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Abstract 

Objective. To predict when different countries will reach 70% of fully vaccinated population against COVID-19 and 

to assess the effects of vaccine rejection on the number of patients admitted to ICU and on rates of omicron and other 

SARS-Cov-2 variants infections. Methods.  Data on the ‘number of patients with COVID-19 admitted to ICU’, ‘share 

of people who received at least one dose of COVID-19 vaccine’ and ‘percentage of unvaccinated population (USA, 

Brazil, Europe, Africa, Asia) that refuses to receive the first dose of COVID-19 vaccine’ were collected from a public 

database from December 2020-January 2022. Time series-based models were used to predict when countries will 

reach 70% rate of fully vaccinated population. Results. ARIMA model was robust for predicting COVID-19 

vaccination in different countries. In the USA, Brazil, the European Union and Asia 70% of the population was 

vaccinated against COVID-19 between September 2021-April 2022. In the Africa, the forecast is only in the 

beginning of 2024. The percentage of the unvaccinated population had a significant effect on the increase in ICU 

admissions and on the increase of omicron, alpha, delta, and gamma variant cases. Conclusion.  Although the ARIMA 

model showed the best performance to predict vaccination patterns, its accuracy may decrease over time especially 

due the vaccination rejection rate. In this scenario, strategies to improve vaccination should be implemented.  

Keywords: Coronavirus; Vaccine; ARIMA model; Rejection; Hospitalization. 

 

Resumo 

Objetivo. Prever quando diferentes países atingirão 70% da população totalmente vacinada contra o COVID-19 e 

avaliar os efeitos da rejeição da vacina no número de pacientes internados na UTI e nas taxas de infecções por 
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omicron e outras variantes do SARS-Cov-2. Métodos. Dados sobre o 'número de pacientes com COVID-19 admitidos 

na UTI', 'taxa de pessoas que receberam pelo menos uma dose da vacina COVID-19' e 'porcentagem da população não 

vacinada (EUA, Brasil, Europa, África, Ásia) que se recusa a receber a primeira dose da vacina COVID-19' foram 

coletados de um banco de dados público de dezembro de 2020 a janeiro de 2022. Modelos baseados em séries 

temporais foram usados para prever quando os países atingirão a taxa de 70% da população totalmente vacinada. 

Resultados. O modelo ARIMA foi robusto para prever a vacinação COVID-19 em diferentes países. Nos EUA, Brasil, 

União Europeia e Ásia 70% da população foi vacinada contra a COVID-19 entre setembro de 2021 a abril de 2022. 

Na África, a previsão é apenas no início de 2024. O percentual da população não vacinada teve um efeito significativo 

no aumento de internações em UTI e no aumento de casos de variantes ômicron, alfa, delta e gama. Conclusão. 

Embora o modelo ARIMA tenha apresentado o melhor desempenho para prever os padrões de vacinação, sua acurácia 

pode diminuir com o tempo, principalmente devido à taxa de rejeição da vacinação. Nesse cenário, estratégias para 

melhorar a vacinação devem ser implementadas. 

Palavras-chave: Coronavírus; Vacina; Modelo ARIMA; Rejeição; Hospitalização. 

 

Resumen  

Objetivo. Predecir cuándo los diferentes países alcanzarán el 70 % de la población completamente vacunada contra el 

COVID-19 y evaluar los efectos del rechazo de la vacuna en el número de pacientes ingresados en la UCI y en las 

tasas de infecciones por omicron y otras variantes del SARS-Cov-2. Métodos. Datos sobre el 'número de pacientes 

con COVID-19 ingresados en UCI', 'proporción de personas que recibieron al menos una dosis de la vacuna COVID-

19' y 'porcentaje de población no vacunada (EE. UU., Brasil, Europa, África, Asia) que se niega a recibir la primera 

dosis de la vacuna COVID-19' se recopilaron de una base de datos pública desde diciembre de 2020 hasta enero de 

2022. Se utilizaron modelos basados en series temporales para predecir cuándo alcanzarán los países una tasa del 70 

% de población completamente vacunada. Resultados. El modelo ARIMA fue sólido para predecir la vacunación 

contra la COVID-19 en diferentes países. En EE. UU., Brasil, la Unión Europea y Asia, el 70% de la población se 

vacunó contra el COVID-19 entre septiembre de 2021 y abril de 2022. En África, la previsión es solo a principios de 

2024. El porcentaje de la población no vacunada había un efecto significativo en el aumento de las admisiones en la 

UCI y en el aumento de los casos variantes omicron, alfa, delta y gamma. Conclusión. Aunque el modelo ARIMA 

mostró el mejor rendimiento para predecir los patrones de vacunación, su precisión puede disminuir con el tiempo, 

especialmente debido a la tasa de rechazo a la vacunación. En este escenario, se deben implementar estrategias para 

mejorar la vacunación. 

Palabras clave: Coronavirus; Vacuna; Modelo ARIMA; Rechazo; Hospitalización. 

 

1. Introduction 

Coronavirus disease 2019 (COVID-19) has strained the global healthcare systems in an unprecedented fashion, with 

important impact on primary care services, hospitals, emergency, and intensive care unit (ICU) activities. Additionally, the 

rapid spread of the disease and the significant number of associated deaths led governments to implement disease containment 

measures that caused collateral effects on lives and economies worldwide (Hodgson et al., 2021; Wang et al., 2020; Wang et 

al., 2020; Zhang et al.,2020).  

In the past months, the joint efforts of science, healthcare services and public policies have resulted in a better 

understanding of the COVID-19 mechanisms of infection and the immune responses induced by the virus, which has allowed 

the development of several vaccines that are already available for human use (Dong et al.,2020; Kaur et al., 2020;  Fomi et al., 

2021). Although vaccines already exist, there are still many barriers and difficulties to control the pandemic – namely vaccine 

rejection, problems with vaccine distribution in the world (e.g. Africa) and emergence of variants (Rubin et al., 2021; Loembé 

et al., 2021; Soares et al., 2021).  

