD cases is expected to reach 

1,238,000 by 2030 (Marras, et al., 2018). However, this should not be allowed to crowd out research into other diseases that 

affect mental health, as there is a wide variety of diseases and each one affects and limits patients' quality of life. 

The number of samples from the datasets used in research, represented by “Number of subjects” in Table 1, is a 

relevant factor for accurate ML methods (Martinez-Murcia, et al., 2017). For this reason, this aspect was analyzed, and it was 

found that the number of examples is generally low, which can be justified by the fact that the dataset is protected or has 

limited access. When only a small number of instances are available, it is advisable to use a data augmentation technique 

(Goodfellow, et al., 2016) to systematically create “artificial data” and add them to the training set. This is because the more 

data available for training, the better the generalization of the model. None of the 26 papers analyzed used data augmentation, 

even those with fewer than 100 instances. 

From “Class Distribution” in Table 1, it appears that the research generally dealt with unbalanced databases that 

contained classes more frequently than others, such as in Tagare, et al. (2017), where there were 68% PD subjects but only 

32% healthy subjects. This is a common problem in classification problems that needs to be worked around so that the 

performance of the ML algorithms is not compromised. If ignored, it leads to favoring the classification of new data from 

classes with a larger number of samples (majority classes). Therefore, the papers in Table 1 were analyzed and found that at 

least half of them, even those with a relevant number of subjects, ignored this problem. This may have affected the 

interpretation of their results. 

Regarding the ML techniques analyzed in Table 1 in the column “ML Methods”, a wide use of SVM (Support Vector 

Machine) for the classification of mental illness can be seen. According to Cascianelli, et al. (2016), this could be due to its 

good generalizability or to the fact that its results are comparable to and often superior to those of other ML methods (Faceli, et 

al., 2021). Nevertheless, we defend studies that compare the performance of more than one classifier type. This would help 

expand the study of ML techniques for diagnosing mental illness with SPECT neuroimaging. 

Regarding the performance of the classifiers, the papers were analyzed and those that used a statistical test were 

identified in the column “Statistical Validation” (Table 1). It was noted that some of the studies use it only as a pre-processing 

technique for feature selection. Nevertheless, when comparing two or more classifiers, it is necessary to check whether there 

are statistically relevant differences between their results. In this issue, it was found that many studies had not statistically 

validated their results. Others had only tested the statistical significance of accuracy using a permutation test (Wilcox, 2017). 

 

1.1.2 ADHD classification by ML methods and neuroimaging 

In this section, Table 2 presents a selection of papers that have examined models for automating ADHD diagnosis 

based on neuroimaging, machine learning (ML), and deep learning (DL). DL is a particular subtype of ML approaches that use 

learning to represent the world as a nested hierarchy of concepts (GoodFellow, et al., 2016). 
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Table 2 - Research related to ADHD diagnosis with neuroimaging. 

Author Image Modality Number of Subjects Class Distribution ML or DL Classifier Accuracy Statistical Validation 

Peng, et al. (2013) sMRI 110 50% HC 
50% TDAH 

ML (ELM and SVM) 90% Yes 

Johnston, et al. (2014) sMRI 68 50% TDAH 

50% Control 

ML (SVM) 93% Not specified 

Kuang, et al. (2014) fMRI 947 62% HC 
38% TDAH 

DL (DBN) 54% Not specified 

Iannaccone, et al. (2015) fMRI 36 50% TDAH ML (SVM) 78% Not specified 

Hao, et al. (2015) fMRI 947 62% HC 

38% TDAH 

DL (DBN) and ML (SVM)  72% Not specified 

Deshpande, et al. (2015) fMRI 947 62% HC 

38% TDAH 

DL (FCC) 90% Not specified 

Du, et al. (2016) fMRI 216 55% TDAH ML (SVM) 95% Not specified 

Ghiassian, et al. (2016) fMRI and sMRI 769 36% TDAH ML (MHPC) 70% Not specified 

Qureshi, et al. (2017) fMRI and sMRI 159 33% TDC 
33% ADHDI 

33% ADHDC 

ML (ELM and SVM) 85% Yes 

Zou, et al. (2017) fMRI and sMRI 730 35% TDAH DL (3D CNN) 69% Not specified 

Sen, et al. (2018) fMRI and sMRI 558 50% TDAH ML (SVM) 69% Yes 

Zhang-James, et al. (2020) sMRI 3377 49% Control 

51% TDAH 

ML (classifiers committee) 62% Yes 

Kautzky, et al. (2020) PET 38 57% Control 
43% TDAH 

ML (Random Forests) 82% Not specified 

Vázquez-Abad, et al. (2020) SPECT 1673   6% HC 

94% TDAH 

DL (CNN) 99% Not specified 

Source: Author’s own. 

