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Abstract 

Medical science is currently at an early stage for effectively controlling skin damage. One of the main barriers to good 

wound healing is bacterial infection, which poses a risk of long-term harmful effects. A clean wound, free of bacterial 

infections, is essential for the quick and effective regeneration of the skin. Hydrogel is one of the best biomaterials for 

antibiotic delivery in wound areas due to its high hydrophilicity, distinctive three-dimensional network, good 

biocompatibility, and cell adherence. Although many antibiotics are successful in treating infected wounds, improper 

or repetitive use of these medications may cause germs to become resistant. Notoriously, antimicrobial resistance in 

pathogenic bacteria is already considered a serious global public health issue. Recently, the use of silver associated 

with nanotechnology has been reconsidered as an important alternative to reduce the spread of antibiotic-resistant 

pathogens. Silver hydrogel dressings have become effective agents in wound management, substituting the use of 

antibiotics. The objective of this review is to show the importance of hydrogels in wound treatments, as well as the 

antibacterial properties of silver hydrogels and their implications in wound care. 

Keywords: Hydrogel; Silver; Antimicrobial resistance; Bacteria; Wound; Antibiotic; Infection; Biomedicine; 

Biomaterial; Medical treatment. 

 

Resumo  

A ciência médica está atualmente em um estágio inicial para controlar efetivamente os danos à pele. Uma das 

principais barreiras para uma boa cicatrização de feridas é a infecção bacteriana, que apresenta um risco de efeitos 

nocivos a longo prazo. Uma ferida limpa, livre de infecções bacterianas, é essencial para a regeneração rápida e eficaz 

da pele. O hidrogel é um dos melhores biomateriais para administração de antibióticos em áreas de feridas devido à 

sua alta hidrofilicidade, rede tridimensional distinta, boa biocompatibilidade e aderência celular. Embora muitos 

antibióticos sejam bem-sucedidos no tratamento de feridas infectadas, o uso impróprio ou repetitivo desses 

medicamentos pode fazer com que os germes se tornem resistentes. Notoriamente, a resistência antimicrobiana em 

bactérias patogênicas já é considerada um grave problema de saúde pública global. Recentemente, o uso de prata 

associado à nanotecnologia tem sido reconsiderado como uma importante alternativa para reduzir a disseminação de 

patógenos resistentes a antibióticos. Os curativos de hidrogel de prata tornaram-se agentes eficazes no manejo de 

feridas, substituindo o uso de antibióticos. O objetivo da revisão é demonstrar a importância dos hidrogéis no 

tratamento de feridas, bem como as propriedades antibacterianas dos hidrogéis de prata e suas implicações no 

tratamento de feridas. 

Palavras-chave: Hidrogel; Prata; Resistência antimicrobiana; Bactérias; Feridas; Antibiótico; Infecção; Biomedicina; 

Biomaterial; Tratamento médico. 

 

Resumen  

La ciencia médica se encuentra actualmente en una etapa temprana para controlar eficazmente el daño de la piel. Una 

de las principales barreras para una buena cicatrización de heridas es la infección bacteriana, que presenta un riesgo 

de efectos nocivos a largo plazo. Una herida limpia, libre de infecciones bacterianas, es fundamental para la 

regeneración rápida y eficaz de la piel. El hidrogel es uno de los mejores biomateriales para la administración de 

antibióticos en las áreas de heridas debido a su alta hidrofilicidad, red tridimensional distintiva, buena 

biocompatibilidad y adherencia celular. Aunque muchos antibióticos tienen éxito en el tratamiento de heridas 
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infectadas, el uso inadecuado o repetitivo de estos medicamentos puede hacer que los gérmenes se vuelvan 

resistentes. Notoriamente, la resistencia a los antimicrobianos en bacterias patógenas ya se considera un grave 

problema de salud pública mundial. Recientemente, el uso de plata asociada a la nanotecnología se ha reconsiderado 

como una alternativa importante para reducir la propagación de patógenos resistentes a los antibióticos. Los apósitos 

de hidrogel de plata se han convertido en agentes eficaces en el tratamiento de heridas, sustituyendo el uso de 

antibióticos. El propósito de la revisión es demostrar la importancia de los hidrogeles en el tratamiento de heridas, así 

como las propiedades antibacterianas de los hidrogeles de plata y sus implicaciones en el cuidado de heridas. 

Palabras clave: Hidrogel; Plata; Resistencia antimicrobiana; Bacterias; Herida; Antibiótico; Infección; Biomedicina; 

Biomaterial; Tratamiento médico. 

 

1. Introduction  

The skin is unquestionably the organ of the human body most vulnerable to injury, scrapes, and burns. Notoriously, 

the damaged epithelium and connective structures weaken the human body's capability to protect the outer environment. 

