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Abstract 

The Brazilian northeastern semi-arid is a region composed of countless microorganisms adapted to extreme conditions, 

and to ensure their survival, they can produce several biomolecules and develop peculiar mechanisms. The use of 

microorganisms has been reported as a promising alternative for promoting plant growth through the production of 

several bioactive molecules, which can replace chemical agents that cause environmental problems. In this study, 

Bacillus sp. Ar 16 (UFPEDA), isolated from the rhizosphere of Aroeira (Schinus terebinthifolia) from the Caatinga 

biome, northeastern semi-arid region, was taxonomically characterized through biochemical tests, Matrix-Assisted 

Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF) and 16S region rRNA such as Bacillus 

cereus UFPEDA 1060 B (99.86%). In vitro conditions, the B. cereus UFPEDA 1060B strain produced 

exopolysaccharide (EPS), cellulases, and phosphatases and presented maximum phosphate solubilization of 880 

µg.mL -1 . Furthermore, the production of 3.96 to 4.06 µg.mL -1 of indole acetic acid (IAA) in a culture medium 

supplemented with 5 mM of L-tryptophan was evidenced. IAA and other organic acids were extracted and analyzed 
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by High-Performance Liquid Chromatography (HPLC) at a retention time of 6.2. The studied strain has different 

mechanisms that can promote plant growth and is also capable of controlling the growth of Fusarium spp. and 

Colletotrichum spp. The effectiveness of the results presented by this strain demonstrate its biotechnological potential, 

which can bring benefits to sustainable agriculture with artifices that favor, in addition to plant growth, the cycling of 

nutrients. 

Keywords: Rhizobacteria; Auxin; Organic acids; Antagonism. 

 

Resumo  

O semiárido nordestino é uma região composta por inúmeros microrganismos adaptados a condições extremas e, para 

garantir sua sobrevivência, podem produzir diversas biomoléculas e desenvolver mecanismos peculiares. A utilização 

de microrganismos tem sido relatada como uma alternativa promissora para promover o crescimento de plantas 

através da produção de diversas moléculas bioativas, que podem substituir agentes químicos que causam problemas 

ambientais. Neste estudo, Bacillus sp. Ar 16 (UFPEDA), isolado da rizosfera da Aroeira (Schinus terebinthifolia) do 

bioma Caatinga, semiárido nordestino, foi caracterizado taxonomicamente através de testes bioquímicos, Matrix-

Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF) e região 16S do rRNA como 

Bacillus cereus UFPEDA 1060 B (99,86%). Em condições in vitro, a cepa de B. cereus UFPEDA 1060B produziu 

exopolissacarídeos (EPS), celulases, fosfatases e apresentou solubilização máxima de fosfato de 880 µg.mL-1. Além 

disso, foi evidenciada a produção de 3,96 a 4,06 µg.mL-1 de ácido indol acético (AIA) em meio de cultura 

suplementado com 5 mM de L-triptofano. O AIA e outros ácidos orgânicos foram extraídos e analisados por 

Cromatografia Líquida de Alta Eficiência (CLAE) em um tempo de retenção de 6,2. A linhagem estudada possui 

diferentes mecanismos que podem promover o crescimento das plantas e também é capaz de controlar o crescimento 

de Fusarium spp. e Colletotrichum spp. A eficácia dos resultados apresentados por esta linhagem demonstra seu 

potencial biotecnológico, que pode trazer benefícios à agricultura sustentável com artifícios que favorecem, além do 

crescimento das plantas, a ciclagem de nutrientes. 

Palavras-chave: Rizobactérias; Auxinas; Ácidos orgânicos; Antagonismo. 

 

Resumen  

La región semiárida nororiental está compuesta por numerosos microorganismos adaptados a condiciones extremas y, 

para asegurar su supervivencia, pueden producir varias biomoléculas y desarrollar mecanismos peculiares. El uso de 

microorganismos ha sido reportado como una alternativa promisoria para promover el crecimiento de las plantas 

através de la producción de varias moléculas bioactivas, que pueden reemplazar a los agentes químicos que causan 

problemas ambientales. En este estudio, Bacillus sp. Ar 16 (UFPEDA), aislado de la rizósfera de Aroeira (Schinus 

terebinthifolia) en el bioma Caatinga, región semiárida nororiental, se caracterizó taxonómicamente mediante pruebas 

bioquímicas, espectrometría de masas de tiempo de vuelo de ionización por desorción láser asistida por matriz 

(MALDI-TOF) y la región 16S del rRNA como Bacillus cereus UFPEDA 1060 B (99,86%). En condiciones in vitro, 

la cepa de B. cereus UFPEDA 1060 B produjo exopolisacáridos (EPS), celulasas, fosfatasas y presentó una 

solubilización máxima de fosfato de 880 µg.mL-1. Además, se evidenció la producción de 3.96 a 4.06 µg.mL-1 de 

ácido indol acético (IAA) en medio de cultivo suplementado con 5 mM de L-triptófano. El IAA y otros ácidos 

orgánicos se extrajeron y analizaron mediante cromatografía líquida de alta resolución (HPLC) con un tiempo de 

retención de 6,2. La cepa estudiada tiene diferentes mecanismos que pueden promover el crecimiento de las plantas y 

también es capaz de controlar el crecimiento de Fusarium spp. y Colletotrichum spp. La efectividad de los resultados 

presentados por esta cepa demuestra su potencial biotecnológico, que puede traer beneficios a la agricultura 

sustentable con artificios que favorecen, además del crecimiento de las plantas, el ciclo de nutrientes. 

Palabras clave: Rizobacterias; Auxinas; Ácidos orgánicos; Antagonismo. 

 

1. Introduction 

Rhizobacteria are widely used as biofertilizers, since they favor plant development through the production of various 

growth-regulating substances through phytohormones (auxins, cytokinins, and gibberellins), competition and suppression of 

phytopathogens, in addition to assisting in the availability of nutrients in the rhizosphere (Babalola, 2010). 

The mechanisms promoted by plant growth-promoting rhizobacteria (PGPRs) can be classified as direct and indirect, 

which act in a positive way, ensuring plant growth. Directly, it is possible to mention the absorption of essential nutrients by 

biological nitrogen fixation, phosphate solubilization, siderophore production as well as the modulation of hormone levels 

through the synthesis of 3-indole acetic acid (IAA), gibberellins, cytokinins, oxide nitric and polyamines. Indirectly, it can be 

attributed to the production of stress-related phytohormones, such as abscisic acid, jasmonic acid, and cadaverine, or ethylene 
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catabolism, related to the production of the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, even when 

phytopathogen suppression occurs (Ghyselinck et al., 2013; Da Silva et al., 2018). 

The genus Bacillus, belonging to the Bacillaceae family, comprises gram-positive rod-shaped, aerobic or facultative 

anaerobic bacteria found predominantly in the soil and are extremely important for pharmaceutical, agricultural and industrial 

processes in the manufacture of antimicrobial pesticides and fertilizers, due to their physiological characteristics and its ability 

to produce antibiotics, enzymes, and other bioactive compounds. Furthermore, they are easily cultivated in low-cost culture 

media, and are fast-growing, which facilitates the production of biomass in industrial fermenters (Lanna-Filho et al., 2010). 

They also stand out for their ability to produce endospores that are extremely resistant to adverse environmental conditions, 

including low and high temperatures, radiation, desiccation, and chemicals (Baron, 1996; Pérez-García et al., 2011; Madigan et 

al., 2016). 

In addition, microorganisms subjected to selective pressure (Nadeem, et al., 2016) and that manage to survive in 

regions with high temperature, water deficit, and consequently soil desiccation, such as the characteristics found in the 

Caatinga biome (Brazilian semi-arid region) (Trovão, et al., 2007), can be sources of important bioactive compounds that can 

favor the promotion of plant growth (Kavamura et al., 2013; De Moura et al., 2021). 