The ability of a vaccine to minimize disease morbidity and mortality is one of the most important measures of 

effectiveness, which can be assessed through the widespread use of the product (Hodgson et al., 2021; Kaur et al., 2020; Bhatta 

et al., 2022). Recent data confirm that after the start of massive vaccination around the globe, the numbers of deaths and 

hospitalizations due COVID-19 significantly decreased, proving that this strategy is the most effective for controlling the 

pandemic (Ritchie et al., 2020). Despite the great success of vaccination, the fight against anti-vaccine information (e.g., 

disseminated through social media) is currently a worldwide public health challenge. Additionally, the scarcity or lack of 
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actual storage and distribution systems and inadequate infrastructure for vaccination can delay the vaccination process, 

especially in low-income regions (Aguado et al., 2018; WHO, 2021).  

Thus, this study aims to predict when different regions/countries around the globe will reach 70% of fully vaccinated 

population against COVID-19 (minimum percentage of vaccination to significantly reduce numbers of severe cases) and to 

evaluate the impact of vaccine rejection on the number of patients admitted ICU and on rates of SARS-Cov-2 variants 

infections.  

 

2. Material and Methods 

2.1 Time series models: prediction of first dose distribution of COVID-19 vaccines 

Data on vaccination were selected from the  ‘Our World in Data’ (https://ourworldindata.org/covid-vaccinations) 

(Ritchie et al., 2020), which is a public database from the University of Oxford funded by the United Kingdom’s Department 

of Health and Social Assistance. In this study, only vaccination data from the adult and young population were used, the age 

group with the highest vaccination coverage. The pediatric population was not considered in this study because not all 

countries have approved the use of the vaccine for this population. The database contains information from more than 200 

countries. The data are standardized into the following categories: (i) COVID-19 vaccination data; (ii) testing; case numbers; 

(iii) hospitalization; (iv) disease response policies and mortality. For this study, we used the information available since 

December 13, 2020 (i.e. the beginning of the vaccination in the world) until January 5, 2022.  

The development of any time series model presupposes the use of a significant number of observations (minimum 50 

data series) of the variable of interest. In our study, the data series of interest was the ‘share of people who received at least one 

dose of COVID-19 vaccine’, which was used to create the time series models for the vaccination in different countries. In 

order to account for the larger amount of data, we selected for analyses the countries that started vaccination earlier, namely 

Brazil, the United States of America (USA), the European continent, the African continent, the Asian continent and in the 

World (e.g. including data from any other country). The models were built using SPSS 20. The models were designed using a 

95% confidence interval; p-values <0.05 were considered significant. 

 

2.1.1 ARIMA Model 

The autoregressive integrated moving average (ARIMA) model, also known as Box–Jenkins’s methodology, is a time 

series modelling technique aimed at predicting future data behavior from a series of existing time data. The acronym ARIMA 

is formed by three components or filters: AR (i.e. autoregressive) refers to the non-integrated component of the model that 

indicates that the time series variable of interest is returned to its own previous values (i.e. lagged values); the ‘I’ (i.e. 

integrated component) indicates that the data of the variable of interest are replaced by the difference between their true value 

and their previous value; ‘MA’, which is the moving average component, refers to the error of the regression model that is 

obtained through a linear combination of the error terms, whose values occurred at several times in the past (Phillips et al., 

1978; Faruk et al., 2010).   

We selected the non-seasonal ARIMA model [ARIMA (p, d, q)] to be used in this study. In this model, the parameters 

‘p, d, q’ are natural numbers where ‘p’ indicates the order of the model, ‘d’ is the degree of differentiation and ‘q’ is the order 

of the moving average of the autoregressive model. For instance, an ARIMA model (1,2,4)  refers to a first-order model for the 

AR component (autoregressive), a second-order for the integration component (differentiation or integration) and a fourth-

order model for the MA component (moving average) ( Ho et al., 1998; Fattah et al., 2018; Bertozzi et al., 2020). 

  The ‘share of people who received at least one dose of COVID-19 vaccine’ was used as time series. The following are 

the equations involved in calculating the series: 

http://dx.doi.org/10.33448/rsd-v11i11.33434
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y = {yt, tϵT }                                                                                               (Equation 1)  

T = {T1, T2, T3, T4, T5, T6, T7, T8, T9, T10 .............., T1+n}                (Equation 2) 

 

In Equation 1, ‘y’ indicates the daily number of people vaccinated per 100 people in the population of a given 

country. Equation 2 refers to the beginning of vaccination (day) in a given country. T1 + n indicates the number of days after 

the vaccination started until January 5, 2022.  

For the calculation of the best parameters p, d, q of the ARIMA, the data set was divided into two subsets: training 

time series (data from 13 December 2020 to 31 October 2022) and test set time series (data from 1 November 2021 to 5 

January 2022). The training time series set used 70% of the data from the original time series, while the remaining 30% were 

used for the test set time series. The value of N calculated from Equation 3 indicates the limit of separation between the data of 

the training set and the data of the test set.. Equations 4 and 6 represent, respectively, the time series of the training set and test 

set data. 