Consequently, it is essential to remodel a healthy epidermis or even additional skin layers. When the healing process takes 

longer, the wound's typical microbiota alters and hosts more aggressive bacteria (Serra et al., 2015). Gram-positive bacteria, 

primarily Staphylococcus aureus, are more prevalent in the early stages of chronic wound development (García-Pérez et al., 

2018; Serra et al., 2015). Gram-negative organisms (e.g., Escherichia coli and Pseudomonas spp.) are more prevalent and 

more prone to infiltrating the deeper layers of the skin in advanced stages, negatively impacting the tissues (Lyczak et al., 

2000; Petkovšek et al., 2009). To combat the health problem caused by wound infections, different types of wound dressings 

have been created to protect the wound from bacterial contamination and to hasten the wound healing process (e.g., sponges, 

hydrogels, films, hydrocolloids, and hydrofiber mats) (Ahmed & Boateng, 2018; Capanema et al., 2017; Koehler et al., 2018; 

Yao et al., 2017; Ye et al., 2018). Recent studies have focused on incorporating bacteriostatic or bactericidal antibiotics into 

the wound dressings to assist wound healing (e.g., quinolones, tetracyclines, aminoglycosides, and cephalosporins) (Anjum et 

al., 2016; Liu et al., 2018; Michalska-Sionkowska et al., 2018; RǍdulescu et al., 2016). Although many antibiotics are 

effective in the treatment of infected wounds, repeated or incorrect use of these drugs might lead to bacterial resistance (Rai et 

al., 2016). Notoriously, at least one of the most widely used antibiotics cannot effectively treat 70% of the bacteria that cause 

wound infections (Friedman et al., 2016). For example, strains of Staphylococcus aureus and Pseudomonas aeruginosa were 

both considerably resistant to antibiotic treatment, according to a study done on 470 samples of wound secretions with 

bacterial identification (Pirvanescu et al., 2014). The abusive and inappropriate use of antibiotics has brought the crisis of 

resistant bacteria to light. Such a situation is considered a global threat and one of the main problems that science and medicine 

currently face (French, 2010; Hawkey, 2008). According to the World Health Organization (WHO), by 2050, antimicrobial-

resistant bacteria will cause the death of more than 10 million people per year (Kraker et al., 2016). In this scenario, it is 

necessary to seek alternatives to help fight against antibiotic-resistant bacteria. 

In antiquity, silver was widely used to treat infections precisely because of its bactericidal and fungicidal potential 

against more than 650 pathogenic microorganisms (Möhler et al., 2018). Hippocrates was the first physician to record the use 

of silver powder to treat ulcers and heal wounds (Adams, n.d.). Recently, the use of silver associated with nanotechnology has 

been reconsidered as an important alternative to mitigate the increase of antibiotic-resistant pathogens (Alavi & Rai, 2019; Beg 

et al., 2017; Chaudhuri & Chandela, 2016; Lima et al., 2019; Sánchez et al., 2016). Importantly, silver nanoparticles (AgNPs) 

stand out among the metallic nanoparticles due to their proven anti-inflammatory and antimicrobial activity (Abdelghany et al., 

2018; Kasithevar et al., 2017). Several studies have already shown the effectiveness of AgNPs against antibiotic-resistant 

bacteria such as Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Streptococcus pyogenes, Klebsiella 

pneumoniae, among others (Gupta et al., 2019; Lara et al., 2010; Liao et al., 2019; Lopez-Carrizales et al., 2018; Nanda & 

Saravanan, 2009). Moreover, AgNPs are proving to be effective antimicrobial agents due to the various mechanisms of 
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sterilization, albeit no definitive conclusions regarding these mechanisms have been reached (Rafael et al., 2019; Vetten et al., 

2014). Unfortunately, AgNPs tend to agglomerate and sediment when in an aqueous medium, which causes the antimicrobial 

action to decrease gradually, harming the applications of AgNPs (Berdous & Ferfera-Harrar, 2016; Mekkawy et al., 2017; 

Sevgi et al., 2013). To solve this issue, AgNPs must be suspended in a support substrate that prevents particles from 

agglomerating and maintains long-term stability (Inoue et al., 2019; Mekkawy et al., 2017). Systems using hydrogels are 

among the main strategies to keep AgNPs stable. Hydrogels are three-dimensional polymeric compounds formed by cross-

links that can absorb a large amount of liquid (Zhang & Khademhosseini, 2017). The hydrogel membrane with AgNPs is 

widely used in treating chronic wounds, adding the hydrogel's benefits with silver's antimicrobial action (Boonkaew et al., 

2013; Nesovic & Miskovic-Stankovic, 2020; Varaprasad et al., 2011). 

