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Abstract  

Climate change increases the vulnerability of agricultural production, mainly because it often causes stress to plants. 

Thus, this review presented the limiting factors in the development of forage plants and how these individuals respond 

in stressful situations. The factors that are linked to development, consequently with plant production, are water, light, 

temperature, soil and nutrients. Each of these factors acts differently in plants, from metabolic processes to plant mass 

productivity. Thus, for plants to develop efficiently, these factors must act within a range that allows them to perform 

their basic functions of growth and development. However, if one of these growth factors is acting negatively, that is, 

it is not within the adequate level that the plant needs, it can subject plants to stress conditions, depending on its 

intensity and duration over the plant. The growth factors directly influence the morphogenic characteristics, and, 

consequently, the structural characteristics and grazing management, the latter is also considered a limiting factor in 

the development of plants, due to its importance for animal production, in which a balance between animal and plant 

productivity. In this sense, understanding how the growth factors act on the development of plants is fundamental for 

constructing models that help in the efficient management, mainly for grasses under stress conditions and under the 

pasture system. 
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Resumo  

As mudanças climáticas aumentam a vulnerabilidade da produção agrícola, principalmente por proporcionarem 

estresse às plantas. Dessa forma, objetivou apresentar os fatores limitantes ao desenvolvimento de plantas forrageiras 

e como esses indivíduos respondem em situações de estresse. Os fatores que estão ligados ao desenvolvimento, e 

consequentemente a produção vegetal, são: água, luz, temperatura, solo e nutrientes. Cada um desses fatores atua de 

forma diferente nas plantas, desde os processos metabólicos até a produtividade da massa vegetal. Dessa forma, para 

que as plantas se desenvolvam eficientemente, esses fatores devem atuar dentro de uma faixa que permita a realização 

de suas funções básicas de crescimento e desenvolvimento. No entanto, caso um desses fatores de crescimento esteja 

atuando de forma negativa, ou seja, não esteja dentro do nível adequado de que o vegetal necessita, ele tem o 

potencial de submeter as plantas a condições de estresse, dependendo da sua intensidade e duração sobre a planta. Os 

fatores de crescimento influenciam diretamente nas características morfogênicas, e, consequentemente, nas 

características estruturais e no manejo do pastejo, este último é também considerado um fator limitante no 

desenvolvimento das plantas, devido a sua importância para a produção animal, em que se busca um equilíbrio entre a 

produtividade animal e vegetal. Portanto, para realizar um manejo da pastagem e do pastejo de forma eficiente e 

sustentável é necessário entender como as plantas são influenciadas pelos fatores abióticos, que estão ligadas ao seu 

desenvolvimento e como se comportam em situações de estresse. 

Palavras-chave: Radiação solar; Temperatura; Água; Solo; Nutrientes; Estresse vegetal.   

 

Resumen  

El cambio climático aumenta la vulnerabilidad de la producción agrícola, principalmente porque suelen causar estrés a 

las plantas. Así, el objetivo de esta revisión fue presentar los factores limitantes en el desarrollo de plantas forrajeras y 

cómo estos individuos responden en situaciones de estrés. Los factores que se vinculan con el desarrollo, en 

consecuencia con la producción vegetal, son: agua, luz, temperatura, suelo y nutrientes. Cada uno de estos factores 

actúa de manera diferente en las plantas, desde los procesos metabólicos hasta la productividad de la masa vegetal. 

Así, para que las plantas se desarrollen eficientemente, estos factores deben actuar dentro de un rango que les permita 

realizar sus funciones básicas de crecimiento y desarrollo. Sin embargo, si uno de estos factores de crecimiento está 

actuando negativamente, es decir, no está dentro del nivel adecuado que la planta necesita, tiene el potencial de 

someter a las plantas a condiciones de estrés, dependiendo de su intensidad y duración sobre la planta. Los factores de 

crecimiento influyen directamente en las características morfogénicas y, en consecuencia, en las características 

estructurales y el manejo del pastoreo, este último también es considerado un factor limitante en el desarrollo de las 

plantas, debido a su importancia para la producción animal, en la que se requiere un equilibrio entre animal y vegetal. 

productividad. En este sentido, comprender cómo actúan los factores de crecimiento sobre el desarrollo de las plantas 

es fundamental para la construcción de modelos que ayuden en el manejo eficiente, principalmente para gramíneas en 

condiciones de estrés y bajo el sistema de pastoreo. 

Palabras clave: Radiación solar; Temperatura; Agua; Suelo; Nutrientes; Estrés vegetal. 

 

1. Introduction  

In recent decades, climate change has become increasingly discussed among world organizations, countries, and 

educational and research institutes. The United Nations Organization (UNO), promotes worldwide conventions of member 

countries to discuss climate change, known as the Conference of the Parties (COP). In 2022, the Intergovernmental Panel on 

Climate Change (IPCC) Assessment looked at the main effects of climate change on the globe, reporting an increase in 

extreme weather patterns, such as more persistent droughts due to higher average temperatures and lower average rainfall. 