 

N = round(n ∗ .9)                                                                                                   (Equation 3) 

Training (calibration) = {yt, tϵA}                                                                       (Equation 4)  

A = {T1, T2, T3, T4, T5, T6, T7, T8............., Tn}                                               (Equation 5) 

Test = {yt, tϵ B}                                                                                                    (Equation 6) 

 B = {T1+, T2+n, T3+n.............................. T1+k}                                               (Equation 7) 

 

2.1.1.1 Development stages of ARIMA models 

  The following steps were used for the development of the time series based on ARIMA models: 

• Model selection based on autocorrelation analyses, partial autocorrelations and the Ljung–Box test 

• Parameters’ estimation (p, d, q) 

• Fit of data on the adjusted model through residual analyses: root mean squared error (RMSE); mean absolute percentage error 

(MAPE); and mean absolute error (MAE) for the models with parameters of the same order 

• Model testing by means of simulations. In this step, the predicted values were compared with the observed values 

• Forecasts data obtained for all the suitable models  

 

2.1.2 Exponential smoothing models 

The exponential smoothing model is based on the idea that past observations have weights on the time series pattern. 

The more recent the observations, the greater their weights for predicting data. In this type of model, three parameters are used: 

alpha, beta and phi. The alpha indicates the level of time series model (i.e. reduction rate) and its values range from zero (i.e. 

recent observations weight more for future predictions) to 1 (i.e. old observations have the greatest weight for future 

predictions).  The beta indicates the trend of the data and its values also vary from zero to one. Beta values close to 1 indicate 

that the time series data tend to follow a linear behaviour. Phi is a coefficient that ranges from zero to one and indicates the 

tendency for damping. The higher the phi value, the more damped the series is. The main non-seasonal exponential smoothing 

methods include simple smoothing, Holt’s linear smoothing, Brown’s linear smoothing. The difference between models is the 

type of parameters used. Simple smoothing has only the alpha parameter, whereas Holt and Brown smoothing estimate alpha 

(level) and beta (trend). Damped trend smoothing estimates alpha (level), beta (trend) and Phi (trend damping factor) (Hansun., 
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2016; Holt., 2004; Taylor., 2003; Billah., 2006; Gardner Jr, 1985). In this study, all exponential smoothing models were tested 

to find the model that best fits countries’ time series data. 

 

2.1.3 Steps for the construction of time series models based on exponential smoothing 

  The following steps were used for building the time series models: 

• Separation of series data into training and test sets  

• Selection of an appropriate smoothing method (check trends and seasonality) 

• Estimation of the model parameters  

• Model testing (test data) 

• Evaluation of the model fit by means of residues analyses (RMSE, MAE and MAPE) 

• Forecasts data obtained for all the suitable models  

 

2.1.4 Evaluation of the accuracy of time series models 

The accuracy of the time series based on ARIMA models and exponential smoothing were evaluated by analyzing the 

residuals (RMSE, MAPE and MAE). RMSE measures the individual quadratic differences between the observed and adjusted 

time series. MAE measures the value of the mean error between the observed series and the adjusted series. The MAPE 

expresses the error in percentage (%), which enhances the interpretability of data and comparability of the models. For all these 

three measures, the smaller the result, the better the fit and accuracy of the model (Sampford., 1978; Montgomery et al., 2015).  

 

MAE is mathematically expressed according to Equation 8: 

                              MAE =                                         (Equation 8) 

MAE =  

where V (obs) represents the individual value of the observed series and V (adj) represents the adjusted individual value. ‘O’ is 

the order of the time series. 

The RMSE and MAPE are calculated according to Equations 9 and 10, respectively: 

RMSE =         (Equation 9) 

MAPE =   x100                                    (Equation 10) 

 

2.2 The impact of vaccine rejection on ICU admissions and SARS-CoV-2 variants cases  

Data series on the ‘percentage of unvaccinated population that refuses to receive the first dose of COVID-19 vaccine’ 

(https://ourworldindata.org/attitudes-to-covid-vaccinations) and on the ‘number of ICU admissions due COVID-19’ during 

2021 (https://ourworldindata.org/grapher/current-covid-patients-icu) were collected from Our World in Data (Table 4) (Ritchie 

et al., 2020). These data refer to 15 countries (United States - USA, United Kingdom - UK, Australia, Denmark, France, 

Germany, Italy, Japan, Netherlands, Norway, Singapore, South Korea, Spain, and Sweden) .It is important to highlight that the 

15 countries mentioned were included because they were the only ones that presented data on the percentage of the population 

that refuses to be vaccinated. From each country, data on the total number of confirmed cases of several identified variants 

(omicrom variant of novaCov-2, beta, epsilon, gamma, kappa, iota, eta, delta, alpha, lambda, miu) were also collected. 

Four different probability distributions were tested to verify which one best describes the outcome variables (number 

of cases of the different variants): normal distribution, gamma distribution, Poisson distribution and tweedie distribution. The 
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Akaike criteria information (AIC) coefficients were used to compare the models. The  lowest the AIC coefficient, the better the 

fit of the data of this distribution (Pan., 2001; Bozdogan., 1987; Arnold., 2010).  

In a next step, a generalized linear model was used to assess the effect of COVID-19 vaccine rejection on the number 

of SARS-CoV-2 variants cases. The generalized linear model was adjusted considering the size of the population, due to the 

large population difference between countries. Results were reported as β (beta) coefficients. Statistical analyzes were 

performed using SPSS software, and p<0.05 was considered significant. 

 

3. Results 

Time-series models 

The time series models for each country/region is depicted in Table 1. The ARIMA model showed the best fit and 

accuracy (i.e., lower values for RMSE, MAE and MAPE errors) for the models from Brazil, USA, Europe, Asia and rest of 

world time series. On the other hand, Holt’s linear trend model had the best performance for the African continent time series 

(Table 1). See the parameters of ARIMA and Holt models in Table S1 in supplementary material.  

Tables 2-3 show the comparison between the values predicted by the model and the actual values in relation to the 

percentage of the vaccinated population (11/2021 – 01/2022). Values were similar, confirming that the models have good 

prediction capacity (see also MAPE and variation coefficient (VC) - both lower than 5%). 

According to the ARIMA models, in the USA, Europe and Asia, vaccination rates of 70% of the population were 

reached between January-February, 2022; in Brazil, this percentage was reached in September 2021; while in the rest of the 

world this is predicted to April 2022. In Africa, this rate will only be achieved in the beginning of 2024. 