 

2. Methodology  

The current study is an integrated literature review that synthesizes information on the use of silver hydrogel in 

wound treatment as an alternative to reduce antibiotic-resistant pathogens and incorporates the relevance of important research 

findings in practice. A literature review from bibliographic research in reliable scientific databases such as Science Direct, 

Scopus, Wiley Online Library, and Scielo was done between July and September 2022. To search for scientific articles, terms 

such as “silver hydrogel,” “wound treatment,” “antibiotic-resistant pathogens,” “biomedicine,” “infection,” and “medical 

treatment” were used. Criteria such as articles mostly in English, open-access availability, and preferably published between 

2012 to 2022 were adopted for the selection of the most relevant publications on the use of silver hydrogel in wound treatment 

as an alternative to reduce antibiotic-resistant pathogens. However, it is important to note that although a few articles used in 

this review were published before 2012, they were still included in the present study due to their scientific importance, and 

most have a more reasonable number of citations. This review did not include dissertations, thesis, or information found on 

web pages. 

3. Results and Discussion  

3.1 Hydrogel: Morphology and classification 

The synthesis of poly (hydroxyethyl methacrylate) in 1960 is considered the beginning of modern hydrogel research 

(Wichterle & Lím, 1960). In this context, Wichterle and Lim sought to develop such polymeric matrices for biomedical 

purposes, with potential application to the human body. According to Kokabi, in 1989, Rosiak implemented the use of 

hydrogels as a basic material for the manufacture of wound dressings (Kokabi et al., 2007). And since then, there has been 

considerable progress in the synthesis and applications of hydrogels in the most diverse areas of knowledge. Hydrogels are 

cross-linked polymeric networks with a three-dimensional configuration capable of absorbing large amounts of water or 

biological fluids without suffering structural damage. This characteristic of hydrogels is attributed to the presence of 

hydrophilic groups, such as -OH, -COOH, -CONH, -CONH2, and -SO3H, in polymers that form the structures of hydrogels 

(Hamidi et al., 2008; Ullah et al., 2015). 

Hydrogels are classified according to the method of formation, the ionic charge, and how the networks are reticulated 

(Nascimento & Lombello, 2016). Concerning the formation of chains, hydrogels are classified as homopolymers when only 

one type of monomer is used; copolymers when more than one type of monomer is used; and interpenetrating polymers when 

the polymeric chains of a given hydrogel penetrate and entangle with the chains of another hydrogel, forming blends 

(Nascimento & Lombello, 2016). Regarding the ionic charge, hydrogels are classified as neutral when they do not present 

ionizable groups (e.g., methyl methacrylate); cationic when they have groups capable of forming cations by changing the pH of 
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the reaction medium; and anionic when the hydrogel presents anion-forming groups, also due to the pH variation of the 

reaction medium (Nascimento & Lombello, 2016). Interestingly, the polymeric chains of a hydrogel can be chemically or 

physically linked, leading to permanent or reversible gels (Figure 1). Chemical hydrogels are formed by different 

macromolecular chains that are permanently joined through covalent bonds and can also be obtained by cross-linked polymers 

in the dry state or solution. On the other hand, physical hydrogels originate through electrostatic attraction, ionic bonds, 

hydrogen bonds, or hydrophobic interactions between polymer chains. They are often reversible and can be dissolved by 

changing the environmental conditions of the solution, such as pH, ionic strength, or temperature (Hoffman, 2012). 

 

Figure 1. Methods for preparing hydrogels of physical and chemical origin. 

 

Source: Goulart, D. B.  

 

Physical crosslinking, more specifically, ionotropic gelation, also allows the encapsulation of the most diverse 

materials in hydrogels, such as cells, drugs and enzymes. This method produces microparticles, which are generated by 

extrusion of the polymeric dispersion containing the material to be encapsulated. The hydrogel spheres are produced when the 

solution containing the polymer is dripped onto the crosslinking solution, responsible for forming intra and intermolecular 

crosslinks, leading to a three-dimensional network (Bulmer et al., 2012; Prezotti et al., 2014). Ionotropic gelation is a simple, 

fast, and economical technique. On the other hand, hydrogels formed by this type of gelation present difficulties in controlling 

the release rate of the encapsulated material for a long period (Yeo et al., 2001). 

 

3.2 Applications of hydrogel 

In the last 20 years, scientific research on hydrogels has intensified. Countries such as the U.S., China, Japan, South 

Korea, Germany, and the United Kingdom stand out in conducting studies to develop and improve techniques for synthesizing 

and characterization of these polymer matrices, thus expanding the scope of their applications (Mahinroosta et al., 2018). The 

advantages of using these matrices include ease of preparation, use of natural products, biodegradability, biocompatibility, 

prolonged stability, and ease of biochemical modification of the formed structures (Ischakov et al., 2013). Such properties 

determine the application of the hydrogel in the fields of tissue engineering (Pensaifini et al., 2017), wound dressings 

(Rakhshaei & Namazi, 2017), biosensors (Jonášová & Stokke, 2016), pharmaceuticals (Treenate & Monvisade, 2017), 

agriculture (Guilherme et al., 2015a), adsorption of contaminants such as acid dyes in the textile industry (Khan & Lo, 2017), 

wastewater treatments (Mohammadzadeh Pakdel & Peighambardoust, 2018), and enzyme encapsulation (Martín et al., 2019).  
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Table 1. Main applications of hydrogels in different areas. 
 