 

When analyzing the image type according to the “Image Modality” column in Table 2, it is noticeable that the use of 

functional magnetic resonance (fMRI) and structural magnetic resonance (sMRI) is widespread. We hypothesize that the 

availability of public datasets such as ADHD-200 and ENIGMA-ADHD is an important factor in the choice of this imaging 

modality. All studies in Table 2 that used MRI with more than 500 samples (“Number of Subjects” column) used one of these 

two databases. sMRI images allow analysis of brain volume and anatomy, whereas fMRI measures brain activity by detecting 

fluctuations in blood oxygenation (Sen, et al., 2018). The paucity of work in Table 2 using nuclear medicine suggests that 

further investigation into automated ADHD diagnosis using ML/DL methods, PET, or SPECT imaging is needed. 

It should be noted again how important it is to work with a data set in which the distribution of classes is balanced. 

The “Class Distribution” column in Table 2 shows that there is research that has not solved this problem and leads to strange 

results. For example, the Vázquez-Abad, et al. (2020) model classifies very confidently when examples of the ADHD class are 

presented (99% accuracy). However, when HC class (control) examples are presented, it achieves only 79%. The authors 

suggest that this discrepancy is due to the small number of HC-class examples. Nevertheless, we believe that the use of a class 

balancing technique, such as SMOTE (Chawla, et al., 2002), may have helped to solve this problem. 

As in Table 1, in the column “ML or DL Classifier” in Table 2, SVM was the most commonly used ML method. 

However, Peng, et al. (2013) and Qureshi, et al. (2017) evaluated the performance of SVM and ELM (extreme learning 

machine), a variant of a single-layer artificial neural network (Huang, et al., 2006). ELM performed better than SVM. Looking 

now at the performance of the methods ML and DL (column “Accuracy” in Table 2), given the discrepancies in the number of 

samples and the different methodological approaches in research, it is not possible to make a statement about which method is 

better, ML or DL, when it comes to automatic diagnosis of ADHD using neuroimaging. Finally, the column “Statistical 

Validation” in Table 2 shows that most studies did not report or ignored the statistical tests used to evaluate the performance of 

their classifier models. 

 

2. Methodology 

This section details our methodology, which follows a sequence adopted from KDD, Knowledge Discovery from Data 
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(Fayyad, et al., 1996). The steps were: data acquisition, database preparation, pre-processing, finding the best hyperparameters, 

training and testing models, and statistical validation of results. Our algorithms have used the Python1 programming language 

from the Anaconda2 distribution and the sci-kit learn3 machine learning library. 

 

2.1 Data acquisition 

The brain SPECT was recorded in 236 patients with an intravenous injection of 20mCi 99-mTc/HMPAO. This 

method was similar to that described by Mena (2009), in which images were acquired using a Siemens Corp. dual-head ECAM 

system. Dual image reconstruction was performed using Segami Corporation's OASIS software. One was without attenuation 

correction for images of lateral, anteroposterior, and superior cerebral cortex. The second with attenuation correction using a 

Chang coefficient of 0.1 was applied to parasagittal images and images of the inferior brain, from which the cerebellum was 

removed. This allowed  us to easily examine the lower aspects of the occipital and temporal lobes and the basal ganglia. 

The result of the acquisition was a set of 2D images, and a diagnostic report prepared by a specialist for each of the 

236 patients. Figure 1 shows an example of a brain SPECT, acquired from a patient with bipolar disorder, ADHD, obsessive-

compulsive disorder (OCD), and schizoaffective disorder. For each image, 8 views of the cerebral cortical perfusion (right 

medial, right lateral, anterior, superior, left medial, left lateral, posterior, and inferior) and 6 views of the basal nuclei were 

recorded. 