 

Table 1. Comparison of the different ARIMA models and exponential smoothing of vaccination time series from the different 

countries or regions. 

USA ARIMA (p, d, q) Exponential smoothing 

Model type 0, 0, 0 1, 0,1 4,1,7 Simple Holt Brown Damped 

R2 0.000 0.975 0.99 0.998 0.999 0.998 0.999 

RMSE 9.415 1.493 0.055 0.466 0.365 0.396 0.367 

MAPE 2269.591 5.359 0.956 6.330 9.774 4.345 9.927 

MAE 8.081 0.340 0.040 0.262 0.153 0.181 0.153 

BRAZIL ARIMA (p, d, q) Exponential smoothing 

Model type 0, 0, 0 1, 0,1 6,1,2 Simple Holt Brown Damped 

R2 0.000 0.977 0.99 0.999 1.000 1.000 1.000 

RMSE 6.192 0.938 0.092 0.203 1.060 1.061 1.060 

MAPE 1684.472 243.5 1.477 3.640 2.998 3.060 2.991 

MAE 5.137 0.172 0.065 0.139 0.390 0.410 0.391 

EUROPE ARIMA (p, d, q) Exponential smoothing 

Model type 0, 0, 0 1, 0,1 1,2,4 Simple Holt Brown Damped 

R2 0.000 0.977 0.999 0.998 0.999 0.999 0.999 

RMSE 0.698 0.107 0.054 0.270 0.180 0.198 0.198 

MAPE 423.263 5.262 1.699 5.011 3.838 3.882 3.845 

MAE 0.598 0.024 0.035 0.138 0.511 0.131 0.711 

AFRICA ARIMA (p, d, q) Exponential smoothing 

Model type 0, 0, 0 1, 0,1 1, 2, 6 Simple Holt Brown Damped 

R2 0.000 0.981 1.000 0.999 0.999 1.000 1.000 

RMSE 7.119 0.980 0.037 0.187 0.035 0.042 0.040 

MAPE 2163.485 5.956 4.588 4.546 1.392 3.554 3.225 

MAE 5.983 0.158 0.026 0.138 0.020 0.028 0.027 
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Source: Authors. 

 

Table 2. Test of time series models for forecasting the number of COVID-19 vaccines according to the country or region. 

 United states Brazil Europe 

Date Actual Forecast RSD (%) Actual Forecast RSD 

(%) 

Actual Forecast RSD 

(%) 