Field                                      Application Reference 

  Agriculture Controlled release of nutrients and pesticides, soil conditioners (Guilherme et al., 2015b; 

Rizwan et al., 2021) 

  Food Science Protection of aromatic compounds, encapsulation and controlled  

release of vitamins and minerals, food coating 

(Farris et al., 2009; Shewan & 

Stokes, 2013) 

  Biomaterial 
Optical devices, batteries, sensors, capacitors, hydro-absorbent 

 materials, incorporation of macromolecules 

(Kopeček, 2007; Kopecek & 

Yang, 2007) 

  Cosmetic Foundations for skin, release of cosmetic actives (Mitura et al., 2020; Morales 

et al., 2009) 

  Pharmacy Controlled release of drugs and proteins, encapsulation of active 

principles 

(McKenzie et al., 2015; 

Wanzke et al., 2020) 
  

Biomedicine 
Wound dressings, intraocular contact lenses, filling of cancellous bones,  

cartilage replacement, ultrasound, substrate for cell culture, artificial 

muscles 

(Kamoun et al., 2017; Liang et 

al., 2021) 

Source: Authors. 

 

3.2.1 Hydrogel as wound dressings 

Most modern wound care solutions ensure a warm and moist environment, widely acknowledged as crucial in 

promoting quick healing (Hu et al., 2018; Tan et al., 2019). The formation of the granulation tissue and the facilitation of skin 

cell division are best supported by a moist healing environment, which further promotes complete wound healing (Rowan et 

al., 2015). Thus, an ideal dressing is able to maintain high humidity levels at the wound site while simultaneously removing 

surplus exudates; it also needs to be non-toxic, non-allergenic, comfortable, and affordable, allow for oxygen and water vapor 

exchange, and provide protection against microbial invasion (Negut et al., 2018; Nischwitz et al., 2019). Modern wound 

dressings serve as vehicles for delivering therapeutic drugs at the wound site and include nanofibrous mats (Unnithan et al., 

2016; Zou et al., 2020), sponges (Feng et al., 2019; Ma et al., 2019), films (Axibal & Brown, 2019; Ezzelarab et al., 2019), 

foams (Erring et al., 2019; Song et al., 2017), and hydrogels (Koehler et al., 2018; Pan et al., 2019; L. Zhang et al., 2019). 

Importantly, the cooling action and low tissue adhesion of hydrogel-based dressings help treated patients experience less pain 

compared to the other wound dressings (Madaghiele et al., 2014; Sood et al., 2014). 

The hydrogel model used as a wound dressing was first developed by Rosiak and consists of water, poly(N-vinyl-2-

pyrrolidone) (PVP), poly(ethylene glycol) (PEG), and agar, the last used as a pre-molding (Rosiak et al., 1989). Hydrogels can 

be used as dressings to keep the wound bed moist, facilitating the body's intrinsic enzymes to break down necrotic or non-

viable tissue and promote cell regeneration (Wang et al., 2007). The properties that turn hydrogels into biomaterials are (1) 

their high water content (around 90% water and 10% natural or synthetic polymers) , which contributes to their 

biocompatibility; (2) low interfacial tension, which improves its ability to adhere to organic tissues and absorb proteins and 

tissue fluids; (3) physical properties similar to organic tissues, represented by its softness and elasticity, which minimizes 

mechanical irritation to friction; and (4) porous structure that allows the diffusion of metabolites and good oxygen permeability 

(Patel & Mequanint, 2011). Hydrogels can also be applied as a matrix for controlled release of active ingredients and 

antimicrobial agent (Hoque et al., 2018). The incorporation of therapeutic substances in the hydrogel membranes and the 

release of these agents in the wound result from a series of factors defined by the degree of crosslinking produced by 

irradiation (Maitra & Shukla, 2014). Hydrogels generated through radioactivity exhibit a strong reducing power, so gamma 

radiation has been used to reduce metal ions to synthesize nanoparticles in solution, especially silver nanoparticles (Shin et al., 

2004). Radiation is used in manufacturing hydrogels to facilitate crosslinking and simultaneous sterilization, resulting in a 

product free of toxic residues, simplifying the manufacturing process, and lowering production costs (Benamer et al., 2006). 
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3.3 Sterilization of hydrogels for biomedical applications 