These climate changes raise the temperature, enrich the air with carbon dioxide (CO2), and intensify water stress under plant 

development (Fariaszewska et al., 2017; Potsch et al., 2019) 

In this sense, climate change increases the vulnerability of agricultural production, especially the plant production, 

susceptible to the stresses that climatic conditions can infer on the development and productivity of plant species. Over the past 

decades, studies have periodically addressed how the climatic elements influence the growth conditions of plants, especially 

under stress conditions, focusing on meat and milk production systems, in which pastures are used as the main source of food. 

The plant production of forage plants requires water, light, temperature and nutrients, in this case, these elements must 

find in adequate and balanced conditions for the plant to express its productive potential. In this sense, Blackman (1905) 

adapted the concept of Liebieg's (1840) law of the minimum to the limiting factors of growth. The author defined that the 

http://dx.doi.org/10.33448/rsd-v11i14.35530
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process that depends on several environmental factors will have its rate or activity regulated by one factor at a time, in such a 

way that only the increase in the level of this factor increases the rate or activity.  

Plant-animal relations in the pasture ecosystem suffer the direct effect of environmental factors, reflecting on the 

structure of the pasture and, consequently, on animal performance. According to Silva & Nascimento (2007), grazing 

management, concerning stocking rate and ingestive behavior of animals, is influenced by structural characteristics (proportion 

of morphological components, leaf/stem ratio, tiller density), and these, in turn, are influenced by morphogenetic 

characteristics. Therefore, these factors are expressed according to the responses of the plant in relation to the amount of CO2, 

nutrient availability, water, solar radiation, temperature, as well as the conditions under which the pasture is managed. 

Knowledge of the factors that influence the ecophysiology of forage plants is essential to enhance and assist in the 

development of sustainable management (Silva et al., 2015). 

Thus, this review addresses the main factors that affect the development of forage plants and how these individuals 

respond in stress situations. 

 

2. Growth Factors 

Plant growth begins with the process of embryogenesis, in which a single cell is transformed into a multicellular entity 

with a characteristic organization. In this process, several physiological changes occur at the embryonic level, where the 

individual begins to be modulated according to the condition it is subjected to. Throughout their development, these 

individuals make changes in response to the environment, favorable to plant growth, or unfavorable, caused by survival 

conditions (Taiz et al., 2017). According to these authors, the detection for these readjustments occurs from the sensorial 

systems, elucidated in the signal transduction process.  This process begins with a signal, which can be an environmental 

stimulus, in which a receptor performs the transduction, and then converts it to trigger the cellular response.  

The growth of plants presents a sigmoid behavior, subdivided into three phases: logarithmic phase, characterized by 

slow growth; linear phase, with an accelerated growth rate (accumulation of dry mass), and the third phase, in which growth is 

reduced, with an intensification of the senescence process. Regardless of the phase, the development of the forage plant may be 

influenced by internal factors (genetic changes, phytormones and vitamins) and/or external factors (light, water, temperature, 

soil, etc.). The phytohormones have the function of regulating the plant's metabolism and plant development, and are divided 

into five classes: auxins, gibberellins, cytokinins, ethylene and abscisic acid (Mello, 2002). 

From a physiological perspective, for plant growth to occur, there needs to be a balance between photosynthetic 

activity and respiration, that is, there should be a greater photosynthetic rate than respiratory activity. Thus, the production 

process of forage plants begins with photosynthesis, where the different CO2 fixation mechanisms reflect on the productive 

efficiency between C4 and C3 cycle plants. In this sense, the environment directly interferes in plant development, especially 

in how the plant will express its morphogenic characteristics, that is, the responses to a given stimulus, biotic or abiotic, can 

change its structural characteristics (Silva & Nascimento Júnior, 2007).  

Abiotic factors are physical, chemical, or geological elements of the environment that can affect the plant community 

in different ways. In this sense, the efficiency of use of forage plants by animals in grazing is closely linked to abiotic factors 

(Santos et al., 2011). According to Difante et al. (2011) and Costa et al. (2017), the accumulation of dry mass by the plant is a 

result of morphogenic responses to the environment, directly interfering with animal productivity (Sbrissia et al., 2018). Thus, 

it is necessary to know how plants express their morphogenic characteristics through measurements of morphological 

structures (leaf blade and stem) (Pereira, 2013), allowing to understand how abiotic factors act on the development and 

vegetative growth. 

http://dx.doi.org/10.33448/rsd-v11i14.35530
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The forage yield is linked to the quantity and quality of these factors, which, depending on the intensity in the plants, 

can express these elements positively or negatively. The intensity of a certain growth factor alone or together can lead the plant 

to stress, which is conceptualized as an adverse condition that inhibits the normal functioning of the organism (Mahajan & 

Tuteja, 2005), strongly impacts the growth and productivity of forage plants in different ways. 

Plants, when under stress, receive a series of signals in their receptor cells that trigger responses in an attempt to 

remain productive and perennial in the ecosystem. One of the main processes affected is photosynthesis, especially by climate 

change. According to Goh et al. (2012), the D1 protein of the photosystem II (FSII) protein complex is sensitive to 

perturbations caused by stresses, influences the electron transport chain in the chloroplast. Thus, the photosynthetic apparatus 

is extremely sensitive to stress conditions and can be affected even before morphological damage is observed (Dalberto et al., 

2015).  