01/11/2021 67.07 67.06 0.01 74.6 74.70 0.09 59.44 0.01 0.02 

02/11/2021 67.16 67.16 0.00 74.61 74.84 0.21 59.57 0.00 0.00 

03/11/2021 67.26 67.25 0.01 74.67 74.96 0.27 59.7 0.01 0.02 

04/11/2021 67.37 67.34 0.04 74.79 75.07 0.27 59.88 0.06 0.09 

05/11/2021 67.51 67.42 0.10 74.92 75.17 0.23 59.95 0.03 0.04 

06/11/2021 67.63 67.48 0.15 74.97 75.22 0.24 59.99 0.03 0.04 

07/11/2021 67.7 67.54 0.17 75.1 75.28 0.17 60.12 0.01 0.02 

08/11/2021 67.84 67.60 0.25 75.22 75.38 0.15 60.18 0.05 0.09 

09/11/2021 68 67.67 0.34 75.32 75.51 0.18 60.32 0.03 0.06 

10/11/2021 68.18 67.74 0.46 75.43 75.63 0.19 60.43 0.04 0.06 

11/11/2021 68.34 67.80 0.56 75.56 75.74 0.17 60.55 0.03 0.05 

12/11/2021 68.54 67.86 0.71 75.58 75.82 0.23 60.69 0.01 0.02 

13/11/2021 68.7 67.91 0.81 75.62 75.88 0.24 60.79 0.02 0.04 

14/11/2021 68.77 67.97 0.83 75.66 75.94 0.26 60.97 0.03 0.04 

15/11/2021 68.91 68.03 0.91 75.69 76.04 0.32 61.06 0.01 0.01 

16/11/2021 69.06 68.08 1.01 75.72 76.16 0.41 61.17 0.01 0.01 

17/11/2021 69.21 68.13 1.11 75.82 76.28 0.43 61.31 0.03 0.04 

18/11/2021 69.37 68.19 1.22 75.89 76.38 0.46 61.4 0.01 0.01 

19/11/2021 69.55 68.24 1.35 75.96 76.46 0.46 61.51 0.01 0.01 

20/11/2021 69.69 68.29 1.44 76.03 76.52 0.45 61.58 0.02 0.04 

21/11/2021 69.75 68.33 1.45 76.08 76.58 0.46 61.63 0.07 0.11 

22/11/2021 69.9 68.38 1.55 76.15 76.67 0.48 61.76 0.06 0.09 

23/11/2021 70.04 68.43 1.65 76.22 76.79 0.53 61.84 0.08 0.13 

24/11/2021 70.17 68.47 1.73 76.27 76.90 0.58 61.96 0.08 0.12 

25/11/2021 70.17 68.52 1.68 76.33 77.00 0.62 62.09 0.06 0.10 

26/11/2021 70.26 68.56 1.73 76.43 77.07 0.59 62.22 0.05 0.08 

27/11/2021 70.33 68.60 1.76 76.45 77.13 0.63 62.29 0.08 0.13 

28/11/2021 70.37 68.65 1.75 76.49 77.20 0.65 62.38 0.10 0.16 

29/11/2021 70.48 68.69 1.82 76.5 77.29 0.72 62.44 0.14 0.22 

30/11/2021 70.61 68.73 1.91 76.6 77.39 0.73 62.56 0.13 0.21 

01/12/2021 70.75 68.76 2.01 76.71 77.50 0.73 62.66 0.14 0.23 

02/12/2021 70.88 68.80 2.10 76.77 77.59 0.76 62.74 0.16 0.26 

ASIA ARIMA (p, d, q) Exponential smoothing 

Model type 0, 0, 0 1, 0,1 0,1,0 Simple Holt Brown Damped 

R2 0.000 0.641 0.998 0.999 0.999 0.961 0.916 

RMSE 9.542 4.771 0.931 5.763 2.816 6.001 2.541 

MAPE 4173.874 175.956 4.753 7.914 20.319 10.716 5.617 

MAE 13.756 18.158 0.174 3.951 3.926 2.617 3.836 

WORLD ARIMA (p, d, q) Exponential smoothing 

Model type 0, 0, 0 1, 0,1 0, 2, 7 Simple Holt Brown Damped 

R2 0.000 0.854 0.999 0.510 0.999 0.617 0.716 

RMSE 3.714 5.953 0.042 4.763 3.659 5.615 7.715 

MAPE 5658.816 271.184 1.458 7.914 2.651 15.916 3.764 

MAE 15.863 16.761 0.029 3.951 5.715 4.763 7.619 
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03/12/2021 71.03 68.84 2.22 76.85 77.66 0.75 62.82 0.19 0.30 

04/12/2021 71.12 68.87 2.27 76.89 77.72 0.76 62.93 0.19 0.30 

05/12/2021 71.17 68.91 2.28 76.91 77.79 0.80 63.02 0.21 0.33 

06/12/2021 71.29 68.94 2.37 76.92 77.88 0.87 63.08 0.24 0.39 

07/12/2021 71.41 68.98 2.45 76.97 77.98 0.92 63.18 0.25 0.40 

08/12/2021 71.54 69.01 2.54 77.01 78.08 0.98 63.26 0.28 0.44 

09/12/2021 71.66 69.04 2.63 77.07 78.17 1.00 63.33 0.31 0.49 

10/12/2021 71.79 69.08 2.73 * ..... ..... 63.4 0.34 0.53 

11/12/2021 71.87 69.11 2.77 * ..... ..... 63.52 0.33 0.52 

12/12/2021 71.92 69.14 2.79 * ..... ..... 63.63 0.34 0.53 

13/12/2021 72.02 69.17 2.86 * ..... ..... 63.69 0.37 0.59 

14/12/2021 72.13 69.19 2.94 77.07 78.24 1.06 63.78 0.39 0.61 

15/12/2021 72.25 69.22 3.03 77.17 78.29 1.02 63.85 0.42 0.66 

16/12/2021 72.37 69.25 3.12 77.24 78.36 1.02 63.91 0.46 0.71 

17/12/2021 72.5 69.28 3.21 77.29 78.44 1.05 63.99 0.48 0.75 

18/12/2021 72.58 69.30 3.27 77.3 78.54 1.13 64.11 0.48 0.74 

19/12/2021 72.63 69.33 3.29 77.3 78.64 1.21 64.27 0.44 0.69 

20/12/2021 72.77 69.35 3.40 77.33 78.72 1.26 64.34 0.48 0.74 

21/12/2021 72.91 69.38 3.51 77.36 78.79 1.29 64.47 0.46 0.72 

22/12/2021 73.04 69.40 3.61 77.5 78.85 1.22 64.54 0.49 0.76 

23/12/2021 73.15 69.43 3.69 77.52 78.91 1.26 64.61 0.52 0.81 

24/12/2021 73.19 69.45 3.71 77.55 78.99 1.30 64.64 0.58 0.90 

25/12/2021 73.19 69.47 3.69 77.6 79.08 1.34 64.67 0.64 0.99 

26/12/2021 73.23 69.49 3.70 77.64 79.18 1.39 64.69 0.71 1.09 

27/12/2021 73.34 69.51 3.79 77.66 79.26 1.44 64.74 0.75 1.15 

28/12/2021 73.47 69.54 3.89 77.66 79.32 1.49 64.82 0.78 1.19 

29/12/2021 73.59 69.56 3.99 77.67 79.38 1.54 64.95 0.76 1.17 

30/12/2021 73.71 69.58 4.08 77.67 79.44 1.59 64.99 0.82 1.25 

31/12/2021 73.75 69.60 4.10 77.72 79.52 1.62 65.02 0.88 1.33 

01/01/2022 73.76 69.62 4.09 77.77 79.61 1.65 65.02 0.96 1.45 

02/01/2022 73.8 69.63 4.11 77.79 79.70 1.71 65.46 0.72 1.10 

03/01/2022 73.87 69.65 4.16 77.07 78.24 1.06 65.51 0.77 1.17 

04/01/2022 73.88 69.67 4.15 77.17 78.29 1.02 65.56 0.81 1.23 

05/01/2022 73.88 69.69 4.13 77.24 78.36 1.02 65.58 0.88 1.33 

RSD= relative standard deviation. *=Values not available in the original dataset. Source: Authors. 
 

Table 3. Test of time series models for forecasting the number of COVID-19 vaccines according to the country or region. 