The use of microorganisms adapted to different soil conditions that act as plant growth promoters and biocontrol 

agents is a viable option for application in agriculture to reduce dependence on the use of pesticides, aiming at a trend toward 

the development of sustainable agriculture (Campos et al., 2014) suggesting the great biotechnological potential of the strains 

studied in this work. 

Therefore, this work aims to taxonomically characterize an isolate of the rhizosphere of Schinus terebinthifolia from 

Northeastern Caatinga and evaluate its in vitro potential to produce bioactive compounds that can characterize it as a plant 

growth promoter. 

 

2. Methodology 

2.1 Identification 

2.1.1 Isolation of Bacillus sp. and macroscopic analysis 

Bacillus sp. Ar 16 was isolated from soil samples collected from the rhizosphere of Aroeira (S. terebinthifolia) during 

the winter (August 2011) in semi-arid and poorly impacted areas of the Caatinga, near the municipality of Caicó, Rio Grande 

do Norte/ Brazil (6°35’21”S; 37°15’36”W). Initially, the soil sample was diluted 1:10 (w/v), homogenized, and subjected to 

thermal shock for 12 minutes at 80 °C, followed by cooling on ice for five minutes. Subsequently, serial dilutions (10-2 and 10-

3) were carried out in sterilized saline solution (0.9%), seeded in nutrient agar (Meat Extract 3g, Bacteriological Peptone 5g, 

NaCl 8g, Agar 16g, H2O 1000 mL, pH 7.2) and incubated at 30 °C for 48 h. 

 After this period, isolated Bacillus colonies were selected and analyzed under phase-contrast microscopy (1000X) to 

evaluate the presence or absence of inclusion bodies (protein crystals). The isolate was deposited in the microorganism’s 

collection of the Department of Antibiotics (UFPEDA) under number 1060B. 

 

2.1.2 Phenotypic identification 

The isolate was cultivated in Czapeck medium (NaNO3 2g, K2HPO4 1g, MgSO4 7H2O 0.5g, KCl 0.5g, FeSO4 7H2O 

0.01g, Sucrose 30g, Agar 16g, H2O 1000ml, pH 6.6) supplemented with penicillin G (100 μg/mL) and incubated at 30 °C for 

24 h. 

After this period, the identification was performed through macro- and micromorphological (colony color, shape, and 
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cellular morphology) and biochemical analyzes according to (Koneman & Allen, 2008). The isolates were subjected to Gram 

staining and catalase, citrate, lecithinase, amylase, hemolytic activity, oxidation-fermentation, Voges-Proskauer, mannitol, 

phenylalanine, NaCl tolerance (5%), indole, motility, and antimicrobial susceptibility tests (nalidixic acid, ampicillin 

cephalothin, chloramphenicol, streptomycin, gentamicin, polymyxin, penicillin G, tetracycline, rifampicin, and vancomycin). 

 

2.1.3 Identification based on 16S rDNA region  

Total DNA extraction was performed according to Sambrook & Russell (2001) with adaptations. After cell cultivation 

for 6- 16 hours in Luria-Bertani broth (LB), at 37 °C and 150 rpm on a shaking table, 1.5 mL of each sample was centrifuged 

at 10,000 rpm for 5 minutes and the supernatant was discarded. The cell mass was resuspended in TEG buffer (25 mM Tris-

HCl, pH 8.0, 10 mM EDTA, 50 mM glucose) to which lysozyme (4 mg.L -1) and RNAse solution (20 mg/ml) were added. The 

samples were incubated in a water bath at 37 °C for 20 minutes. Then, SDS (10% Sodium Dodecyl Sulfate Solution) and 

proteinase K (150 µg/ml) were added, where they followed again to the water bath for 15 minutes at 65°C. 

After this period, they were centrifuged at 10,000 rpm for 5 minutes and the supernatant was transferred to another 

new and sterilized microtube. Subsequently, 24:1 v/v chlorophyll (chloroform + isoamyl alcohol) was added. The samples 

were centrifuged at 6,000 rpm for 3 minutes and the resulting aqueous phase was transferred to another microtube. Then, 3 M 

sodium acetate, pH 5.2, and 0.6 V of isopropanol (P.A) were added, homogenizing the content. Samples were centrifuged for 

10 minutes at 10,000 rpm. 

The supernatant was discarded, and the pellet was washed with ethanol (70%) and centrifuged for three minutes at 

10,000 rpm. The supernatant was discarded and after drying the pellet, TEG buffer (10 mM Tris-HCl, pH 8.0, 1 mM EDTA) 

was incorporated. DNA integrity was evaluated by 0.8% agarose gel electrophoresis using sample buffer and extracted DNA. 

Subsequently, amplification of the 16S rRNA gene was performed by the polymerase chain reaction (PCR) technique using 

universal oligonucleotides for Eubacteria 27F (5’-11GAG TTT GAT CCT GGC TCA G-3’) and 1492R (5’-TAC GGY TAC 

CTT GTT ACG ACT-3’), making use of, for each reaction: DNA (40 ng), buffer (10x), Magnesium chloride (MgCl2) (50 mM), 

Phosphated Deoxyribonucleotides (dNTPs – 10 mM), Direct (Oligo d ) and reverse (Oligo r ) oligonucleotides (25pmol/L), 

sterile distilled water and Taq DNA polymerase (50U/µL, 500U).  

The conditions used in the thermocycler for amplification were: Initial denaturation at 94 °C for 5 minutes, 30 cycles 

of denaturation at 94 °C for 45 minutes, annealing at 52 °C for 45 minutes, extension at 72 °C for 2 minutes, and extension 

final at 72 °C for 5 minutes. The PCR product was sequenced using the Genetic Analyzer 3500 ABI sequencer from the 

Human Molecular Genetics Laboratory (LGMH) at the Federal University of Pernambuco, and the resulting sequence was 

compared to all sequences available in GenBank using BLAST software from the National Information Center on 

biotechnology (NCBI) (http://www.ncbi.nlm.nih.gov/).  

The sequences were aligned with the Clustal software, and a phylogenetic tree was built with Mega 7 using the 

neighbor-joining method. Tree topology was evaluated by bootstrap analysis (1000 resampling). The sequences obtained were 

deposited in GenBank. 

 

2.1.4 Proteomic identification 

Proteomic identification was performed at the Centro de Tecnologias Estratégicas do Nordeste (CETENE), using a 

mass spectrometer for ionization of ribosomal and structural proteins from bacteria cultivated on Luria-Bertani agar for 24 

hours and incubated at 30 °C, using the technique of Matrix-Assisted Laser Desoption/Ionization Tim-of-Flight Mass 

Spectrometry (MALDI-TOF MS), according to Lima-Neto et al., (2014), with modifications. 
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Cell fragments (about 50 µg) were directly transferred from the culture medium to the rings (spots) of the polished 

metal plate (Polished Steel Target, Bruker Daltonics, Bremen, Germany) of the equipment (MALDI-TOF MS Autoflex III, 

Bruker Daltonics, Bremen, Germany) in quadruplicate. Immediately, 0.5 µL of 70% formic acid was added over two spots 

with the bacterial samples and mixed lightly with the biological material.  

After total evaporation of the liquid medium, 1 µL of α- cyano-4-hydroxycinnamic acid (CHCA) matrix solution (75 

mg/mL of α-cyano-4-hydroxycinnamic acid (CHCA) in ethanol/water/acetonitrile was added [1:1:1] with 0.03% trifluoroacetic 

acid [TFA]) and lightly mixed. For the other two spots, addition of the matrix solution was performed without previous 

treatment with formic acid. The mass variation between 2000 and 20000 Da was recorded using linear mode with a pulse of 

104 ns at a voltage of +20 kV. Final spectra were generated by adding 300 laser shots accumulated per profile and 8 profiles 

produced per sample, leading to a total of 2,400 laser shots added per spectrum. The peak list was exported to MALDI 

Biotyper™ 3.0 software (Bruker Daltonics, Bremen, Germany) where final identifications were based on the presence or 

absence of each peak in the spectrum. 