Therefore, knowing and identifying the abiotic (environmental) factors that affect the performance of forage plants 

and how they interfere with these individuals helps  assist in the sustainable management of pasture (Silva et al., 2015), thus 

ensuring its perenniality and productivity since the damage caused by abiotic factors tend to limit agricultural production 

effectively. 

 

3. Solar Radiation 

The availability of light is considered one of the most relevant factors in plant growth and survival (Guenni et al., 

2008). In this sense, the production of biomass can be limited by the ability of the plant to intercept photosynthetically active 

radiation (PAR) (Monteith et al., 1991) and the efficiency of the conversion of solar energy into photoassimilates in the 

process of photosynthesis (Ong, 1999). Thus, to ensure the photosynthesis of the plant, solar radiation must have 

characteristics such as quantity, quality and intensity (Pes & Arenhardt, 2015), because these factors interfere with the 

physiological level of plant development.  

The Sun emits wavelengths ranging from 400 to 3000 nm, however, plants absorb radiation in a spectral range 

between 400 and 700 nm (RFA). This absorption is allowed by the presence of chlorophyllated tissues, where chlorophyl is the 

main pigment associated with this process. In addition to the participation of pigments, the leaf area index (LAI), leaf size, leaf 

distribution angle, age, plant arrangement, time of year and cloudiness (Varlet-Grancher et al., 1989), cultivated species and 

management practices (Santos et al., 2011) influence the absorption of light by plants. 

The efficiency of light absorption for biomass production requires the photosynthetic activity of the leaf, the ability to 

intercept the radiation and destination of assimilated products (growth, reserve or respiration) (Costa et al., 2012). In this sense, 

the ability of the species to adapt to low light conditions, i.e. shade, depends on the development of morphological and 

physiological adjustments to take advantage of the low levels of solar radiation available (Pimentel et al., 2016). Several 

studies have analyzed the development of plants under shaded (silvipastoral) systems and observed that Digitaria and 

Urochloa decumbens (Torres et al., 2017), Megathyrsus maximum cv. Massai (Andrade et al., 2004), Urochloa brizantha cv. 

Xaraés and Marandu (Martuscello et al., 2009), have tolerance to shaded environments, depending on the level of shading.  

The first consequence of the reduction of luminosity in plants is the decrease in the carbon assimilation rate, having as 

a consequence the allocation of photo-assimilates preferentially in the aerial part, drastically reducing root growth, studies by 

Fernandez et al. (2004) and Paciullo et al. (2010) observed this effect on roots, which at high levels can lead to plant death. 

The carbon allocation in shaded plants is considered an acclimation mechanism, acting on the increase and recovery of leaf 

area and stem elongation (Torres et al., 2019), to enhance light uptake (Lemaire, 2001; Anjos & Chaves, 2021), i.e., the plant 

changes its morphological behavior to compensate for light deficiency. 

http://dx.doi.org/10.33448/rsd-v11i14.35530
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Another change in the morphological behavior of plants under shading is the increase in leaf blade length at the 

expense of the reduction in light intensity (Torres et al., 2019). This event is considered a compensatory effect in the 

photosynthetic apparatus, because to the low availability of radiation, the plant needs more leaf area to capture light, 

prioritizing to investing its resources in the formation of leaf tissues. However, the greater length observed in the leaf blades, 

does not seem to contribute effectively to the increase in dry matter (DM) production (Gobbi et al., 2009; Martuscello et al., 

2009), and may be explained by a reduction in the number of leaves to ensure greater penetration of sunlight into the canopy.   

Research shows that the reduction in dry matter (DM) production occurs up to a certain level of shading (Torres et al., 

2017). According to Paciullo et al., 2008, an increase in DM production can be observed up to 30% shading, which can be 

attributed to a reduction in tiller population density and an increase in tiller weight. 

Photosynthetically active radiation influences the increment of the specific leaf area (Victor et al., 2015) interfering in 

the leaf area index (LAI) (Gastral and Lemaire, 2015; Gomes et al., 2019), as well as in the tiller population (Queiroz et al., 

2018), in which this population can be reduced, but compensated by the increase in the specific leaf area. This compensation 

effect is considered a mode of plant adaptation to low light conditions.  

Tillering is a process that has the axillary bud as the genitor of new tillers (Gastral and Lemaire, 2015), thus, the 

higher level of shading can interfere in its development, since the reduction of solar radiation favors the production of auxin in 

the apical meristem (Taiz & Zeiger, 2009), which can block the synthesis or use of cytokinin, a phytormone responsible for 

tillering in grasses. 