 

Figure 1 - SPECT obtained with HMPAO from a patient with bipolarity, ADHD, OCD and schizoaffective disorder. 

 

Source: Author’s own. 

 
1 https://www.python.org 
2 https://www.anaconda.com 
3 https://scikit-learn.org 
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2.2 Database preparation 

Of the 236 subjects, 81 had an ADHD diagnosis and 155 had no ADHD diagnosis. The original distribution of the 

data is shown in Figure 2, where you can see the percentages of: (a) subjects who have the disorder and those who do not; (b) 

severity of ADHD, with those who do not have it classified as “Not Applicable”; (c) ADHD by sex; and (d) ADHD by age 

group. 

The pixels of the images from SPECT were specified as input attributes for our database. For the output attribute, a 

single attribute named ADHD LEVEL was created with 4 discrete values (classes): 0 for individuals not diagnosed with 

ADHD; 1 for individuals with mild ADHD; 2 for moderate ADHD; and 3 for severe ADHD. Our strategy was to perform two 

tasks: Classifying ADHD and simultaneously assigning the severity level to individuals who have the disorder. The labeling of 

the baseline attributes was based on the diagnostic reports. 

Finally, as mentioned earlier, there are a variety of studies that differ on which regions of brain function are affected 

by ADHD. The only region that is consistent in the research is the frontal region. Therefore, only the 3rd view (anterior view) 

was cropped from this group of images (Figure 1), leaving only one image per patient (Figure 3). The pixels of the resulting 

image were still preprocessed before being used in training/testing. 

 

Figure 2 - Original dataset distribution. 

 

Source: Author’s own. 
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Figure 3 - 2D view of the frontal cortex extracted from the SPECT of an ADHD patient. 

 

Source: Author’s own. 

 

2.3 Pre-processing 

Some data quality issues may affect the process of hypothesis induction in the ML methods. Therefore, it is necessary 

to apply pre-processing techniques such as data cleaning, transformations, and dimensionality reduction (Bishop, 2006). We 

consider that our original database contains a small number of samples to achieve a good generalization of the models. In 

addition, it is evident from the percentages that the classes were originally unbalanced (Figure 2-b). Therefore, a pre-

processing strategy had to be used to solve both problems, i.e., to increase the number of samples and to achieve a balance 

between classes. Therefore, the technique SMOTE was used, the Synthetic Minority Over-sampling Technique (Chawla, et al., 

2002). This helped to balance the number of samples between the majority and minority classes. It was chosen to increase the 

number of minority class instances to match the number of majority classes. After applying SMOTE, all classes had a 

frequency of 25% and increased from 236 to 620 samples. 

However, we recommend that images that need to be standardized or normalized be processed before applying 

SMOTE. Therefore, pixel standardization and normalization in our algorithms were performed immediately after loading the 

images so that SMOTE could be applied. 

The next step was feature selection, because each image had a size of 611 x 519 pixels, which would result in 317,109 

input attributes to be computed by the ML algorithms. Consequently, it was necessary to reduce the number of attributes to 

improve the performance of the induced model, reduce the computational cost, and make the results more understandable. 

Therefore, Incremental Principal Component Analysis (IPCA) was used instead of PCA, Principal Component Analysis 

(Murphy, 2012, p. 387). Our dataset was too large to fit in memory and had to be decomposed. IPCA creates a low-rank 

approximation for the input data using a memory size that is independent of the number of input data samples. After applying 

IPCA, the dimensionality dropped to 100 input attributes for each of the 620 samples 

 

2.4 Search for best hyperparameters 

Most ML algorithms have hyperparameters that affect their performance, processing time, or memory consumption. 

The choice of these parameters, which can be manual or automatic, affects the quality of the model and its ability to generalize 

to new entries (Goodfellow, et al., 2016). 

Automatic selection was used in this study. The GridSearchCV class, from the sci-kit learn framework, was 

instantiated and given the parameters: a classifier object, a specific parameter array for each classifier type, the performance 

evaluation strategy, and a StratifiedKFold object for the stratified cross-validation strategy. For each of the ML methods this 

process was performed to determine the best parameter configuration. The nested cross-validation strategy (Cawley & Talbot, 

2010) was used and then the accuracy and F-measure, a harmonic mean of precision and recall, were calculated (Olson & 
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Delen, 2008, p. 138). The percentage of instances and the image resolution rate were also varied to investigate how data 

reduction might affect the results. 