 

2.2 Selection of plant growth-promoting mechanisms 

2.2.1 Production of indole acetic acid (IAA) 

The analysis of the production and concentration of indole acetic acid (IAA) was carried out following the 

methodology described by (Ali et al., 2009; Lins, 2014) with some modifications. The isolate was inoculated in test tubes 

containing 5 mL of Broth LB and cultured at 37 ˚C for 24 hours. Then, a 108 CFU/mL suspension was prepared with saline 

solution (0.9%) and the optical density (O.D.) was analyzed in a spectrophotometer. Subsequently, 1 µL of it was inoculated 

into 1 mL of LB broth supplemented with 5 mM L-tryptophan, which were cultured in the dark at 37 °C at 120 rpm. After 24, 

48, and 72 hours, all samples were centrifuged in microtubes and Salkowski reagent (FeCl3 0.02 mol/L and H2SO4 10.8 mol/L) 

was added to the supernatant at a ratio of 1:4 v/v (Marchioro, 2005). Samples were kept in the dark for 30 minutes. 

Then, the qualitative reading was carried out by observing the color change and the quantitative reading in OD of 530 

nm in a spectrophotometer, then the data were compared with the IAA standard curve and the amount expressed in μg/mL. The 

experiments were performed in triplicate and Pantoea agglomerans UFPEDA-774 was used as a positive control. 

 

2.2.2 Phosphate solubilization 

With concentration previously adjusted to 108 CFU/mL, aliquots of suspension of saline solution (0.9%) containing 

100 µl of Bacillus sp. Ar 16 (B. cereus 1060B) were inoculated into 10 ml of NBRIP medium (Nautiyal, 1999) and incubated 

at 28 °C. After 168 hours, 1 ml of the inoculum was centrifuged at 10,000 rpm for five minutes. Then, 29 µl of the supernatant 

were transferred to microtiter plates containing 114 µL of distilled water and 57 µL of vanado-molybdate reagent (5% 

ammonium molybdate + 0.25% ammonium vanadate in a ratio of 1:1 v/ v). The colorimetric change of the medium with 

whitish coloration to yellow in positive samples was seen, then the reading was performed in a spectrophotometer at a 

wavelength of 420 nm and the data were compared with the standard curve of K2HPO4 and the amount expressed in mg/mL 

(Barton, 1948; Malavolta, Vitti & Oliveira, 1997). The experiments were performed in triplicate, and the strain P. agglomerans 

UFPEDA-774 was used as a positive control. 

According to Sindhu & Dadarwal (2001) can be consider the production as <0.05 mg (low solubilization), 0.05-0.1 

(average solubilization), 0.101-0.5 (high solubilization), > 0.501 (elevated solubilization). 

 

 

http://dx.doi.org/10.33448/rsd-v11i12.34517


Research, Society and Development, v. 11, n. 12, e449111234517, 2022 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v11i12.34517 
 

 

6 

2.2.3 Identification and quantification of organic acids by High-Performance Liquid Chromatography (HPLC) 

For the detection of indole acetic acid (IAA), the isolates were inoculated in test tubes containing ten milliliters ( mL) 

of Broth LB and cultured at 37 ˚C for 24 hours. Then, a standardized suspension containing 108 CFU / mL was prepared with 

saline solution (0.9%) and the optical density (O.D.) was confirmed through the spectrophotometer. Subsequently, 100 µL of 

the bacterial suspension was added to 10 mL of LB broth supplemented with 5 mM of L-tryptophan, which were cultured in 

the dark at 37 °C and 120 rpm for 72 hours (Ali et al., 2009; Lins, 2014). 

For the detection of acetic, butyric, citric, and lactic acids, 100 µL aliquots of the suspensions of each strain of 

Bacillus sp. Ar16 were inoculated in 10 mL of NBRIP medium and incubated at 28 °C for 168 hours (Nautiyal, 1999). 

Subsequently, all samples were filtered, and the determination of organic acids was performed by HPLC, equipped with a 

quaternary pump, coupled to a degassing system (DGU-20A5r), with an oven to control the temperature of the column, which 

is set at 28 °C, and an automatic injector (20 µL injection), with a diode array detector (SPD-M20A), working in a range from 

190-800 nm. 

The software used was LC-Solutions manufactured by Shimadzu Corporation (Kyoto, Japan). The column used in the 

method was a 300mm x 7.8 mm x 9 µm ion-exchange column (Aminex® HPX-87H, Bio-Rad, USA). Elution was performed 

isocratically with a mobile phase composed of 5 mM of H2SO4, with a flow of 0.6 mL/min. To determine the acid 

concentrations, a standard curve was constructed relating the individual standard concentrations of each acid to the peak areas 

generated by the equipment. 

 

2.2.4 Phosphatase production 

The production of phosphatases from Bacillus sp. Air 16 (UFPEDA 1060B) was observed using the methodology of 

(Romeiro et al., 2007; Ribeiro & Cardoso, 2012; Lins, 2014). A 0.5% solution of phenolphthalein diphosphate was prepared 

and sterilized by membrane filtration (0.22 µm). Two milliliters of this solution were added to every 100 ml of Trypticase Soy 

Agar (TSA) culture medium still liquefied and kept at 50 °C. The culture medium was homogenized and poured into Petri 

dishes.  

Bacterial isolates were inoculated at four points on the surface of the medium, followed by incubation for 24-48 hours 

at 28 °C. For revelation, drops of ammonium hydroxide (8.4%) were placed on the lid of the Petri dish and the reading was 

carried out after 15 minutes. The evidence of the production of phosphatases was due to the formation of a pink zone around 

the colonies. 

 

2.2.5 Antimicrobial activity against phytopathogenic fungi 

For the biocontrol tests, phytopathogenic fungi from crops belonging to the Microorganisms Culture Collection 

(UFPEDA) of the Department of Antibiotics and the Micoteca Culture Collection URM of the Department of Mycology of the 

Center for Biological Sciences of the Federal University of Pernambuco were used. 

Initially, the fungal species Colletotrichum sp. (UFPEDA- 2420), C. atramentarium (URM-2597), Fusarium 

oxysporum (URM-4117), F. oxysporum (URM-5283), F. solani (URM- 5903) were cultivated in a Petri dish with Potato 

Dextrose Agar (PDA), pH adjusted to 6.0, for 4-6 days at 30 °C. Then, a mycelium plug was removed and inoculated in a Petri 

dish (90 mm in diameter) with a PDA medium under the same conditions as the previous culture. 

Subsequently, 2 µL of bacterial suspension of Bacillus sp. Ar16 (Bacillus cereus UFPEDA-1060B) at a concentration 

of 108 CFU/mL were inoculated 25 mm from the center of the plate where a block of mycelium was inserted. The samples, in 

triplicate, were cultivated for 6 days in an oven at 30 °C. Subsequently, the percentage of fungal growth inhibition was 
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calculated (Rocha et al., 2017; Chen et al., 2019). The average inhibition obtained was calculated from the average of the three 

repetitions and applied in the following formula: (control-treatment) / control x 100 and the results were expressed in 

percentage (%) (Yuan, et al., 2012). 