The increase in the specific leaf area in shaded conditions results in thinner leaves, making them less resistant to CO2 

diffusion inside the leaf (Gobbi et al., 2011), this influence of solar radiation on the photosynthesis expresses responses in 

several physiological aspects, one of which is in the increase in chlorophyll concentration per reaction center (Taiz et al. 2017), 

due to the greater accumulation of chloroplasts on the leaf surface, to increase the efficiency in capturing light. Therefore, the 

reduction of light interferes with the anatomy, morphology and nutrient contents of the forage plant (Anjos & Chaves, 2021). 

In this perspective, luminosity can relatively increase protein content when subjected to shading (Faria et al., 2018; 

Barros et al., 2019), and this same response can be observed in legume forages (List et al., 2019). According to Whatley & 

Whatley (1982), C4 grasses require a greater supply of energy (higher light intensity) than C4 plants, which results in different 

anatomical and physiological, and consequently agronomic, characteristics. 

Thus, the responses evidenced in the plants in relation to luminosity depend on the quality and intensity of the 

photosynthetically active radiation available, therefore, the grasses tolerant to shading present morpho-physiological 

modifications, which give them greater production stability  compared to non-tolerant species (Paciullo et al., 2016), when 

submitted to shaded productive systems. 

 

4. Temperature  

Temperature is considered one of the main abiotic factors that determine the distribution, adaptability and productivity 

of plants. This factor has immediate effects on biochemical (respiration and photosynthesis), physical (transpiration) or 

morphogenic processes (Gillet, 1984), influencing forage quality (Buxton & Fales, 1994) and acting directly on biomass 

accumulation.  

Plant growth occurs when the plant reaches its photosynthetic efficiency, reached when the temperature is between 25 

and 35°C for C4 cycle plants and 20 to 25°C for C3 cycle plants (Taiz et al., 2017), influencing morphogenic characteristics 

due to its stimulation at meristematic points, promoting cell expansion, observed in leaf and stem elongation rates (Silva et al., 

2008). Thus, it is necessary to have an alternation of temperature during the day and night, to ensure maximum photosynthesis 

during the day and lower respiration rate at night, for better energy conservation, and consequently for plant growth. 

http://dx.doi.org/10.33448/rsd-v11i14.35530
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These responses observed in the morphogenetic characteristics contribute to the understanding of the influence of 

temperature on forage plant quality, because to the fact that it directly affects the structural characteristics of the canopy, 

because the change in stem elongation rates interferes with the leaf/stalk ratio, and consequently in the leaf area index (LAI). 

These effects can alter the forage accumulation pattern (Gusmão Filho et al., 2020), especially in tropical grasses, as observed 

by Euclides et al. (2008), who, when evaluating Massai and Mombaça, observed a lower forage mass accumulation rate 

between May and September, which is the period of lowest annual temperature in the Southern Hemisphere. 

The period of higher temperature (summer) increases the rates of leaf emergence and elongation, being observed in 

Decumbens grass (Fagundes et al., 2006) and Xaraés grass (Sousa et al., 2011). Grasses submitted to high temperatures have a 

higher proportion of cell walls and lower digestibility, mainly due to the greater elongation of the stem. This effect occurs due 

the temperature accelerates the maturity of forage plants, with changes at the level of tissues, structural composition, increasing 

cellulose, hemicellulose and lignin, and, in parallel, reduces the cellular content, such as soluble carbohydrates, protein, 

minerals and vitamins (Santos et al., 2011). Therefore, high temperatures increase the speed of grass development, because of 

which there is greater deposition of lignin, an indigestible compound for ruminant animals. 

The behavior of plants subjected to different temperature levels depends on the mode of CO2 fixation, i.e., C3 cycle 

plants tend to limit the rate of photosynthetic CO2 assimilation, and C4 cycle plants reduce stomatal opening due to the high 

activity of the PEP carboxylase-PEPcase enzyme, conserving water while fixing carbon dioxide gas (Taiz et al., 2017). In this 

sense, C3 cycle grasses can maintain growth down to 0°C, however, C4 cycle grasses may have reduced or even ceased dry 

mass accumulation at temperatures below 15 °C, thus tropical grasses tend to be the most affected by seasonality. 

The literature shows that several studies have estimated the lower base temperature (Tbi) grasses, which can be 

defined as the temperature below which the plant does not develop, with values for elephant grass (Pennisetum purpureum cv. 

Napier) of 13.9°C, Panicum maximum and Brachiaria grasses around 15°C and Cynodon around 12°C (Mendonça & Rassini, 

2006; Moreno et al., 2004; Vila Nova et al., 2004). Therefore, knowledge about the base temperature of forage plants is 

essential to assist in the choice of species because this factor directly influences the process of accumulation of forage mass 

(Andrade et al., 2016), directly implicating the structural characteristics of the pasture, that is, the nutritive value. 

 

4.1 Thermal Stress 

Heat stress can occur in two ways, by exposure to low temperature or high temperature. Low temperatures limit 

growth and productivity because they inhibit metabolic reactions, restrict water absorption, reduce the water potential, prevent 

the expression of the genetic potential of the plant (Chinnusamy et al., 2007). In this way, plants are classified according to the 

temperature range, being them: I - cold sensitive plants (<12°C), II - cold tolerant plants (cooling temperature) and III - freeze-

resistant plants (Garstka et al., 2007). 