 

2.5 Training and testing 

Once the best hyperparameter settings for each classifier type were determined, the training phase began. A procedure 

was implemented to train each ML method. To evaluate performance, cross-validation was chosen, a learning strategy in 

which the dataset is divided into a fixed number of subsets (folds) and each fold is used once as test data while the rest is used 

for training. 10 subsets were used (tenfold cross-validation), but in such a way that each subset maintains an approximately 

balanced distribution of classes (stratified cross-validation). 

In addition, the training and cross-validation were performed in a loop with 30 iterations. According to Witten et al., 

(2011), this generally strengthens the mitigation of biases caused by a particular sample selected for validation. In the end, the 

average of the results was calculated using the metrics of accuracy and F-measure. 

 

2.6 Statistical validation 

Demšar (2006) reported that the ML community is increasingly aware of the need for statistical validation of 

published results. He reasoned that this is due to the maturity of the field, the more frequent use of ML in applications, and the 

availability of new ML frameworks that facilitate the implementation and comparison of algorithms. García and Herrera 

(2008) also explored the use of statistical comparisons of classifiers across multiple datasets, extending Demšar's work. 

Given our problem context, where the same dataset was used for all algorithms (pairing of samples), and the 

measurement level of the performance variables (ordinal), the Friedman test (Friedman, 1937) was applied, a nonparametric 

statistical test. The defined H0 hypothesis was “there are no differences between the samples”, meaning that there are no 

statistically relevant differences between the performance of the models. Otherwise, an alternative hypothesis would be 

adopted. This would lead us to use a paired test, for example, comparing two classifiers using the Nemenyi test (Nemenyi, 

1963).  

To facilitate analysis of the results of the paired tests, the CD diagram was used (Demšar, 2006), a simple diagram 

that provides the critical differences for the Nemenyi test. This diagram presents the order of algorithms, the magnitude of 

differences between them (in terms of rankings) and the importance of observed differences. 

 

3. Results 

The discussion begins with a commentary on the best hyperparameters found in an automated way for our data 

context. In Table 3, you can see the list of evaluated values and the best configuration found for each method. Although Naive 

Bayes has no parameters, both sci-kit learn implementations were tested: GaussianNB and BernoulliNB, and the best result 

was obtained with GaussianNB. In this parameter search, the percentage of instances and the image resolution rate were varied 

and found that the more instances, the better the results. Decreasing the image resolution only slightly improved the results for 

most methods, except for k-NN. Therefore, 100% of the instances and the original resolution of the images were chosen for 

training/testing and statistical validation. 
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Table 3 - List of best discovered hyperparameters. 

Method Parameter Array Best Configuration 

SVM C = [0.1, 1, 10, 100, 1000], 

kernel = (“linear”, “rbf”) 

C = 100 and  

kernel = “rbf” 

k-NN N_neighbors = [1, 3, 5, 7, 9, 11] n_neighbors = 1 

MLP solver = [“adam”, “sgd”, “lbfgs”],  

max_iter = [6000, 8000, 10000],  

hidden_layer_sizes = [7, 11, 15, 19, 23, 27], 

momentum = [0.1, 0.3, 0.8, 0.9], 

learning_rate_init = [0.01, 0.001, 0.0001] 

solver = “sgd”,  

max_iter = 8000,  

hidden_layer_sizes = (23,) 

momentum = 0.8, 

learning_rate_init = 0.01 

Decision Tree criterion = [“gini”,”entropy”] 

max_depth = [2, 5, 6, 10],  

min_samples_split = [2, 3, 4],  

min_samples_leaf = [1, 2, 3, 4] 

criterion = “gini”,  

max_depth = 10,  

min_samples_split = 3, 

min_samples_leaf = 1 

Naive Bayes - -  

Source: Author’s own. 

 

In an effort to reduce as much as possible the problems of our dataset, such as the small number of instances and the 

unbalanced classes, the technique SMOTE was added to the pre-processing phase. However, to better understand how this 

technique affects the results, the models were first trained with the original data distribution and then SMOTE was applied to 

evaluate performance using the metrics of accuracy and F-measure. 