 

2.2.6 Ammonia production 

For analysis of the ammonia production, recent strains of Bacillus spp. Ar16 (B. cereus UFPEDA 1060B) were 

adjusted to a concentration of 108 CFU/mL and 4 µL of the suspension was inoculated in 4 mL of peptone water and incubated 

at 28 °C for 48 hours. After incubation, 1 mL of each culture was centrifuged at 10,000 rpm for 10 minutes in microtubes with 

a capacity of 2 mL, then 50 µl of Nessler’s reagent were added to each microtube (Cappuccino & Sherman, 1992; Lins, 2014). 

The indicative of a brown or yellow color, after the addition of Nessler reagent, demonstrates high ammonia production and 

lower production, respectively (Dey et al., 2004).  

The ammonia levels produced were measured at O.D. of 450 nm in a spectrophotometer and compared with the 

ammonia standard curve and the amount expressed in μg/mL. The experiments were performed in triplicate and Pantoea 

agglomerans UFPEDA-774 was used as a positive control.  

 

2.2.7 Cellulase production  

According to the methodology described by Kasana et al., (2008), 5 µL of a suspension containing 108 CFU/mL were 

inoculated, in quadruplicate, in the carboxymethyl cellulose (CMC) medium composed of 0.2% NaNO3; 0.1% K2HPO4; 0.05% 

MgSO4; 0.05% KCl; 0,2% salt of carboxymethyl cellulose; 0.02% bacteriological peptone; 1.7% agar. The Petri dishes were 

incubated at 30 °C for 48 hours and to reveal the results, P.A iodine was used in the lid of the Petri dish for 5 minutes. The 

cellulolytic index (CI) was calculated based on the ratio between the diameter of the halo and the diameter of the colony 

(Teather & Wood, 1982). 

 

2.2.8 Production of exopolysaccharides (EPS) 

The Bacillus sp. Ar 16, previously cultivated in Nutrient Agar (NA) medium for 24 hours at 37 °C and with cell 

concentration adjusted to 108 CFU/mL in a spectrophotometer, was inoculated into sterilized paper discs (5 mm in diameter) 

and placed in the culture medium (2% yeast extract; 1.5% K2HPO4; 0.02% MgSO4; 0.0015% MnSO4; 0.0015% FeSO4; 

0.003% CaCl2; 0.0015% NaCl; 1.5% agar) modified with addition of 10% of sucrose in Petri dishes, and pH adjusted to 7.5. 

Then, they were cultured for 48 hours at 37 °C, and EPS production was analyzed by observing a mucoid halo around 

each paper disk. The confirmation was performed by adding the mucoid substance present in the halo in 2 mL of absolute 

ethanol P.A, thus, the formation of a precipitate confirms the presence of exopolysaccharides (Paulo et al. 2012). 

According to Paulo et al. (2012), from the calculation of the average of the mucoid halos (mm) obtained after 

cultivation, based on the ratio between the diameter of the inoculated filter paper and the formed halo, it is possible to consider 

that: (-) absence of production, halo ≤ 10 mm (+), 10-14 mm (++) and ≥ 14 (+++). 

 

3. Results  

3.1 Identification 

3.1.1 Isolation and Biochemical and Morphological Identification 

The colonies isolated on Nutrient Agar medium showed cream color and rhizoid growth. After microscopic analysis, 

they were identified as Gram-positive, mobile, and endospore-forming. 
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The isolate was analyzed by biochemical tests and classified as a non-fermenter of mannitol and a producer of 

catalase, lecithinase, and amylase. These results identify the isolate as Bacillus cereus. Differentiation from the other 

members of this group was performed by confirming high hemolytic activity and the absence of protein crystal (Table 1). The 

strain was sensitive to most of the antimicrobials tested, showing resistance only to ampicillin, cephalothin, and penicillin G. 

 

Table 1. Biochemical characteristics of Bacillus sp. Ar 16 and Typical strain (Biochemical tests). Legend: ¹ (Garrity & 

Stanley, 2001). 

Biochemical tests Bacillus sp. Ar16 

(B.  cereus UFPEDA 

1060B) 

Typical strain 

B.  cereus ¹ 

 

Catalase + + 

Citrate - + 

Lecithinase + + 

Oxidation-fermentation 

aerobic and anaerobic 

+  

+ 

Temperature optima 37° C +  

+ 

Spore production  +  

+ 

Mannitol - - 

Phenylalanine - - 

Amylase + + 

Indole - - 

Motility + + 

NaCl 5% + + 

Hemolytic activity + + 

Voges-Proskauer + + 

Source: Authors. 

 

3.1.2 Identification based on 16S rDNA region 

The result of the phylogenetic analysis of the 16S rRNA gene of the Ar16 isolate demonstrates a 99.86% similarity 

with other Bacillus cereus (Figure 1) present in the database (NCBI). The 1432 bp sequence was sent to GenBank and 

assigned an accession number -MW048513.  

 

http://dx.doi.org/10.33448/rsd-v11i12.34517


Research, Society and Development, v. 11, n. 12, e449111234517, 2022 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v11i12.34517 
 

 

9 

Figure 1. Phylogenetic tree relative to 16S rRNA gene of Bacillus sp. Ar16 (UFPEDA-1060B) and reference sequences from 

NCBI. Tree constructed using neighbor-joining method with 1000 bootstraps. 

 

 

 

 

 

 

 

 

 

 

 

Source: Authors. 

 

3.1.3 Proteomic identification by MALDI-TOFF 

Comparing the peak list to the MALDI Biotyper™ 3.0 software (Bruker Daltonics, Bremen, Germany) according to 

the protein profile data library with reference spectra, shows the isolate with scores of 1.90, relating it to the genus Bacillus sp. 

 

2.2 Selection of plant growth-promoting mechanisms 

2.2.1 Production of índole acetic acid (IAA) 

Qualitatively, it was possible to observe the change in color of the liquid LB medium after cultivation and treatment 

with Salkoswki's reagent in the three-time periods proposed for the bacterial strains in this study. 

Quantitatively, three responses were obtained for the production of IAA. The isolate produced indole acetic acid throughout 

the analyzed period, with production ranging from 3.96 to 4.06 µg. ml-1 in the presence of 5 mM of tryptophan. 

 

2.2.2 Phosphate solubilization 

B. cereus UFPEDA 1060B demonstrated significant phosphate solubilization capacity, reaching a value of 880 

µg.mL-1 in the period analyzed. It was also possible to observe at the end of the cultivation the decrease in the pH of the 

culture medium used to 4.9 which, initially, was adjusted to 7.0, thus suggesting the possible production of organic acids. 

 

2.2.3 Identification of quantification of organic acids 

There was a production of acetic acid by the isolate B. cereus UFPEDA 1060B, this study highlighting the positive 

control (B. cereus UFPEDA-108) used with a production of 74.11 mg/L. The synthesis of citric acid was also reported with 

5.11, 4.83 mg/mL produced by the strains B. cereus UFPEDA 1060B, and the positive control used B. cereus UFPEDA 108, 

respectively. The IAA production reached a higher level, with 2653.32 mg/mL as shown in Table 2. 
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Table 2. Production of organic acids produced by the strains of Bacillus cereus UFPEDA-1060B and positive control 

represented by B. cereus UFPEDA-1008, the highest production of indole acetic acid by both stands out. 

  Organic Acids (mg/mL)  

Strains IAA Acetic acid Citric acid 

Bacillus cereus UFPEDA 

- 1060B 

 

2653.32 31.95 5.21 

Bacillus cereus 

UFPEDA- 108 

2480.37 74.10 4.83 

Source: Authors. 

 

Peak areas generated in the chromatogram using the commercial indole acetic acid standard were generated at 

retention time 6.2 and, thus, it is also possible to observe at the same retention time the peak area generated by B. cereus 

1060B (Figure 2). 

 

Figure 2. Peaks presented in the chromatogram from the HPLC analysis detecting the production of indole acetic acid in “A” 

which corresponds to B. cereus UFPEDA-1060B compared to the commercial IAA standard injected in “B”. Note that both 

have peak area generated with a retention time of 6.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Authors. 