 Africa Asia World 

Date Actual Forecast RSD (%) Actual Forecast RSD 

(%) 

Actual Forecast RSD 

(%) 

01/11/2021 8.93 0.01 0.14 56.9 56.96 0.07 44.55 44.58 0.05 

02/11/2021 8.98 0.03 0.30 56.99 57.14 0.18 44.65 44.74 0.15 

03/11/2021 9.01 0.06 0.62 57.1 57.32 0.27 44.76 44.90 0.22 

04/11/2021 9.15 0.01 0.07 57.2 57.50 0.37 44.91 45.05 0.23 

05/11/2021 9.16 0.05 0.54 57.29 57.68 0.47 45.07 45.21 0.22 

06/11/2021 9.25 0.04 0.39 57.37 57.85 0.59 45.17 45.37 0.31 

07/11/2021 9.28 0.06 0.70 57.48 58.03 0.68 45.29 45.52 0.36 

08/11/2021 9.3 0.10 1.07 57.59 58.21 0.76 45.4 45.68 0.43 

09/11/2021 9.32 0.14 1.45 57.73 58.39 0.81 45.54 45.83 0.45 

10/11/2021 9.58 0.00 0.03 57.87 58.57 0.85 45.74 45.99 0.38 
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11/11/2021 9.69 0.03 0.26 58.15 58.75 0.73 46 46.14 0.22 

12/11/2021 9.71 0.01 0.11 58.26 58.93 0.81 46.12 46.30 0.27 

13/11/2021 9.78 0.01 0.11 58.38 59.11 0.88 46.25 46.45 0.30 

14/11/2021 9.81 0.04 0.40 58.51 59.29 0.93 46.38 46.60 0.34 

15/11/2021 9.85 0.06 0.62 58.59 59.47 1.05 46.47 46.76 0.44 

16/11/2021 9.86 0.10 1.05 58.67 59.65 1.17 46.57 46.91 0.52 

17/11/2021 9.89 0.13 1.33 58.78 59.82 1.25 46.68 47.07 0.58 

18/11/2021 10.08 0.05 0.48 58.86 60.00 1.36 46.81 47.22 0.62 

19/11/2021 10.09 0.09 0.90 61.6 60.18 1.65 46.95 47.38 0.64 

20/11/2021 10.25 0.03 0.28 61.71 60.36 1.56 47.09 47.53 0.66 

21/11/2021 10.32 0.03 0.28 61.81 60.54 1.47 47.19 47.68 0.74 

22/11/2021 10.38 0.04 0.35 61.91 60.72 1.37 47.31 47.84 0.79 

23/11/2021 10.44 0.04 0.42 62.02 60.90 1.29 47.43 47.99 0.83 

24/11/2021 10.63 0.04 0.38 62.18 61.08 1.26 47.62 48.15 0.78 

25/11/2021 10.69 0.03 0.31 62.28 61.26 1.17 47.73 48.30 0.84 

26/11/2021 10.76 0.03 0.30 62.4 61.44 1.10 47.85 48.46 0.89 

27/11/2021 10.8 0.01 0.10 62.51 61.62 1.02 47.96 48.61 0.95 

28/11/2021 10.97 0.08 0.74 62.63 61.80 0.95 48.11 48.76 0.96 

29/11/2021 11.06 0.09 0.86 62.73 61.97 0.86 48.27 48.92 0.94 

30/11/2021 11.14 0.10 0.92 62.86 62.15 0.80 48.41 49.07 0.96 

01/12/2021 11.17 0.07 0.65 63.03 62.33 0.79 48.58 49.23 0.94 

02/12/2021 11.27 0.09 0.83 63.5 62.51 1.11 48.98 49.38 0.58 

03/12/2021 11.35 0.10 0.89 63.57 62.69 0.98 49.07 49.54 0.67 

04/12/2021 11.48 0.14 1.25 63.69 62.87 0.92 49.21 49.69 0.69 

05/12/2021 11.54 0.13 1.17 63.79 63.05 0.83 49.32 49.84 0.75 

06/12/2021 11.74 0.23 1.95 63.87 63.23 0.71 49.44 50.00 0.79 

07/12/2021 11.76 0.19 1.63 63.95 63.41 0.60 49.53 50.15 0.88 

08/12/2021 11.92 0.25 2.16 64.05 63.59 0.51 49.67 50.31 0.90 

09/12/2021 12.25 0.44 3.66 64.16 63.77 0.44 49.84 50.46 0.88 

10/12/2021 12.28 0.41 3.40 64.64 63.94 0.76 50.22 50.62 0.56 

11/12/2021 12.41 0.45 3.72 64.82 64.12 0.76 50.42 50.77 0.49 

12/12/2021 12.49 0.46 3.75 64.89 64.30 0.64 50.51 50.92 0.58 

13/12/2021 12.53 0.43 3.56 64.94 64.48 0.50 50.58 51.08 0.69 

14/12/2021 12.64 0.46 3.76 65.08 64.66 0.46 50.73 51.23 0.70 

15/12/2021 12.88 0.58 4.67 65.14 64.84 0.33 50.87 51.39 0.72 

16/12/2021 12.92 0.56 4.48 65.2 65.02 0.20 50.94 51.54 0.83 

17/12/2021 12.93 0.52 4.12 65.31 65.20 0.12 51.07 51.70 0.86 

18/12/2021 13.01 0.52 4.15 65.36 65.38 0.02 51.27 51.85 0.80 

19/12/2021 13.03 0.49 3.85 65.45 65.56 0.12 51.36 52.00 0.88 

20/12/2021 13.31 0.64 4.95 65.53 65.74 0.22 51.51 52.16 0.89 

21/12/2021 13.34 0.61 4.71 65.61 65.91 0.33 51.6 52.31 0.97 

22/12/2021 13.44 0.63 4.84 65.67 66.09 0.46 51.69 52.47 1.06 

23/12/2021 13.75 0.80 6.05 65.76 66.27 0.55 51.84 52.62 1.06 

24/12/2021 13.84 0.81 6.12 65.85 66.45 0.64 51.93 52.78 1.14 

25/12/2021 13.85 0.77 5.78 65.92 66.63 0.76 51.99 52.93 1.27 

26/12/2021 13.91 0.76 5.69 65.95 66.81 0.92 52.03 53.08 1.42 

27/12/2021 13.97 0.75 5.61 66.05 66.99 1.00 52.14 53.24 1.48 

28/12/2021 14.03 0.75 5.52 66.89 67.17 0.29 52.23 53.39 1.56 

29/12/2021 14.04 0.70 5.19 66.96 67.35 0.41 52.33 53.55 1.63 

30/12/2021 14.12 0.71 5.21 67.05 67.53 0.50 52.43 53.70 1.70 

31/12/2021 14.3 0.79 5.73 67.15 67.71 0.58 52.54 53.86 1.75 

01/01/2022 14.33 0.76 5.50 67.3 67.89 0.61 52.67 54.01 1.78 

02/01/2022 14.36 0.73 5.27 67.33 68.06 0.77 52.74 54.17 1.89 

03/01/2022 14.38 0.69 4.99 67.52 68.24 0.75 52.91 54.32 1.86 
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04/01/2022 14.56 0.77 5.50 67.7 68.42 0.75 53.09 54.47 1.82 