The stress caused by low temperature can generate two levels of damage: freezing stress, which can form extracellular 

ice crystals; and chilling stress, which does not form ice crystals (Taiz & Zeiger, 2013). This sense, many plants can 

acclimatize to low temperatures or freezing by altering their physiological and biochemical functions, through increased levels 

of proteins, sugars, amino acids, accumulation of protein and protective osmolytes, changes in photosynthetic electron 

transport, modifications in the composition of the plasma membrane, inhibition of enzymes, and changes in gene expression, 

among others (Huner et al., 2003).  

According to Taiz & Zeiger (2013), heat stress by cooling causes reduced growth, lesions on the leaves and 

discoloration, vitrified (translucent) foliage, reduction and/or inhibition of photosynthesis, the generation of ROS (reactive 

oxygen species), slower translocation of carbohydrates, inhibition of protein metabolism and reduced respiration (Machado et 

al., 2013), besides causing membrane rigidity, by altering the physical properties of lipids. Stress by freezing forms ice crystals 

http://dx.doi.org/10.33448/rsd-v11i14.35530
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outside and inside the cells, which can physically cut the membranes and organelles, causing cell dehydration since ice can 

reduce the water potential (Taiz & Zeiger, 2013). 

Thus, it has been observed that plants can acclimate to low temperature, changing their physiological and biochemical 

processes to increase tolerance and survival to this condition. According to Chinnusamy et al. (2007), plants from temperate 

regions tend to have greater ability to acclimate to low temperatures, and that among forage grasses, tropical and subtropical 

grasses are more susceptible to damage caused by cooling (Machado et al., 2013). According to Kral & Marocco (2019), 

evaluating five cultivars of summer perennial forage grasses, they observed that Jiggs grass (Cynodon dactylon) has greater 

frost tolerance than Tangola grass (Brachiaria arrecta x Brachiaria mutica), showing greater lesions on the leaf blades as the 

temperature would reduce.  

High temperature stress can result in biochemical and metabolic alterations, with enzyme inactivation in different 

metabolic pathways, reduction of photosynthetic activity in the chloroplast and reduction of oxidative phosphorylation in the 

mitochondria (Araujo et al., 1998); the greatest damage caused by high temperature is observed in the chloroplast and 

mitochondria. This heat shock response is characterized by the induction of a group of specific genes, which encode proteins 

called heat shock proteins (group with HSP), which, in turn, are important for the acquisition of thermotolerance (Diogo 

Junior, 2018). 

The impact caused by high temperatures on complex processes such as photosynthesis and respiration depends on the 

plant genotype and growing conditions (Chaisompongpan et al., 1990). To improve these effects and try to regulate the internal 

temperature, the participation of water is crucial, in virtue of the fact that plants cannot regulate their internal temperature (Taiz 

et al., 2017). In summary, heat stress affects a broad spectrum of physiological processes, and is directly associated with water 

stress.   

 

5. Water 

The green biomass is constituting of 95% of water, considered fundamental in plant composition due to its importance 

for maintaining the functional integrity of biological molecules, cells, tissues and organisms (Chavarria & Santos, 2012). The 

main functions of water in plants are in the constitution of protoplasm and development of turgescence pressure; in growth, it 

participates in cell elongation with the absorption of water; in the transport of substances; and in metabolism, performing the 

dissolution of substances providing H+ and OH- ions. 

The water requirement of the plant is defined according to the metabolism of CO2 fixation. C3-type plants require 

around 550 and 750-g H2O.gMS-1; compared to C4 plants, which require between 250 and 350-g H2O.gMS-1 (Taiz et al., 

2017), these values are considered a minimum requirement for biomass production to enable the biochemical processes 

essential to plants (Lehninger, 2006).  

Water participates in several metabolic processes, for example, in the hydrolysis of starch into soluble sugars, mainly 

during the night, and in the regulation of stomatal opening and closing, enabling CO2 absorption (Chavarria & Santos, 2012). 

Furthermore, it is involved in the maintenance of cell turgidity, as well as in the movement and absorption of nutrients for 

plants through the mass flow process (Taiz & Zeiger, 2009). According to Marenco & Lopes (2005), for the cell to be 

physiologically active, about 80% to 95% of water must be present in its constitution. About 95% of the water absorbed by the 

roots is lost by transpiration, and the rest acts providing the biochemical and metabolic reactions for plant growth (Taiz et al., 

2017), thus, the distribution and proportion of the roots is essential to meet the water demand in the plant (Chavarria & Santos, 

2012).  

 

5.1 Water Stress 
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Water shortage directly affects basic metabolism, such as photosynthesis, respiration, definition of organ shape and 

structure, opening and closing of stomata, penetration of the root system into the soil, cell growth and expansion (Santos et al., 

2014), as well as the uptake of nutrients from the soil (Freire et al., 2012).  The implications of these effects on the plant vary 

according to the duration and intensity of stress (Araujo Filho & Carvalho, 1997) and the cultivated species (Araújo et al., 

2019), and these may develop mechanisms of tolerance and adaptation to such conditions (Silva et al., 2011).  