Given the increasing complexity and diversity of biomaterials, in particular hydrogels, it is necessary to develop and 

validate new, safe and reproducible sterilization methods that allow them to be sterilized effectively after their manufacture, 

without compromising their properties and without high associated costs. Interestingly, the sterilizing process in hydrogels has 

been the subject of very few scholarly works in the previous ten years—less than 0.3% of all papers on the Web of Science 

portal—despite its significance from a scientific, clinical, and economic perspective. The sterilization of polymeric materials, 

such as hydrogels, must be carried out with special care. Under certain conditions, sterilization may cause degradation, 

discoloration, embrittlement, odor generation, promoting additional cross-linking, or even inducing toxic effects in materials 

subjected to the process (Ahmed et al., 2013; Murray et al., 2013; Phillip et al., 2013; Vanichvattanadecha et al., 2010). For 

instance, the simultaneous occurrence of the cross-linking and polymeric chain scission processes during gamma irradiation 

makes it challenging to interpret the benefits of the process (Zajko & Klimant, 2013). Importantly, sterilization at high 

temperatures generally leads to two main events: main chain reaction, which can result in breakage or further cross-linking; 

and side chain reaction, which can result in group elimination or cyclization (David, 1975). Regarding the oxidative processes, 

the polymers can be oxidized, partially degraded, or subjected to additional cross-linking. This exposure is characterized by an 

induction period during which the polymer may not show obvious changes. Nevertheless, the production of hydroperoxides 

may have long-term consequences (Rabek, 1975). 

 

3.4 The importance of AgNPs in the treatment of wound infections 

Treating wound infections caused by antimicrobial-resistant bacteria is a challenging task owing to the inability of 

conventional antibiotics to treat such infections (Rai et al., 2009). Metal nanoparticles (NPs) are viewed as potential 

alternatives to commonly used antibiotics since they have independently shown bactericidal effectiveness against numerous 

diseases, have the ability to reduce adverse drug reactions, and do not cause microbial resistance (Yang et al., 2017). NPs 

achieve their bactericidal effect by releasing toxic metal ions or by producing reactive oxygen species (ROS) when it comes 

into contact with a bacterial cell wall (Kumar et al., 2018). Moreover, NPs can also damage mitochondria, disrupt metabolic 

pathways, enter the cell wall, and impact proton efflux pumps by altering pH and disrupting the surface charge of membranes 

(Kumar et al., 2018; Wang et al., 2017). 

Silver is a metal obtained largely as a by-product of lead mining, it is often associated with copper, and its medicinal 

properties have been used for over 2000 years (Alexander, 2009). Nanocrystalline silver was introduced as a wound dressing in 

1998, with the claim that it reduces the occurrence of infection and provides an opportunity to improve clinical practice in 

wound care. Although the Greeks and Romans have used silver as a bactericidal agent since ancient times, colloidal silver only 

began to arouse interest in researchers after the emergence of bacterial resistance to antibiotics and advances in 

nanotechnology (Nowack et al., 2011). AgNPs have received extensive consideration by the scientific community owing to 

their inhibitory action towards approximately 650 different microbe species and against antimicrobial resistant bacteria 

(Boonkaew et al., 2013; Durán et al., 2016; Inoue et al., 2019; Raghavan et al., 2016; Sondi & Salopek-Sondi, 2004; Vyshnava 

et al., 2016). The exact mechanism of action of AgNPs is not clearly understood, which has generated discussion within the 

scientific community (Baptista et al., 2018; Franci et al., 2015). Importantly, a number of variables, including size, shape, size 

distribution, coating, agglomeration, surface electrical charge, concentration of nanoparticles, and release of Ag+ ions, are 

crucial for the antibacterial activity of AgNPs (Dakal et al., 2016; Durán et al., 2016; Ouay & Stellacci, 2015; Pareek et al., 

2018a; Ramalingam et al., 2016).  It has been observed that using silver nanoparticles to raise the surface-to-volume ratio 

effectively improves the bactericidal effectiveness of the silver ions (Nam et al., 2015). Increased contact area with the bacteria 

occurs concurrently with an improvement in surface-to-volume ratio (Nam et al., 2015). The silver must be in its ionic form to 
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function as an antibacterial agent. Thus, the nanoparticles' increased surface area allows for the production of more silver ions, 

which can interact with bacteria in a variety of ways (Bondarenko et al., 2013). For example, AgNPs smaller than 10 nm have 

demonstrated a more effective antibacterial effect than larger particles (Durán et al., 2016). AgNPs' size is a key determinant of 

their antibacterial effectiveness; the smaller the particle, the greater the surface area and interaction with bacterial surfaces and 

intracellular structures (Pareek et al., 2018a, 2018b). The main consequences of these interactions are DNA base mismatches 

and consequent inhibition of replication (Manna et al., 2015), denaturation of enzymes and structural proteins (Yuan et al., 

2013), and inhibition of translation signals (Vyshnava et al., 2016). Moreover, AgNPs adhere to the bacterial cell membrane 

and cause structural changes that affect its permeability and transport, leading the cell to an imbalance in cellular respiration 

and consequently death (Dakal et al., 2016; Khalandi et al., 2017; Sondi & Salopek-Sondi, 2004). Silver is a soft acid, so its 

ions have a natural predisposition to interact with soft bases. Several bacterial cell structures are composed of sulfur and 

phosphorus, which are soft bases. Since bacterial DNA contains sulfur and phosphorus as its main components, the interaction 

with ions impairs DNA structure and function, causing bacterial death (Khalandi et al., 2017). 