The results are presented in Table 4. From the “Accuracy” and “F-measure” columns, it can be seen that the use of 

SMOTE improves the accuracy of the methods by about 33% on average. MLP, for example, improved its accuracy by 39%. 

For this reason, only the results of classes balanced by SMOTE were included in our analyzes. It can also be observed that the 

differences between the values of the “Accuracy” and “F-measure” columns (right side of Table 4) are extremely small. This 

could be explained by the balance of classes achieved by SMOTE. Accordingly, accuracy was chosen as the performance 

measure for comparing the classifiers. 

The methods are ranked by “Accuracy” (bold values) in Table 4. The three best performances were obtained by SVM, 

k-NN, and MLP classifiers, followed by Decision Tree (DT) and Naive Bayes (NB). It is believed that the first three methods 

have better generalization than the other two. 

 

Table 4 - Results of ML Methods Performance. 

Method 

Performance with  

Original Distribution Data 

Performance with  

Balanced Classes by SMOTE 

Accuracy Std. Dev. F-measure Std. Dev. Accuracy Std. Dev. F-measure Std. Dev. 

SVM 0.7222 0.0646 0.6793 0.0644 0.9780 0.0171 0.9778 0.0175 

k-NN 0.7099 0.0736 0.6860 0.0709 0.9769 0.0169 0.9767 0.0172 

MLP 0.6919 0.0836 0.6684 0.0769 0.9595 0.0233 0.9588 0.0240 

Decision 

Tree 
0.7351 0.0727 0.7308 0.0682 0.9134 0.0329 0.9121 0.0320 

Naive 

Bayes 
0.6639 0.0776 0.6631 0.0731 0.8529 0.0418 0.8525 0.0419 

Source: Author’s own. 

 

Using the Friedman test, it was confirmed that the observed differences in accuracy were statistically significant. 

Therefore, based on the accuracy, the mean ranks for each classifier were calculated and the CD diagram (Critical Differences 

diagram) was created for the Nemenyi test. This diagram helped to describe the differences more accurately and to understand 

them better. From the CD diagram (Figure 4), it can be seen that connected classifiers: SVM and k-NN; MLP and DT; and DT 

and NB are not significantly different. In any case, from the CD diagram, it can be concluded that the performances of SVM 
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and k-NN are statistically superior to those of MLP, DT, and NB. Thus, the importance of statistical validation as a suitable 

approach for comparing the results of different ML methods has been confirmed. 

Regarding the two best classifiers, SVM and k-NN, it can be seen in Table 3 that the best SVM version for our 

experiments was the one using the radial basis function (RBF) kernel (Lazzaro & Montefusco, 2002). It can also be seen from 

Table 4 and Figure 4 that the SVM and k-NN results are very close. In fact, k-NN and SVM with RBF kernel perform 

similarly. However, SVM is more efficient than k-NN because SVM only needs to remember the examples that make up the 

support vectors. 

 

Figure 4 - CD diagram comparing all classifiers using Nemenyi test. 

 

Source: Author’s own. 

 

4. Final considerations 

In this work, the performance of five machine learning (ML) methods was evaluated: k-NN, Decision Trees (DT), 

Naive Bayes (NB), MLP, and SVM in classifying ADHD patients using brain images SPECT. There is strong evidence that the 

ML methods can provide satisfactory models that can help in ADHD diagnosis, including severity level classification. SVM 

and k-NN were the best ML methods for this problem. The high accuracy rates of the models generated may reflect correct 

decisions about our methodological procedures. We took care of solving the data problems, found the best fit of the 

hyperparameters, and applied training/testing procedures appropriate for our problem context. Analogous to Vázquez-Abad, et 

al. (2020), we can suggest that ADHD severity level classification applications developed with our models would potentially 

be more accurate, faster, and less expensive, which would improve patient treatment. 

It is expected that this work will be useful for researching computational methods for building CAD applications for 

automatic diagnosis of ADHD. In addition to comparing the performance of different machine learning methods, 

methodological directions can also be found, such as hyperparameter values. Nevertheless, much more research and refinement 

of this research is needed. Future improvement could be to include the classification of ADHD subtypes, to consider the 

comorbidities of ADHD, and to consider the heterogeneity of this disorder (Pulini, et al., 2019). 
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