05/01/2022 14.58 0.74 5.23 67.88 68.60 0.75 53.23 54.63 1.83 

RSD= relative standard deviation. *=Values not available in the original dataset. Source: Authors. 

 

Generalized linear model 

The distribution that best describes the data of the outcome variables was the Poisson distribution (see Table S2 in 

supplementary material). According to the Poisson regression model, the percentage of the unvaccinated population 

contributed to a significant increase in the number of patients admitted to the ICU for COVID-19 (β= 4.581 [95% CI 1.986; 

6.329], p = 0.002), and also in the increase of SARS-CoV-2 variant infections, including omicron (β= 13.069 [95% CI 10.067; 

19.070], p =0.000), alpha (β= 5.025 [95% CI 2.026; 8.025], p =0.000), delta (β= 6.046 [95% CI 2.381; 8.915], p=0.001), and 

gamma (β=3.321 [95% CI 1.324; 6.319], p=0.000) (see Table 4).  

Table 5 depicts the percentage of unvaccinated population, number of admissions to intensive care units (ICU), the 

number of omicron cases and the number of other SARS-cov-2 variant infections. The countries with the highest rates of 

people refusing to receive the first dose of COVID-19 vaccine were the France, the USA, Australia, and the UK, with median 

percentages of 40.80% (IQR, 22.23% - 53.78%), 38.36% (IQR, 31.47% - 41.24%), 37.01% (IQR, 21.58% - 48.50%) and 

21.86% (18.87% - 26.52%), respectively. The highest number of ICU patients and the cases of the omicron variant occurred in 

the USA, a fact that was also verified for the other variants (see Table 5).   

 

Table 4. Poisson regression model of the effect of country rejection rate on increasing number of ICU admissions for COVID-

19 and increasing number of cases of SARS-Cov-2 COVID-19 variants. 

Variable β -95% CI +95%CI p 

Population size (adult and young) 3.217 1.864 9.538 0.030 

COVID-19 ICU patients 4.581 1.986 6.329 0.002 

Beta variant 0.053 -0.317 0.056 0.418 

Epsilon variant -2.305 -7.331 0.279 0.961 

Gamma variant 3.321 1.324 6.319 0.000 

Kappa variant -0.010 -3.019 0.001 0.246 

Iota variant -2.720 -4.759 2.682 0.000 

Eta variant -0.058 -1.063 0.053 0.742 

Delta variant 6.046 2.381 8.915 0.001 

Alpha variant 5.025 2.026 8.025 0.000 

Lambda variant 0.339 -4.741 1.323 0.731 

Mu variant 0.571 -2.584 0.981 0.217 

Omicron variant 13.069 10.067 19.070 0.000 

Source: Authors. 
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Table 5. Median percentage of population that refuses to be vaccinated against COVID-19 in some countries, March-December 2021. 

 
ICU 

patients* 

Number of SARS-Cov-2 variant cases Vaccine rejection rate 

Country Total case Beta Epsilon Gamma Kappa Iota Eta Delta Alpha Lambda Mu Omicron Median Interquartil range 

Australia 40378 96 22 8 156 5 7 29128 613 1 1 1693 37.01% 21.58%  - 48.50% 

Canada 279362 820 758 13271 417 213 1748 84643 34985 27 57 612 26.58% 21.03% - 40.33% 

Denmark 17019 223 37 67 28 8 10 156694 63862 9 12 4823 25.14% 20.58% - 31.14% 

France 1098742 6176 9 1095 15 8 715 93711 32651 67 25 843 40.80% 22.23% - 53.78% 

Germany 1098280 2303 10 858 105 38 677 185698 104138 102 17 2270 31.21% 28.72% - 37.26% 

Italy 542002 116 2 2488 19 10 361 39386 26877 14 83 526 28.36% 21.46% - 37.40% 

Japan 60485 101 19 120 20 5 13 90083 49841 4 3 150 28.67% 20.02% - 40.59% 

The 

netherlands 

167812 690 5 585 28 2 34 40036 29670 12 78 477 22.78% 20.93% - 37.55% 

Norway .......... 411 4 12 3 0 101 17821 13842 1 0 308 33.52% 29.51% - 41.60% 

Singepure 5834 204 4 8 59 6 9 8504 190 0 0 278 33.26% 18.67% - 50.12% 

South Korea 133821 37 114 15 12 4 2 14091 816 0 1 17 35.56% 29.33% - 50.43% 

Spain 681602 

 

1578 6 1158 5 124 214 34400 24732 223 669 703 27.73% 17.04% - 42.31% 

Sewden 59439 2639 2 184 5 4 14 50652 68608 4 4 634 31.82% 28.45% - 35.95% 

UK 417160 3105 64393 28733 333 41720 1209 1327443 239829 1254 6041 28536 21.86% 18.87% - 26.52% 

USA 5838472 939 24 225 452 21 427 1085714 262781 9 113 65137 38.36% 31.47% - 41.24% 

* Intensive care units (ICU). Source: Authors. 
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4. Discussion 

We were able to develop several independent time series models that can accurately predict COVID-19 vaccination 

patterns in different countries/regions worldwide in the upcoming months. We additionally demonstrated though the Poisson 

regression model that vaccine rejection behavior significantly impacts on the increase of ICU admissions and new variant’ 

infections.  