 

2.2.4 Phosphatase production 

In this present study, B. cereus 1060B also demonstrated the ability to produce phosphatase enzymes in a Petri dish 

assay, indicating another mechanism for phosphate solubilization. 

The Petri dish culture assay demonstrated the ability of B. cereus UFPEDA-1060B to produce phosphatases after 48 

hours of incubation, after the development of pink staining. 
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2.2.5 Antimicrobial activity against phytopathogenic fungi 

B. cereus demonstrated the ability to inhibit the fungal mycelium in 60% of the fungal strains analyzed, highlighting 

the percentage of inhibition of 88.2% for F. oxysporum URM 5283, 75% against Colletotrichum sp. UFPEDA 2420 and 

12.5% for C. atramentarium URM 2597. 

 

2.2.6 Ammonia production (NH3)  

Nitrogen fixation can be observed, where the concentrations of NH3 150.38 and 150.47 μg.mL-1 were measured 

corresponding to B. cereus UFPEDA-1060B and P. agglomerans UFPEDA-774, respectively, after 48 hours of incubation. 

 

2.2.7 Cellulase production 

Results for cellulolytic hydrolysis were observed for the strain of this study, which showed aptitude with a CI of 

11.33 mm, suggesting the high capacity of enzyme production that degrade cellulose by it. As for the positive control used, 

Bacillus subtilis UFPEDA-434, the CI was 4 mm.  

 

2.2.8 Exopolysaccharides production 

Bacillus cereus UFPEDA-1060B demonstrated a high capacity for synthesizing extracellular polysaccharides, 

presenting a 14 mm mucoid halo. The formation of a precipitate in ethanol P.A indicated confirmation of its production 

(Figure 4). 

 

Figure 4. A. Mucoid substance representing exopolysaccharide formation after incubation time. B. Highlight for the 

precipitate presented in absolute alcohol confirming the production of EPS by B. cereus 1060B. 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Authors. 

 

4. Discussion  

Members of the genus Bacillus, representatives of PGPRs, have been reported in the literature for the inhibition of 

ethylene synthesis, production of siderophores, antibiotics, nitrogen fixation, and mechanisms for phosphate solubilization, 

among other substances associated with plant growth (Vafadar et al., 2014). Thus, Bacillus strains are described as producers 

of aromatic compounds, plant hormones, and various enzymes that are related to the metabolism of phenylpropanoids, in 

addition to lipopeptides and polysaccharides (Ek-Ramos et al., 2019). 

Beneficial effects of these activities have been reported in economically important crops such as potatoes and onions (Vafadar 

et al., 2014). As emphasized by (Reinhold-Hurek & Hurek, 2011; Frank et al., 2017), among Gram-positive bacteria, Bacillus 

spp. has stood out in the production of metabolites in an abundant way. 
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Numerous formulations using this genus have been prepared and marketed, since, for biological control activities, 

Bacillus are good candidates, acting as antagonists. The antagonism is succeeded by the production of numerous polypeptides 

with antimicrobial action, as it is possible to exemplify: mersacidin, mycosubilitin, iturine, bacilomycin, phengycine, bacillicin, 

and surfactin (Zouari et al., 2016; Carrer Filho et al., 2015). These are characterized by low toxicity and high biodegradability, 

as well as considerable inhibitory activity on a range of microorganisms such as viruses, bacteria, fungi, mosquitoes, and 

oomycetes. To intensify the action between the different polypeptides, the synergistic action between them can lead to this 

result (Romero et al., 2007). 

The use of microorganisms adapted to extreme soil conditions, as is the case of the Caatinga Biome, is presented as a 

viable option for application in agriculture to reduce dependence on the use of pesticides, aiming at a trend towards the 

development of sustainable agriculture, as they can act as plant growth producers and biocontrol agents (Campos et al., 2014). 

Sustainable agriculture advocates the restricted use of chemicals and dependence on biological pest control and organic 

fertilizers as essential means to maintain ecosystem health and crop productivity (Prasad et al., 2015). 

In addition, they have characteristics that facilitate their cultivation and study, such as the facility of cultivation in 

low-cost culture media, having fast growth, and allowing for the production of biomass in industrial fermenters (Lanna Filho, 

et al., 2010). They also stand out for their capacity to produce endospores that have relevant resistance to adverse 

environmental conditions, including low and high temperatures, radiation, desiccation, and chemicals (Banerjee et al., 2010; 

Pérez-García, 2011; Madigan et al., 2016) Regarding the direct and indirect mechanisms presented by the PGPRs, the 

expression of some genes involved in the biosynthesis of tryptophan (trp) and IAA (iaaH, iaaM, for example) as well as 

environmental factors can influence the levels of IAA production (Spaepen et al., 2007; Batista, 2017). 

Thus, the metabolism and population density of bacteria are associated with bacterial growth, being the stationary 

phase of the growth curve favorable for the production of IAA. Thus, molecular signaling occurs by the bacteria, providing 

their adhesion and adaptation to the roots and plant signaling through the generation of exudates that help in colonization 

(Spaepen et al., 2007). 

The production of auxins has already been reported in several studies, as discussed (Kaur et al., 2016; Ferreira et al., 

2019) by members of the genus Bacillus sp. and Brevibacillus sp. (Mumtaz et al., 2017). Likewise, the production of auxins by 

members of the Bacillus genus is also mentioned, affirming that their production levels can also be influenced by the 

concentrations of the amino acid L-tryptophan available in the bacterial culture medium, which in larger quantities can produce 

remarkable levels of auxin. Furthermore, the conditions of the culture medium and availability of nutrients can also interfere 

(Sindhu & Dadarwal, 2001). 

Another important mechanism, such as the production of volatile compounds, notably the production of ammonia, has 

already been verified in Bacillus as claimed (Sindhu & Dadarwal, 2001; Banerjee et al., 2010; Radhakrishnan et al., 2017), 

constituting an indirect method of plant growth control, as it interferes in the metabolic cycles of pathogens (Nain et al., 2012) 

to bring positive results for agriculture (Aloo et al., 2019).  

The production of enzymes can contribute to soil nutrient cycling (Sindhu & Dadarwal, 2001; Hameeda et al., 2006), 

such as cellulases. Bacillus spp. and fungi are the microorganisms that produce cellulases in a broad way and with high 

economic value. However, because they have a fast growth cycle, bacteria present a differential characteristic for the industrial 

production of cellulases, in addition to being found in different habitats (Vimal et al., 2016). They are described as 

participating in the hydrolysis of some groups of enzymes, namely: endoglucanases, beta-glucosidase, cellobiohydrolase, or 

exoglucanase (Dionisio et al., 2016). Different methods have been reported for using soluble cellulose derivatives to be readily 

degraded, such as carboxymethylcellulose (CMC). Thus, in the research of bacteria and fungi, agar plates containing CMC as 
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substrate are often used (Johnsen & Krause, 2014). 

Another benefit of using rhizospheric microorganisms is the ability to produce extracellular exopolysaccharides (EPS), 

which are high molecular weight extracellular polymers. They are synthesized during microbial metabolic activities and 

secreted into the environment (Silambarasan et al., 2019), constituting an outlet for physiological stress, which participates in 

the development of the biofilm (Marvasi et al., 2010).  

The production and maintenance of biofilm facilitate the binding of microorganisms to solid surfaces (Madigan et al., 

2016), including plants, constituting an advantage for their colonization. Furthermore, extracellular polymers produced by 

microorganisms can bind to cations, such as Na +, decreasing the absorption of this molecule by plants, thus avoiding salt 

stress (Geddie & Sutherland, 1993). 