 

3.4.1 Concerns with the use of AgNPs  

Several aspects influence the toxicity of AgNPs in hydrogels, including concentration and particle characteristics such 

as synthesis method, size, shape, surface electrical charge, and coating (Zhang et al., 2014). Researchers found that silver is 

cytotoxic to human dermal fibroblast cells in a concentration-dependent manner (Anisha et al., 2013). Studies have suggested 

that the use of hydrogel dressings with AgNPs may harm human health (e.g., potential cytotoxic effect on organic tissues) 

(Boonkaew et al., 2014) and the environment (Rezvani et al., 2019; Saleem Khan et al., 2015; Yu et al., 2013); however, this 

fact is not fully understood and is relatively unexplored. Importantly, as nanotechnology developed, experts were able to create 

a therapeutic window that increases the antibacterial capabilities of silver, lowers its minimum inhibitory concentration, and 

lessens its toxicity to healthy human cells (Nam et al., 2015). As a result, many wound dressings containing silver (e.g., 

Acticoat, Bactigrass, Tegaderm, Fucidin, and PolyMem Silver) have been approved for market introduction by the U.S. Food 

and Drug Administration (FDA) (Verma et al., 2016). When applying wound dressings to the wound site, cytotoxicity and 

antibacterial activity must be balanced. Even though the efficiency of silver ions has been clinically tested, caution should be 

exercised in using this treatment since unanticipated adverse effects may emerge in some circumstances. It is important to note 

that the limited efficacy of silver ion release, the limited number of silver species, the inability of silver ions to reach the 

wound bed, and the fast consumption of silver ions may require higher concentrations of silver compounds within the wound 

treatment, which could be fatal to healthy host cells (Atiyeh et al., 2007). 

AgNPs can potentially harm the environment, particularly the soil microbiota, by killing the bacteria responsible for 

denitrification, impairing the nitrogen cycle, and, consequently, affecting soil nitrification, essential for plant growth (Yu et al., 

2013). Toxic effects can also extend to aquatic environments where silver ions can interact with fish gills affecting fish 

osmoregulation (Rajkumar et al., 2016). Oxidative stress and lipid peroxidation have also been observed in fish brain tissue 

due to exposure to silver nanoparticles (Afifi et al., 2016; Saleem Khan et al., 2015). Oxidative stress develops through the 

formation of reactive oxygen species (ROS) and damage to cellular components, such as DNA, depletion of antioxidant 

molecules, binding and deactivation of proteins, and damage to the cell membrane (McShan et al., 2014; Zhang et al., 2016).  

 

3.4.2 Synthesis of AgNPs  

Two approaches are used to obtain metallic nanoparticles, including AgNPs top-down and bottom-up methods. The 

top-down method consists of successively breaking the metal into its conventional size until it reaches nanometric size, while 

the bottom-up method consists of building nanomaterials by grouping atoms and subatomic particles (Lee & Jun, 2019; 
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Mukherji et al., 2019; Tri Handok et al., 2018). AgNP synthesis commonly employs physical and chemical techniques; 

however, biological synthesis or biosynthesis research has gained notoriety (Beyene et al., 2017). 

Among the physical techniques used in the synthesis of AgNPs, those that use evaporation (e.g., condensation) and 

laser ablation processes stand out. The evaporation/condensation processes are based on the formation of silver vapors and 

consequent cooling; however, this technique requires large energy expenditures to keep the heating system stable and above 

1,000 °C (Harra et al., 2015). The laser ablation method involves “cutting” the silver to its conventional size with 

nanometrically calculated laser beams (Zhang et al., 2017). Both techniques require high cost and maintenance equipment, 

making the synthesis by chemical and biological routes more economically viable. 

Compared to physical techniques, the synthesis of AgNPs by chemical methods offer a wider range of technologies 

and lower prices. The main methods include chemical reduction, microemulsion, photoreduction, electrochemical synthesis, 

and microwave irradiation (Iravani et al., 2014). The most widely used is chemical reduction, which consists of using chemical 

agents (e.g., sodium borohydride, sodium citrate, and ascorbic acid) to reduce silver ions (Ag+) to reduced silver (Ag0), with 

consequent aggregation and formation of AgNPs (Praveena et al., 2016; Zain et al., 2014). However, AgNPs synthesized by 

this method have high instability and a high aggregation probability, requiring surfactants (amines, acids, alcohols, and thiols) 

to ensure stability and prevent AgNPs from settling (Toh et al., 2015). 

The synthesis of AgNPs using physical and chemical methods require equipment with high operating costs, chemical 

reagents with high toxicity, and the generation of by-products with polluting potential (Bilal et al., 2017). Given these negative 

points, the use of organisms and their bio compounds emerge as an alternative for synthesizing silver nanoparticles, a process 

known as biosynthesis, nanobiotechnology, or green synthesis (Ebrahiminezhad et al., 2017). The biological synthesis of silver 

nanoparticles employs biomolecules of diverse origin, especially those from bacteria, yeasts, filamentous fungi, mushrooms, 

and plants (Table 2) (Keat et al., 2015). In this type of synthesis, the approach used is of the bottom-up type, where the 

reduction of silver ions (from an aqueous solution of silver nitrate) to AgNPs occurs by the action of enzymes and 

phytochemicals (Abdelghany et al., 2018; Siddiqi & Husen, 2016). In addition to reducing silver, these bio compounds also act 

in stabilizing AgNPs, reducing the possibility of aggregation and maintaining the biological activity of these nanomaterials 

(Raghavan et al., 2016). 
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Table 2. Organisms responsible for the biological synthesis of silver nanoparticles.  
    