The ARIMA model presented the best fit for the USA, Brazil, Europe, Asia, and the rest of the World data series, 

while Holt’s linear trend model was most appropriate for African data. The robustness of all the models, assessed by means of 

different metrics [(RMSE, MAE, MAPE, RSD, coefficient (R2)], are similar to other COVID-19 models available in the 

literature (Konarasinghe et al., 2020; Yonar et al., 2020; Spector et al., 2006; Ceylan et al., 2020; Sahai et al., 2020; Singh et 

al., 2020).  

The mean percentage of the population refusing to receive the first dose of the COVID-19 vaccine was of around 20% 

for all the evaluated countries/regions. Yet, France (40.80%), the USA (38.36%), Australia (37.01%) and the UK (21.86%) 

presented above average values. These countries were also those reporting the highest rates of ICU admission due COVID-19 

and increased number of new variants infections – especially omicron (1098742, 5838472, 40378 and 417160 cases, 

respectively) during the evaluated period (until 01/31/2022). Recent studies also demonstrated that high-income countries are 

more prone to vaccination rejection rates compared to low and middle-income regions (Graeber et al., 2021). This may occur, 

among others, due misinformation and fake news spread on social media, which negatively impact on the vaccination process 

by raising doubts about its effectiveness and safety (Mattos et al., 2021). Social media allows users of any educational and 

socioeconomic background to create and share information without an editorial rigor or peer-review process. In addition to 

ignorance, other factors such as denialism, political and ideological, cultural, and religious reasons may affect the acceptance 

of vaccines by the different populations, which directly impacts on public health (Mendelson et al., 2021).  As an example, the 

USA, a country was ahead in vaccination and stagnated by the high rejection rate, due to several factors, such as ethnicity/race, 

politics, economic level, geographic location and religious factors (Khubchandani et al., 2021). 

Vaccine rejection can also favor the occurrence of viral mutations leading to the emergence of new variants with 

different potential for virulence and infection, as has occurred with SARS-Cov-2 (Uddin et al., 2021). This can be an important 

barrier to the control of the pandemic. According to the Poisson regression model, the percentage of the unvaccinated 

population had a significant effect on the increase in ICU admissions (p=0.002) and were related to higher number of 

infections by omicron (p=0.000), alpha (p=0.000), delta (p=0.001) and gamma (p=0.000) variants in different regions 

worldwide. Moreover, the rates of vaccine rejection can affect the forecasts of predictive time series models (ARIMA and Holt 

models) by reducing its performance. This also applies to already published models that consider only the young and adult 

population eligible to receive the vaccine. Possible measures to minimize the rejection of vaccination include educational 

campaigns, fight against misleading information, criminal liability of those who produce and disseminate fake news - 

especially public figures, mandatory vaccination programs (Leask et al., 2021; Burki et al., 2022; Graeber et al., 2021; Mattos 

et al., 2021). Further strategies other than retaliation should be explored for countries that detect and disclose new SARS-CoV-

2 variants, as occurred with South Africa (Mendelson et al., 2021), to minimize, among others, discrepancies on vaccination 

coverage. Although millions of doses of vaccine are now donated by some high-income countries (e.g., USA, UK) to low-

income regions, logistic and storage conditions should be ensured (e.g., temperature control, longer expiration date) to 

guarantee the quality of the vaccine at the final destination (Uddin et al., 2021).  

The association between rejection of vaccination and the increase in the number of cases in the ICU should be 

interpreted with caution, as the availability of ICU beds and also the meaning of "intensive care" varies considerably in 
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different countries (Leask et al., 2021; Burki et al., 2022; Graeber et al., 2021). Therefore, this constituted a limitation of the 

study, as this information was not available in the databases consulted. 

Another limitation is the possibility of underreporting the number of people vaccinated and the number of cases in the 

ICU that can occur in low-income countries (eg, in sub-Saharan Africa) (Mattos et al., 2021; Mendelson et al., 2021), a 

variable that cannot be controlled. 

Vaccination predictions from the ARIMA model may not be realized due to several factors such as vaccine 

availability, logistics, infrastructure, denialism and political influence. High-income countries (United Kingdom, France, 

United States, Australia), even with vaccine availability, have not achieved predicted vaccination rates, probably due to 

denialism. On the other hand, low-income countries (e.g. sub-Saharan Africa) are also not achieving predicted vaccination 

rates likely due to economic factors, which may impact vaccine availability, lack of infrastructure, logistical problems, and 

shortage of health workers, among others (Loembé et al., 2021; Aw et al., 2021; Ortega et al., 2020). 

 

5. Conclusions 

The ARIMA model presented the best performance for predicting vaccination patterns. According to ARIMA models, 

in the USA, Europe and Asia, vaccination rates of 70% of the population would be reached between January-February, 2022; 

in Brazil, this percentage would be reached in September 2021; while in the rest of the world this is predicted to April 2022. In 

Africa, this rate will only be achieved in the beginning of 2024. However, the ARIMA model may lose accuracy over time 

especially due vaccination rejection rates, as the models were built considering that the entire adult and youth population 

would be eligible to receive the vaccine. According to the Poisson regression model, the high rate of vaccine rejection directly 

reflects on the increase of ICU admission due COVID-19 and omicron, delta, alpha and gamma variant cases. In this scenario, 

strategies to improve vaccination should be implemented, including the expansion of educational campaigns, mandatory 

vaccination measures, access restriction to public services for unvaccinated people and sanctions for those who promote anti-

vaccine information.  
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