Members of the exopolysaccharide-producing Bacillus genus survived to high sodium concentrations when inoculated 

together with cucumber cultures to improve their salinity tolerance (Nadeem et al., 2016). The isolate Bacillus cereus 

UFPEDA-1060B was also evaluated for phosphate solubilization in NBRIP medium, with phosphate source dicalcium 

phosphate (CaHPO4).  

According to Nautiyal (1999), phosphate solubilization detection tests when performed in a solid medium may not 

always present a positive result, with the formation of a halo, but in a liquid medium, such microorganisms can solubilize 

several insoluble inorganic phosphates with reliable results reducing various inorganic acids in NBRIP culture medium, which 

is reported to be more efficient.  Inorganic phosphate solubilization occurs with the synthesis of organic acids. For this reason, 

there is a decline in pH, which may present an increase in the chelation of cations bound to phosphorus (P) as well as the 

formation of soluble complexes with metallic ions that release P (Sharma et al., 2013). 

The recognition of microorganisms that convert chemical elements by releasing organic acids or phosphatases is of 

paramount importance (Moreira & Araújo, 2013). When these become available to the plants, the microorganisms they 

produce are notable examples of plant growth-promoting agents, thus converting insoluble into soluble phosphate compounds 

via mineralization of organic phosphorus (Nahas, 2002). 

 

5. Conclusion  

The results of the present study showed the properties of the Bacillus cereus UFPEDA 1060B strain in the production 

of the main mechanisms for a microorganism to be considered a plant growth promoter. The strain was able to carry out the 

phosphate solubilization and produce organic acids, and exopolysaccharides, among others. 

In view of this, the mechanisms produced by Bacillus cereus UFPEDA 1060B can be used for various purposes from 

an agricultural point of view, from sustainable products whose use does not cause damage to the environment. Therefore, the 

strain can be evaluated in further tests to understand these activities through in vivo inoculation in plant seeds. 

 

Acknowledgments  

The authors thank the Federal University of Pernambuco (UFPE), as well as Coordenação de Aperfeiçoamento de 

Pessoal de Nível Superior (CAPES). The Collection of Culture of Microorganisms (UFPEDA) and the Laboratory of 

Bioprocesses and Bioproducts, both from the Department of Antibiotics (UFPE), the Collection of Cultures Micoteca URM 

from the Department of Mycology of the Center for Biological Sciences (UFPE), the Laboratory of Human Molecular 

Genetics (LGMH-UFPE) for helping with the sequencing of the samples, to the Center for Strategic Technologies of the 

Northeast (CETENE) for making the MALDI-TOF available and to each researcher who participated in this study. Funding: 

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). 

http://dx.doi.org/10.33448/rsd-v11i12.34517


Research, Society and Development, v. 11, n. 12, e449111234517, 2022 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v11i12.34517 
 

 

14 

Declaration of competing interest: The authors declare that they have no known competing financial interests or 

personal relationships that could have appeared to influence the work reported in this paper. 

 

References  

Ali, B., Sabri, A. N., Ljung, K., &amp; Hasnain, S. (2009). Quantification of indole-3-acetic acid from plant associated Bacillus spp. and their 

phytostimulatory effect on Vigna radiata (L.). World Journal of Microbiology and Biotechnology, 25(3), 519- 526. https://doi.org/10.1007/s11274-008-9918-9. 

 

Aloo, B. N., Makumba, B. A., & Mbega, E. R. (2019). The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. 

Microbiological Research, 219, 26-39. https://doi.org/10.1016/j.micres.2018.10.011 

 

Babalola, O. O. (2010). Beneficial bacteria of agricultural importance. Biotechnology letters, 32(11), 1559-1570. https://doi.org/10.1007/s10529-010-0347-0. 

 

Banerjee, S., Palit, R., Sengupta, C., & Standing, D. (2010). Stress Induced Phosphate Solubilization by “Arthrobacter” Sp. and “Bacillus” Sp. Isolated from 

Tomato Rhizosphere. Australian Journal of Crop Science, 4(6), 378–383. Retrivied from https://search.informit.org/doi/10.3316/informit.414789554792811 

 

Baron, S. (Ed.). (1996). Medical Microbiology. (4th ed.). University of Texas Medical Branch at Galveston.  

 

Barton, L. J. (1948). Photometric method of phosphate rock analysis. Analytical chemistry, 20, 1068-1070.C.J. https://doi.org/10.1021/ac60023a024. 

 

Batista, B. D. (2017). Promoção de crescimento vegetal por Bacillus sp. RZ2MS9: dos genes ao campo. Tese de Doutorado, Escola Superior de Agricultura 

Luiz de Quieroz, Universidade de São Paulo, Piracicaba. doi:10.11606/T.11.2017.tde-15082017-170543. 

 

Campos, D. C., Acevedo, F., Morales, E., Aravena, J., Amiard, V., Jorquera, M. A., ... & Rubilar, M. (2014). Microencapsulation by spray drying of nitrogen-

fixing bacteria associated with lupin nodules. World Journal of Microbiology and Biotechnology, 30(9), 2371-2378. https://doi.org/10.1007/s11274-014-1662-

8. 

 

Cappuccino, J., Sherman, N. (1992). Microbiology: a laboratory manual, tenth ed., Longman, New York. 

 

Carrer Filho, R., Dianese, É. D., & Gomes daCunha, M. (2015). Suppression of Fusarium wilt in tomato plants by rhizobacteria from the Bacillus genus. 

Pesquisa Agropecuária Tropical, 45(3). http://dx.doi.org/10.1590/1983-40632015v4535397. 

 

Chen, L., Shi, H., Heng, J., Wang, D., & Bian, K. (2019). Antimicrobial, plant growth-promoting and genomic properties of the peanut endophyte Bacillus 

velezensis LDO2. Microbiological research, 218, 41-48. https://doi.org/10.1016/j.micres.2018.10.002. 

 

Da Silva, C. F., Vitorino, L. C., Soares, M. A., &amp; Souchie, E. L. (2018). Multifunctional potential of endophytic and rhizospheric microbial isolates 

associated with Butia purpurascens roots for promoting plant growth. Antonie van Leeuwenhoek, 111(11), 2157-2174. https://doi.org/10.1007/s10482-018-

1108-7. 

 

De Moura, P. A., de Albuquerque Lima, T., Ferreira, M. R. A., Soares, L. A. L., de Souza Lima, G. M., Napoleão, T. H., ... & Paiva, P. M. G. (2021). The 

relevance of actinobacteria as sources of antioxidant compounds: Evaluation of Streptomyces isolates from rhizosphere collected at Brazilian Caatinga. In 

Microbial and Natural Macromolecules (pp. 401-418). Academic Press.https://doi.org/10.1016/B978-0-12-820084-1.00017-X. 

 

Dey, R. K. K. P., Pal, K. K., Bhatt, D. M., & Chauhan, S. M. (2004). Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by 

application of plant growth-promoting rhizobacteria. Microbiological research, 159(4), 371-394. https://doi.org/10.1016/j.micres.2004.08.004. 

 

Dionisio, J. A., Pimentel, I. C., Signor, D., De Paula, A. M., Maceda, A., & Matanna, A. L. (2016). Guia prático de biologia do solo. 

 

Ek-Ramos, M. J., Gomez-Flores, R., Orozco-Flores, A. A., Rodríguez-Padilla, C., González-Ochoa, G., & Tamez-Guerra, P. (2019). Bioactive products from 

plant-endophytic Gram-positive bacteria. Frontiers in microbiology, 10, 463. https://doi.org/10.3389/fmicb.2019.00463. 

 

Ferreira, C. M., Soares, H. M., & Soares, E. V. (2019). Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties 

and microbial safety aspects. Science of the total environment, 682, 779- 799.https://doi.org/10.1016/j.scitotenv.2019.04.225.  