Organism Species Reference 

Bacteria Bacillus brevis  (Saravanan et al., 2018) 

  Nostoc spp.  (Sonker et al., 2017) 

  Streptomyces exfoliatus  (Iniyan et al., 2017) 

 

 

 

 

 

Yeast Candida lusitaniae   (Eugenio et al., 2016) 

  Cryptococcus laurentii   (Fernández et al., 2016) 

  Pichia fermentans   (Chauhan et al., 2015) 

  Saccharomyces cerevisiae   (Korbekandi et al., 2016) 

Filamentous fungus Aspergillus flavus  (Manimozhi & Anitha, 2014) 

  Cladosporium sphaerospermum (I. I. Abdel-Hafez et al., 2016) 

  Fusarium solani (Vijayan et al., 2016) 

  Penicillium nalgiovense (Maliszewska et al., 2014) 

 Phoma sorghina (Sonar et al., 2017) 

Mushroom Ganoderma aplanatum (Mohanta et al., 2016) 

  Lactarius piperatus  (Vamanu, 2017) 

  Lentinus edodes  (Lateef & Adeeyo, 2015) 

  Pleurotus ostreatus  (Al-Bahrani et al., 2017) 

Plant Aloe vera (Tippayawat et al., 2016) 

  Morinda citrifolia (Suman et al., 2013) 

  Vitis vinífera (Gnanajobitha et al., 2013) 

Source: Authors. 

 

 

 

3.5 Applications of hydrogels based on silver for wound dressings 

Despite the fact that a moist environment is necessary at the wound site, it may also raise the danger of microbial 

infections, which will lengthen the wound and/or slow down the healing process (Joshi Navare et al., 2020). Microbial 

colonization is undesirable because it may lead to major infections that may cause illness, septicemia, or even death (Zhang et 

al., 2021). Importantly, when wounds are colonized by opportunistic bacteria, the normal reparative and regenerative stages 

included in the healing process fail to occur (Simões et al., 2018). Staphylococcus aureus, methicillin-resistant Staphylococcus 

aureus (MRSA) and Pseudomonas aeruginosa are the most frequent microbial strains present in infected wounds (Cardona & 

Wilson, 2015) . To prevent and treat infections, modern medicine relies on antimicrobial drugs like antibiotics, which work by 

either eliminating germs or preventing their growth (Abhishek Gupta et al., 2020). Therefore, hydrogels with antibacterial 

properties have enormous potential for use in clinical settings (Yang et al., 2018). Antimicrobial agents are typically divided 

into two categories: organic substances, such as antibiotics and organic mineral salts, and inorganic substances, such as silver 

(Banerjee et al., 2019), zinc (H. Liu et al., 2018), and copper (Mohandas et al., 2018). Wound dressings with incorporated 

antimicrobial compounds have emerged as a practical alternative in recent years for reducing wound microbial colonization 

and infection and enhancing the healing process (Negut et al., 2018). 

The hydrogel membrane with silver nanoparticles represents one of the alternatives used in the treatment of chronic 

wounds (Shi et al., 2019). This type of coverage adds the benefits of the hydrogel with the antimicrobial action of silver. 

Clinical guidelines recommend that silver nanoparticle dressings be used on wounds where the infection is already established 

or on wounds with an excessive microbial load (Paladini et al., 2013). The most typical and inevitable impediment to wound 

healing is the development of an infection, which is relatively common in chronic wounds (Negut et al., 2018). Patients are 

heavily burdened and have a lower quality of life due to frequent dressing changes, repeated hospital admissions, and physical 

restrictions frequently associated with chronic wounds (Koehler et al., 2018). Hydrogel dressings with silver nanoparticles 
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have a broad spectrum of antimicrobial activities (Dai et al., 2018). Importantly, the application of antimicrobial hydrogels as 

dressings combines hydrogel properties with the bactericidal action of silver and constitutes a good option for treating chronic 

wounds. 