According to Subbarao et al. (1995), the mechanisms of adaptation and/or resistance to water deficiency are divided 

into three types: escape or escape mechanism, avoidance or delay and tolerance. In the escape or escape mechanism, plants 

modify their phenological development due to their phenotypic plasticity, completing their life cycle to avoid the damage 

caused by stress (Wu et al., 2010). 

In avoidance or retardation, plants reduce their development, in the sense of less root expansion, reduction in leaf cell 

expansion, and change in leaf area (Haffani et al., 2014). Regarding tolerance mechanisms, these allow the plant to maintain its 

metabolism, even under the influence of stress, rearranging some metabolic processes, such as osmotic adjustment and changes 

in tissue elasticity. According to Taiz & Zeiger (2009), tolerance is the ability of the plant to develop favorable mechanisms for 

adaptation or acclimatization, with variations between species and in the way stress affects the plant. 

Stomatal closure is admittedly the fastest response observed in the plant, to immediately reduce water loss by 

transpiration. This loss is caused by the pressure gradient formed between the leaves and the atmosphere, and the soil water 

availability (Araújo Junior et al., 2019), considered an instantaneous response process between the soil-plant-atmosphere 

system, its control is performed by the guard cells (Lawlor & Cornic, 2002). This response can also be stimulated when leaves 

or roots show signs of dehydration (Calvacante et al., 2009), controlling transpiration to maintain maximum CO2 uptake. 

Abscisic acid (ABA) is also involved in the opening and closing of stomata, where the guard cells perceive in advance 

the water shortage in the mesophyll without any reduction in its turgidity, stimulating the closure of stomata (Lima et al., 

2007). When there is a slight desiccation of the soil, an increase in ABA concentration is observed in the xylem, probably 

produced in the meristem under the root coppice, inducing the leaf to stomatal closure and reduction of leaf expansion, 

therefore, the perception of the lack of water is due to the response sensitivity of the root mediated by ABA, which closes their 

stomata (Pimentel et al., 2016). 

Low water availability affects the development of root biomass, a functional balance between water uptake by the 

roots and photosynthesis by the aboveground part of the plant is what determines the volume of root biomass. Water stress 

reduces the allocation of photoassimilates from leaf and stem biomass and increases in roots, altering the share of assimilates 

in roots and aboveground (Mc Michael & Quisemberry, 1993), therefore, an adaptive mechanism to water deficit is the 

production of roots at greater depths in the soil to gain greater access to soil moisture (Taiz et al., 2017). 

Among the physiological changes that water deficit cause in plants, the first to be affected is photosynthesis (Pinheiro 

& Chaves, 2011), through the reduction of the carbon assimilation rate due to stomatal limitation, with increased stomatal 

resistance to water outflow and CO2 ingress; and non-stomatal, which includes pigment degradation, photosystem inactivation, 

and reduced activity of Calvin cycle enzymes (Ashraf & Harris, 2013), reducing plant productivity.  

Another factor that contributes to stomatal closure under conditions of low water availability is the reduction in 

stomatal conductance. This is an alternative defense of the plant that uses water more efficiently under water deficit conditions 

(Arcoverde et al., 2011). According to Perez (1995), the control of osmotic adjustment (accumulation of solutes by the cells) in 

plants is to maintain their turgidity even at low water potential values. The process of accumulation of osmotically active 

substances uses amino acids to reduce cell potential, such as proline, for example.  

Proline acts by retaining water inside the cell, therefore, higher levels are observed in the periods of water scarcity 

(Larcher, 2000). this sense, Moreno-Galván et al. (2020) and Mendoza-Labrador et al. (2021), evaluating the performance of 
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Indian grass (Megathyrsus maximus) and Guinea grass, respectively, under water stress, found a greater accumulation of 

proline in plants subjected to stress. 

The water deficit can potentiate the formation of reactive oxygen species (ROS), where the high concentration of ROS 

causes great damage to the cell, which can damage proteins, lipids, carbohydrates, and cause harm to photosynthesis through 

the oxidation of photosynthetic pigments (Taiz et al., 2017), as well as proteins and nucleic acids (Carlin et al., 2012). The 

observation of increased EROS under water restriction conditions occurs due to the decline in CO2 contents, which reduces 

components for Photosystem I, generating reactive species (Pimentel et al., 2016).  

The discoloration of photosynthetic pigments is called photooxidation, which consists of a secondary phenomenon, 

after the reduction of photosynthesis dependent on the occurrence of photoinhibition (Araújo and Deminicis, 2009). Thus, the 

content of pigments in plants under stress is an indication of adaptation, with a higher content of pigments in pioneer grass 

when subjected to water stress. 

Over the years, research has shown that grasses of the Brachiaria genus have greater resistance to low water 

availability than that of the Panicum genus, and these observations are in accordance with the presentation of a higher 

percentage of roots in deeper soil layers, a response mechanism to water stress (Santos et al., 2013). 