 

Frank, A. C., Saldierna Guzmán, J. P., &amp; Shay, J. E. (2017). Transmission of bacterial endophytes. Microorganisms, 5(4), 70. 

https://doi.org/10.3390/microorganisms5040070.  

 

Garrity, G. M., & Stanley, J. T. (2001). Bergey’s Manual® of Systematic Bacteriology: Volume One The Archaea and the Deeply Branching and Phototrophic 

Bacteria. D. R. Boone, &amp; R. W. Castenholz (Eds.). Springer New York. 

 

Geddie, J. L., & Sutherland, I. W. (1993). Uptake of metals by bacterial polysaccharides. Journal of Applied Bacteriology, 74(4), 467-472. 

https://doi.org/10.1111/j.1365-2672.1993.tb05155.x. 

 

Ghyselinck, J., Velivelli, S. L., Heylen, K., O’Herlihy, E., Franco, J., Rojas, M., ... & Prestwich, B. D. (2013). Bioprospecting in potato fields in the Central 

Andean Highlands: screening of rhizobacteria for plant growth-promoting properties. Systematic and applied microbiology, 36(2), 116-127.. 

https://doi.org/10.1016/j.syapm.2012.11.007.  

 

Hameeda, B., Reddy, Y., Rupela, O. P., Kumar, G. N., & Reddy, G. (2006). Effect of carbon substrates on rock phosphate solubilization by bacteria from 

composts and macrofauna. Current microbiology, 53(4), 298-302. https://doi.org/10.1007/s00284-006-0004-y. 

 

http://dx.doi.org/10.33448/rsd-v11i12.34517
https://doi.org/10.1007/s11274-008-9918-9
https://doi.org/10.1016/j.micres.2018.10.011
https://doi.org/10.1007/s10529-010-0347-0
https://search.informit.org/doi/10.3316/informit.414789554792811
https://doi.org/10.1021/ac60023a024
https://doi.org/10.1007/s11274-014-1662-8
https://doi.org/10.1007/s11274-014-1662-8
http://dx.doi.org/10.1590/1983-
https://doi.org/10.1016/j.micres.2018.10.002
https://doi.org/10.1007/s10482-018-1108-7
https://doi.org/10.1007/s10482-018-1108-7
https://doi.org/10.1016/B978-0-12-820084-1.00017-X
https://doi.org/10.1016/j.micres.2004.08.004
https://doi.org/10.3389/fmicb.2019.00463
https://doi.org/10.3390/microorganisms5040070
https://doi.org/10.1111/j.1365-2672.1993.tb05155.x
https://doi.org/10.1007/s00284-006-0004-y


Research, Society and Development, v. 11, n. 12, e449111234517, 2022 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v11i12.34517 
 

 

15 

Johnsen, H. R., & Krause, K. (2014). Cellulase activity screening using pure carboxymethylcellulose: application to soluble cellulolytic samples and to plant 

tissue prints. International Journal of Molecular Sciences, 15(1), 830-838. https://doi.org/10.3390/ijms15010830. 

 

Kaur, H., Kaur, J., & Gera, R. (2016). Plant growth promoting rhizobacteria: a boon to agriculture. Int J Cell Sci Biotechnol, 5, 17-22. E-ISSN: 2320-7574. 

https://www.researchgate.net/profile/Harshpreet-Kaur/publication/357885974_Plant_Growth_Promoting_Rhizobacteria_-A-Boon-to-

Agriculture/links/61e59b79c5e31033759f6204/Plant-Growth-Promoting-Rhizobacteria-A-Boon-to-Agriculture.pdf 

 

Kasana, R. C., Salwan, R., Dhar, H., Dutt, S., & Gulati, A. (2008). A rapid and easy method for the detection of microbial cellulases on agar plates using 

Gram’s iodine. Current microbiology, 57(5), 503-507. https://doi.org/10.1007/s00284-008- 9276-8. 

 

Kavamura, V. N., Santos, S. N., da Silva, J. L., Parma, M. M., Ávila, L. A., Visconti, A., ... & de Melo, I. S. (2013). Screening of Brazilian cacti rhizobacteria 

for plant growth promotion under drought. Microbiological research, 168(4), 183- 191. https://doi.org/10.1016/j.micres.2012.12.002. 

 

Koneman, E. W., & Allen, S. (2008). Koneman. Diagnostico Microbiologico/Microbiological diagnosis: Texto Y Atlas En Color/Text and Color Atlas. Ed. 

médica panamericana. 

 

Lanna Filho, R., Ferro, H. M., & Pinho, R. D. (2010). Controle biológico mediado por Bacillus subtilis. Revista Trópica: Ciências Agrárias e Biológicas, 4(2), 

12-20. http://dx.doi.org/10.0000/rtcab.v4i2.145 

 

Lima-Neto, R., Santos, C., Lima, N., Sampaio, P., Pais, C., & Neves, R. P. (2014). Application of MALDI-TOF MS for requalification of a Candida clinical 

isolates culture collection. Brazilian Journal of Microbiology, 45, 515-522. https://doi.org/10.1590/S1517-83822014005000044. 

 

Lins, M. R. D. C. R. (2014). Seleção de actinobactérias da rizosfera da caatinga com potencial para promoção de crescimento vegetal (Master&#39;s thesis, 

Universidade Federal de Pernambuco). https://attena.ufpe.br/handle/123456789/12154 

 

Madigan, M. T., Martinko, J. M., Bender, K. S., Buckley, D. H., & Stahl, D. A. (2016). Microbiologia de Brock-14ª Edição. Artmed Editora. 

 

Malavolta, E., Vitti, G. C., & Oliveira, S. A. D. (1997). Avaliação do estado nutricional das plantas: princípios e aplicações.  

 

Marchioro, L. E. T. (2005). Produção de Ácido Indol Acético e derivados por bactérias fixadoras de nitrogênio. Curitiba: Universidade Federal do Paraná.  

 

Marvasi, M., Visscher, P. T., & Casillas Martinez, L. (2010). Exopolymeric substances (EPS) from Bacillus subtilis: polymers and genes encoding their 

synthesis. FEMS microbiology letters, 313(1), 1-9. https://doi.org/10.1111/j.1574- 6968.2010.02085.x. 

 

Moreira, A. L. D. L., & Araújo, F. F. D. (2013). Bioprospecção de isolados de Bacillus spp. como potenciais promotores de crescimento de Eucalyptus 

urograndis. Revista Árvore, 37, 933-943. http://dx.doi.org/10.1590/S0100-67622013000500016. 

 

Mumtaz, M. Z., Ahmad, M., Jamil, M., & Hussain, T. (2017). Zinc solubilizing Bacillus spp. potential candidates for biofortification in maize. Microbiological 

Research, 202, 51-60.https://doi.org/10.1016/j.micres.2017.06.001. 

 

Nadeem, S. M., Ahmad, M., Naveed, M., Imran, M., Zahir, Z. A., & Crowley, D. E. (2016). Relationship between in vitro characterization and comparative 

efficacy of plant growth-promoting rhizobacteria for improving cucumber salt tolerance. Archives of microbiology, 198(4), 379-

387.https://doi.org/10.1007/s00203-016-1197-5. 

 

Nahas, E. (2002). Microrganismos do solo produtores de fosfatases em diferentes sistemas agrícolas. Bragantia, 61, 267-275. https://doi.org/10.1590/S0006-

87052002000300008. 

 

Nain, L., Yadav, R. C., & Saxena, J. (2012). Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops 

grown in semi-arid deserts. Applied soil ecology, 59, 124- 135.https://doi.org/10.1016/j.apsoil.2011.08.001. 

 

Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS microbiology Letters, 170(1), 

265-270.https://doi.org/10.1111/j.1574-6968.1999.tb13383.x. 