 In vitro studies have demonstrated the hydrogel dressings with AgNPs' bactericidal activity in multidrug-resistant 

bacteria, including Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Klebsiella spp., and Candida albicans 

(Bowler et al., 2004). Wu and collaborators studied novel silver-containing thermoplastic hydrogel membranes' synthesis, 

processing, and antimicrobial behavior (Wu et al., 2009). Antimicrobial activity was examined using exposure to Escherichia 

coli. Nanofiber hydrogels containing silver exhibited exceptional prominence against biofilm resistance in bacterial cultures 

(Wu et al., 2009). In another study, the hydrogels based on 2-hydroxyethyl acrylate and itaconic acid were synthesized by 

Vuković and collaborators and used for silver ions incorporation (Vuković et al., 2020). The hydrogels showed promising 

antibacterial activity against methicillin-sensitive Staphylococcus aureus (MSSA) and MRSA, indicating that they could be 

used to treat the potentially fatal illnesses (Vuković et al., 2020). Studies on chitosan hydrogel-based wound dressing 

formulations that contain and release nano-Ag and AgNPs have recently received attention (Hanif et al., 2016; Higa et al., 

2016; Jaiswal et al., 2016; M.Y. et al., 2016; Nešović et al., 2017). Chitosan is a natural polysaccharide with hemostatic, 

bacteriostatic, and fungistatic properties suitable for medical applications (Koehler et al., 2018). To illustrate it, spherical 

AgNPs ranging from 10 to 30 nm were inserted into nanofiber surfaces to treat wounds (Wu et al., 2014). With 99% or more 

reduction in Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, this nanostructure showed significant 

antibacterial activity and supported the growth of epidermal cells without cytotoxicity effects (Wu et al., 2014). Other 

researchers used coated polyester-nylon wound dressings with AgNPs to lower the incidence of exogenous wound-related 

infections(Radulescu et al., 2016). In vitro and in vivo studies showed improved inhibitory activity against bacterial 

colonization and biofilm formation, particularly against Pseudomonas aeruginosa, and fibroblast cells could grow normally 

(Radulescu et al., 2016). 

 

3.5.1 Hydrogels based on silver for the treatment of burn 

Burns are described as skin damage brought on by high temperatures or acidic substances, the two most typical causes 

(Butko et al., 2019; Jeschke & Gauglitz, 2020). Burn injuries interfere with the normal skin barrier and a number of other 

infection-preventing defensive processes (Mofazzal Jahromi et al., 2018). As a result, burn patients continue to be susceptible 

to a variety of invasive microbial infections until complete epithelialization occurs (Parikh et al., 2005). Silver nanoparticles 

are frequently used in wound therapy to provide therapeutically desirable qualities and an optimal environment for quick and 

efficient burn healing. ActicoatTM and PolyMem Silver®, two available silver-containing dressings to treat burns, were 

compared to a novel silver hydrogel dressing by Boonkaew and collaborators (Boonkaew et al., 2014). After 24 hours, most of 

the examined microbial strains were below the detection threshold, and bacterial viability was decreased by 94 to 99% 

(Boonkaew et al., 2014). ActicoatTM Flex 3 was tested on a fibroblast cell culture in vitro and on a real partial thickness burn 

patient (Rigo et al., 2013). According to the findings collected by cellular staining techniques, the AgNPs lowered 

mitochondrial activity without lysing skin cells or jeopardizing the integrity of the skin cells' nuclei (Rigo et al., 2013). The 

reduction in mitochondrial activity suggests a decrease in the number of bacteria, thus supporting the antibacterial properties of 

the silver-based hydrogel dressing (Rigo et al., 2013). In another investigation, a thermo-sensitive methylcellulose (MC) 

hydrogel containing silver oxide nanoparticles (NPs) was created via one-pot synthesis in which a silver acetate precursor salt 

(CH3COOAg) causes a salt-out effect in the MC solution (Kim et al., 2018). Interestingly, the MC hydrogel containing silver 

oxide NPs demonstrated remarkable antimicrobial activity and burn wound healing (Kim et al., 2018). Another study 

suggested a novel method for promoting vascularization in burn wounds (Banerjee et al., 2019). Contact burn wounds on the 
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dorsum of the rats and were infected with Pseudomonas aeruginosa and treated with PEGylated fibrin hydrogel containing 50 

mgs of silver sulfadiazine loaded chitosan microsphere (SSD-CSM-FPEG) (Banerjee et al., 2019). The proposed sequential 

treatment for infected burn wounds reduced bacterial infection while encouraging neovascularization and enhanced matrix 

remodeling (Banerjee et al., 2019). 

 

4. Conclusion  

There are still numerous obstacles to be addressed in the field of wound care. In order to treat non-healing wounds 

brought on by infection, cutting-edge materials that could be employed as wound dressings must be designed. Recent research 

has made it possible to create hydrogel wound dressings for delivering therapeutic molecules and medications to the wound 

site. The use of silver hydrogel dressing in wound treatment to prevent bacterial infection contribute to the improvement of 

wound management by creating an ideal environment for maximum wound recovery. Despite the large number of hydrogel-

based solutions already on the market, the creation or improvement of advanced hydrogel dressings continues to be a 

significant topic of study to further enhance skin healing in reports to particular therapeutic applications. Antimicrobial 

hydrogels are a crucial subset of macromolecular antimicrobial substances that have shown notable effectiveness in both the 

prevention and treatment of drug-resistant illnesses. 
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