 

5.2 Hypoxia or Waterlogging Stress  

The stress by excess water promotes several changes in chemical, physical and biological processes in the soil, 

interfering directly in the growth and development of plants (Piedade et al., 2011). The high amount of water in the soil 

promotes a reduction in oxygen concentration, due to the replacement of air by water in the spaces between the soil structuring 

particles, being a first effect of excess water. 

The flooding of the soil can cause physiological and biochemical disorders in plants. Under these conditions, plants 

are subject to several implications for their development, which can be observed by reducing leaf expansion, cambial growth 

and root growth (Herrera, 2013). Additionally, it can lead to inhibition of seed germination and promotion of early senescence, 

as well as plant death. In waterlogging, the processes of hypoxia (low oxygen availability) or anoxia (absence of oxygen) can 

occur. Anoxia promotes reduced respiration, fermentative metabolism, inadequate Adenosine Triphosphate (ATP) production, 

toxin production by anaerobic microorganisms, reactive oxygen species production, and stomatal closure.  

Regarding hypoxia, this will stimulates the activity of the 1-carboxylic acid-1-aminocyclopropane (ACC) (synthase 

and oxidase) in the root apices, causing acceleration in the production of ACC and ethylene, which will trigger the 

disintegration of cells in the root cortex, provides the formation of aerenchyma (parenchymal tissue with large intercellular 

spaces), which will facilitate the movement of oxygen (Taiz et al., 2017). this sense, the plant performs metabolic and 

morphological modifications to adapt to stress conditions, such as the formation of aerenchyma, lenticels, adventitious roots 

(Lucas et al., 2013; Yin et al., 2010) and growth of new roots, to facilitate gas exchange between plant tissues or between the 

plant and the external environment (Ferreira et al., 2009).  

Research shows that waterlogging affects the specific leaf area (SFA) submitted to total waterlogging (Gonçalves et 

al., 2012), promotes senescence and leaf abscission in plants intolerant to waterlogging, due to increased abscisic acid (ABA) 

production and reduced cytokinin, which also influences stomatal closure (Medri et al., 2012). Stomatal closure is a response 

to reduced photosynthetic rate after waterlogging, directly influences the relative water content in leaves (Coelho et al., 2013). 

The stress directly affects photosynthesis and respiration, that is, the primary carbon metabolism pathways. According 

to Argentia et al. (2010), the increase in carbohydrate content demonstrates the shift from aerobic to anaerobic metabolism, 

significantly affects the availability of energy, demands sugar content to balance the lower production of ATP. Waterlogging 
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promotes a reduction in starch content by inducing the production of enzymes such as alpha-amylase, which hydrolyzes starch 

and provides an increase in total soluble sugars (TSS) (Peralta et al., 1992). 

Under these perspectives, Ramos et al. (2011) evaluated the effect of waterlogging in Brachiaria brizantha and 

Paspalum fasciculatum, in which the contents of total soluble sugars (TSS), total amino acids (AA) and starch increased in B. 

brizantha under stress condition, in relation to P. fasciculatum no changes in these elements were observed, resulting in the 

fact that this grass is more tolerant to waterlogging conditions than B.brizantha. 

Dias-Filho et al. (2018; 2020), evaluated hybrids of Brachiaria decumbens and crosses of B. brizantha x B. 

decumbens x B. ruziziensis and, under excess water in the soil, observed a reduction in the rate of leaf elongation, 

consequently, in the production of dry mass of the aerial part, a decrease in the SPAD (Soil Plant Analysis Development) index 

that correlates with chlorophyll, considering that some genotypes managed to show greater tolerance to waterlogging, 

especially when the of adventitious roots was observed.  

 

6. Soil and Nutrients 

Soil is considered the natural medium for the growth and development of various living organisms, consisting of 

minerals, organic matter, water, oxygen, and carbon dioxide. For plants, it provides the structure for root support and the 

contribution of water, oxygen, and nutrients. Additionally, it affects the development of forage plants by influencing the 

accumulation of minerals in plants, the yield and digestibility of grasses, the resistance of roots to soil penetration and the 

acquisition of essential resources (Pimentel et al., 2016).  

The physical and chemical characteristics of the soil are limiting factors in developing forage grasses. Among the 

physical characteristics of the soil, the resistance of the soil to root penetration causes physical stress. This resistance is found 

to a greater extent in compacted soil, and may inhibit cell elongation and impair root growth (Bengough-Glyn et al., 2006). 

These authors also report that there is a compensatory growth, observing a greater emission of lateral roots, making it an 

alternative adaptation to this stress, however, this change may leave the plant more susceptible to the effects of water 

restriction (Pimentel et al., 2016). Silva et al. (2020) evaluated different soil water pressures (0, -10, -20, -30, -40, and -50 

kPa), found that the higher water pressure in relation to root development of B. brizantha cultivars (Piatã, Paiaguás and 

Braúna), provided greater resources for the production of root biomass, in an attempt to increase access to water, therefore, 

grasses with higher root production tend to better withstand water stress.  