 

Paulo, E. M., Vasconcelos, M. P., Oliveira, I. S., Affe, H. M. D. J., Nascimento, R., Melo, I. S. D., ... & Assis, S. A. D. (2012). An alternative method for 

screening lactic acid bacteria for the production of exopolysaccharides with rapid confirmation. Food Science and Technology, 32, 710-714. 

http://dx.doi.org/10.1590/S0101-20612012005000094. 

 

Pérez-García, A., Romero, D., & De Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of Bacilli 

in agriculture. Current opinion in biotechnology, 22(2), 187- 193.https://doi.org/10.1016/j.copbio.2010.12.003. 

 

Prasad, R., Kumar, M., & Varma, A. (2015). Role of PGPR in soil fertility and plant health. In Plant-growth-promoting rhizobacteria (PGPR) and medicinal 

plants (pp. 247-260). Springer, Cham. doi:10.1007/978-3-319-13401-7_12 

Reinhold-Hurek, B., & Hurek, T. (2011). Living inside plants: bacterial endophytes. Current opinion in plant biology, 14(4), 435-443. 

https://doi.org/10.1016/j.pbi.2011.04.004. 

 

Ribeiro, C. M., & Cardoso, E. J. B. N. (2012). Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine (Araucaria 

angustifolia). Microbiological Research, 167(2), 69-78. https://doi.org/10.1016/j.micres.2011.03.003. 

 

Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Bacillus: A biological tool for crop improvement through bio-molecular changes in adverse 

environments. Frontiers in physiology, 8, 667. R. Radhakrishnan, A. Hashem, E.F. Abd_Allah,2017. https://doi.org/10.3389/fphys.2017.00667. 

 

Rocha, F. Y. O., de Oliveira, C. M., da Silva, P. R. A., de Melo, L. H. V., do Carmo, M. G. F., & Baldani, J. I. (2017). Taxonomical and functional 

characterization of Bacillus strains isolated from tomato plants and their biocontrol activity against races 1, 2 and 3 of Fusarium oxysporum f. sp. Lycopersici. 

Applied soil ecology, 120, 8-19. https://doi.org/10.1016/j.apsoil.2017.07.025. 

http://dx.doi.org/10.33448/rsd-v11i12.34517
https://doi.org/10.3390/ijms15010830
https://www.researchgate.net/profile/Harshpreet-Kaur/publication/357885974_Plant_Growth_Promoting_Rhizobacteria_
https://doi.org/10.1007/s00284-008-
https://doi.org/10.1016/j.micres.2012.12.002
http://dx.doi.org/10.0000/rtcab.v4i2.145
https://doi.org/10.1590/S1517-83822014005000044
https://doi.org/10.1111/j.1574-
http://dx.doi.org/10.1590/S0100-67622013000500016
https://doi.org/10.1016/j.micres.2017.06.001
https://doi.org/10.1007/s00203-016-1197-5
https://doi.org/10.1590/S0006-87052002000300008
https://doi.org/10.1590/S0006-87052002000300008
https://doi.org/10.1016/j.apsoil.2011.08.001
https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
http://dx.doi.org/10.1590/S0101-20612012005000094
https://doi.org/10.1016/j.copbio.2010.12.003
https://doi.org/10.1016/j.pbi.2011.04.004
https://doi.org/10.1016/j.micres.2011.03.003
https://doi.org/10.3389/fphys.2017.00667
https://doi.org/10.1016/j.apsoil.2017.07.025


Research, Society and Development, v. 11, n. 12, e449111234517, 2022 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v11i12.34517 
 

 

16 

 

Romeiro, R. D. S. (2007). Controle biológico de doenças de plantas: procedimentos. Universidade Federal de Viçosa. 

 

Romero, D., De Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J. W., Arrebola, E., ... & Pérez-García, A. (2007). The iturin and fengycin families of 

lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Molecular Plant-Microbe Interactions, 20(4), 430-440. 

https://doi.org/10.1094/MPMI-20-4-0430. 

 

Sambrook, J., & Russell, D. W. (2001). Molecular Cloning: A Laboratory Manual, thirded. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 

 

Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., &amp; Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus 

deficiency in agricultural soils. SpringerPlus, 2(1), 1-14. https://doi.org/10.1186/2193-1801-2-587.  

 

Silambarasan, S., Logeswari, P., Cornejo, P., & Kannan, V. R. (2019). Evaluation of the production of exopolysaccharide by plant growth promoting yeast 

Rhodotorula sp. strain CAH2 under abiotic stress conditions. International journal of biological macromolecules, 121, 55-

62.https://doi.org/10.1016/j.ijbiomac.2018.10.016. 

 

Sindhu, S. S., & Dadarwal, K. R. (2001). Chitinolytic and cellulolytic Pseudomonas sp. antagonistic to fungal pathogens enhances nodulation by 

Mesorhizobium sp. Cicer in chickpea. Microbiological Research, 156(4), 353-358. https://doi.org/10.1078/0944-5013-00120. 

 

Spaepen, S., Vanderleyden, J., & Remans, R. (2007). Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS microbiology reviews, 31(4), 

425-448. https://doi.org/10.1111/j.1574-6976.2007.00072.x. 

 

Teather, R. M., & Wood, P. J. (1982). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the 

bovine rumen. Applied and environmental microbiology, 43(4), 777-780. https://doi.org/10.1128/aem.43.4.777-780.1982. 

 

Trovão, D. M. D., Fernandes, P. D. Andrade, L. A. D., & Dantas Neto, J. (2007). Variações sazonais de aspectos fisiológicos de espécies da Caatinga. Revista 

Brasileira de Engenharia Agrícola e Ambiental, 11, 307-311. http://dx.doi.org/10.1590/S1415-43662007000300010. 

 

Vafadar, F., Amooaghaie, R., & Otroshy, M. (2014). Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, 

stevioside, NPK, and chlorophyll content of Stevia rebaudiana. Journal of Plant Interactions, 9(1), 128-136. https://doi.org/10.1080/17429145.2013.779035. 

 

Vimal, J., Venu, A., & Joseph, J. (2016). Isolation and identification of cellulose degrading bacteria and optimization of the cellulase production. Int J Res 

Biosciences, 5(3), 58-67. https://www.researchgate.net/profile/Joseph-

Vimal/publication/317300472_Isolation_and_identification_of_cellulose_degrading_bacteria_and_optimization_of_the_cellulase_production/links/5930e465a

6fdcc89e784a471/Isolation-and-identification-of-cellulose-degrading-bacteria-and-optimization-of-the-cellulase-production.pdf 

 

Yuan, J., Raza, W., Shen, Q., & Huang, Q. (2012). Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum 

f. sp. cubense. Applied and environmental microbiology, 78(16), 5942-5944. https://doi.org/10.1128/AEM.01357-12. 

 

Zouari, I., Jlaiel, L., Tounsi, S., & Trigui, M. (2016). Biocontrol activity of the endophytic Bacillus amyloliquefaciens strain CEIZ-11 against Pythium 

aphanidermatum and purification of its bioactive compounds. Biological Control, 100, 54-62. https://doi.org/10.1016/j.biocontrol.2016.05.012.  

 

 

http://dx.doi.org/10.33448/rsd-v11i12.34517
https://doi.org/10.1094/MPMI-20-4-0430
https://doi.org/10.1186/2193-1801-2-587
https://doi.org/10.1016/j.ijbiomac.2018.10.016
https://doi.org/10.1078/0944-5013-00120
https://doi.org/10.1111/j.1574-6976.2007.00072.x
https://doi.org/10.1128/aem.43.4.777-780.1982
http://dx.doi.org/10.1590/S1415-43662007000300010
https://doi.org/10.1080/17429145.2013.779035
https://doi.org/10.1128/AEM.01357-12
https://doi.org/10.1016/j.biocontrol.2016.05.012