Soil properties such as mineralogy, pH (hydrogen potential), nutrient availability, toxic elements, organic matter and 

salinity elements constitute the soil and affect plant growth. Low nutrient availability combined high soil acidity can limit the 

forage production, especially in tropical regions (Townsend et al., 2012). Nutrient deficiency can be linked to the lack of 

nutrient replenishment or other factors such as drought, waterlogging, and compaction (Pimentel et al., 2016).  

The main macronutrients required by plants are nitrogen (N), phosphorus (P), and potassium (K); due to the 

importance of these nutrients in metabolic processes. According to Taiz et al. (2017), nitrogen is the main constituent of 

chlorophylls, proteins, amino acids, enzymes, among other compounds essential for plant development. Additionally, 

phosphorus participates in the storage of energy and integrates the sugars participating in photosynthesis, and potassium is 

linked to the activity of osmotic regulation of the leaf. 

Research evaluating nutrient supply, such as nitrogen, has observed biomass accumulation at the expense of nitrogen 

fertilizer addition (Lopes et al., 2013; Lopes et al., 2017) in the grazing system, as well as changes in increased leaf emergence 

rate and tillering (Abreu et al., 2020). Nitrogen deficiency can block plant growth because of its implications for vital functions 

such as photosynthesis. 

http://dx.doi.org/10.33448/rsd-v11i14.35530


Research, Society and Development, v. 11, n. 14, e288111435530, 2022 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v11i14.35530 
 

 

11 

According to Gomide (1975), phosphorus is an indispensable nutrient in photosynthesis, besides influencing the 

storage, transport and use of energy in the photosynthesis, its deficiency directly implies the accumulation of biomass. 

Regarding potassium, its deficiency of causes low growth rates, tillering and thinner stem, besides a yellow-orange coloration 

on the leaves (Costa et al., 2004). According to Costa et al. (2016a, 2016b), P and K promote greater accumulation of forage 

mass in plants. 

 

7. Grazing 

Grazing is considered a limiting factor to plant development, since the interest in productive systems based on pasture 

is the balance between animal and plant interest. In this sense, it is necessary to perform grazing management to provide the 

gain and maintain the productive balance. According to Pimentel et al. (2016), grazing affects the relationships in the plant 

community, influences the productivity of grasses, and the production system, so it is necessary to know the aspects that affect 

them. 

Harvesting forage mass by animals is considered an act that causes stress on the plant, and these plants adapt to 

grazing using alterations in physiological and morphological characteristics. According to Gomide et al. (2002), total 

defoliation of the main tiller limit photosynthesis, compromising root growth; however, when harvesting the mass at a 

proportion of 50%, root growth is not intensely impaired.  

Furthermore, they observed a marked reduction in non-structural carbohydrate content as defoliation intensity 

increased in Mombasa grass (Gomide et al., 2002). Lupinacci (2002), observed this same behavior for reserve carbohydrates 

(RC), which, when managed at higher intensity, presented lower accumulation. In this same perspective, Benot et al. (2019) 

observed that carbohydrate concentrations (starch, fructans, sucrose, glucose and fructose) were higher before grazing.   

Several studies have been conducted over the years (Rodrigues & Cadima-Zevallos, 1991; Emerenciano Neto et al., 

2013; Zhang et al., 2018; Benot et al., 2019) to verify the responses of grazing intensity under the pasture community, both in 

temperate and tropical grasses. The way the pasture is harvested by the animals (grazing methods) modifies its structural 

characteristics, consequently, its nutritive value, directly influencing animal consumption and performance. 

Thus, the pasture that is not managed by respecting its morphophysiological characteristics tends to present an inferior 

quality of pasture, than those that are managed by respecting, mainly the height of harvest of the forage mass. Therefore, 

grazing methods (continuous or rotational grazing) directly influence how the plant responds to these types of management, 

that is, the rotational grazing method, respecting the pre-harvest and post-harvest height, tends to minimize the effect of this 

action on the plant, therefore, the grass will have greater conditions to respond positively to regrowth. In this sense, grazing 

goals are elaborated so that the soil-plant-animal system is productive and sustainable (Silva et al., 2015). 

 

8. Final Considerations 

Water, temperature, radiation, soil and nutrients are factors that affect plant development and that may cause 

limitations under stress conditions. The responses of plants to stress caused by these factors vary according to their intensity, 

interfering with the physiological, morphological, and structural conditions. The alterations in the photosynthesis will depend 

on which factor is acting, and the plants may then respond by the mechanism of escape, tolerance, or adaptation.   

In forage grasses, changes in behavior are observed at several levels, such as reduced carbon assimilation rate and 

increased chlorophyll content when subjected to shade; stomatal closure and lower root production when subjected to water 

stress and low soil humidity; formation of aerenchyma and adventitious roots in the case of flooded environments. Thus, 

forage plants can remodel their morpho-physiological characteristics, changing their structural features, directly implying the 
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management of grazing. Therefore, to manage pasture and grazing in an efficient and sustainable way, it is necessary to 

understand how plants are influenced by abiotic factors, which are linked to their development and how they behave in stress 

situations, so that the management is carried out in a more assertive and productive way.  
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