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Abstract 

Modernization is present in all fields of knowledge. The wavelet transform and the Hurst exponent are tools that have 

fundamental importance in many of these advances. In the present study, the wavelet decomposition technique was 

combined with the Hurst exponent calculation to analyze X-ray images of seeds and thus classify them as full, slightly 

damaged or damaged. To calculate the Hurst exponent the mean and median were used as measurements of position. 

A support vector machine was used to validate the proposed method. For the full, damaged and slightly damaged seed 

groups, the average accuracy of the method, using the mean as measure position, was 74.5%, and using the median 

was 57.05%. For the full and damaged seed groups, the average accuracy using the mean was 99.76%, and using the 

median was 80.93%. For the slightly damaged and damaged seed groups, the average accuracy, using the mean as 

measure of position, was 99.26%, and the median was 76.22%. When analyzing seeds with slight damage, we 

observed a decrease in accuracy because the classification of the X-rays was subjective. Therefore, for the image 

database used in this study, the proposed methodology is efficient for automatic classification. 

Keywords: Autossimilarity; Image classification; Wavelets. 

 

Resumo  

A modernização está presente em todos os campos do conhecimento. Técnicas mais sofisticadas e aparelhos mais 

modernos têm surgido com frequência. A decomposição em ondaletas é uma ferramenta que tem fundamental 

importância em muitos desses avanços. No que se refere à análise de imagens, essa ferramenta tem cooperado para 

criação de diversas novas técnicas, seja para reconstrução, compressão, eliminação de ruído, dentre outros. Outra 

ferramenta que auxilia na análise de imagens é o expoente de Hurst, que mede o quão autossimilar uma imagem é, de 

forma que se capte informação sobre características da imagem que a olho nu não seria possível. Com isso, o objetivo 

deste trabalho será combinar a técnica de decomposição em ondaletas com o cálculo do expoente de Hurst para 

analisar imagens de sementes e assim classificá-las em cheias, levemente danificadas ou danificadas. No cálculo do 

expoente de Hurst serão usadas como medidas de localização a média e a mediana. Um suport vector machine foi 

usado para validação do método proposto. Para o grupo de todas as sementes a acurácia média do método, utilizando a 

média, foi de 74,5% e, para a mediana foi de 57,05%. Utilizando o grupo de sementes cheias e danificadas a taxa 

média de acurácia, com a média como medida de posição, foi de 99,76% e, com a mediana foi de 80,93%. No grupo 

contendo sementes levemente danificadas e danificadas a taxa média de acurácia, usando a média como medida de 

posição, foi de 99,26% e, com a mediana foi de 76,22%. 

Palavras-chave: Autossimilaridade; Classificação de imagens; Ondaletas. 

 

Resumen  

La modernización está presente en todos los campos del conocimiento. Técnicas más sofisticadas y aparatos más 

modernos están surgiendo constantemente. La descomposición en ondiculas es una herramienta que tiene una 

importancia fundamental en muchos de estos avances. En lo que se refiere al análisis de imágenes, esta herramienta ha 

contribuido para creación de nuevas técnicas diferentes, como para la reconstrucción, comprensión y eliminación de 

ruidos, entre otros. Otra herramienta que auxilia en el análisis de imágenes es el exponente de Hurst, que mide cuanto 
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tiene de auto-similitud una imagen, de forma que se capte información sobre las características de la imagen que a 

simple vista no seria posible. Con ello, el objetivo de este trabajo será combinar la técnica de descomposición en 

ondiculas con el cálculo del exponente de Hurst para analizar imágenes de semillas y así poder clasificarlas en llenas, 

levemente dañadas o dañadas. En el cálculo del exponente de Hurst serán usadas como medida de localización la 

media y la mediana. Un modelo de Máquinas de Vectores de Soporte será usado para la validación del método 

propuesto. Para el grupo de todas las semillas la precisión media del método, utilizando la media, fue de 74,5% y, con 

la mediana fue de 57,05%. Utilizando el grupo de semillas llenas y dañadas, la tasa media de precisión, con la media 

como medida de posición, fue de 99,76% y, con la mediana fue de 80,93%. En el grupo que contiene semillas 

levemente dañadas y dañadas la tasa media de precisión, usando la media como medida de posición, fue de 99,26% y, 

con la mediana fue de 76,22%. 

Palabras clave: Auto-similitud; Clasificación de imágenes; Ondiculas. 

 

1. Introduction 

Technological advances are increasing worldwide in different areas of knowledge. In Brazil, agriculture is an area 

undergoing constant research and technological advancement. One important agricultural activity is the production of grains, 

especially sunflowers (Helianthus annuus L.). This crop has expanded and consolidates as an economically viable crop 

because of its resistance to drought, pests and diseases, in addition to other factors. Among annual crops, sunflowers are 

responsible for 16% of the world’s edible oil production and are the third largest crop in the world production of edible oil 

(EMBRAPA, 2018). To improve the quality of final products that have sunflowers as a raw material, the best grains for 

planting are selected. Among the various tools used for this purpose, wavelets and machine learning algorithms have gained 

prominence. The use of these tools allows analyzing the images of the seeds, without destroy them in the process of evaluating 

the quality of the produced lots. This generates enormous speed in the production process of these grains. The objective of this 

study was to use the non-decimated discrete wavelet transform together with the Hurst directional exponent to extract 

characteristics of X-ray images of seeds and classify them (as full, slightly damaged or damaged) with the aid of a machine 

learning algorithm. Two statistics were used to calculate the Hurst exponent as location measures: the mean and median. 

The accuracy of these two methods was compared. Because this method is noninvasive, it avoids the destruction of 

seed samples for the quantification of sowing quality and increases the range of analysis options. Thus, we expect to reduce the 

time necessary for seed classification and selection and improve the overall method. 

 

2. Methodology 

The analysis of wavelets has led to substantial increases in scientific knowledge in recent years. This technique allows 

the decomposition of a function, 𝑓(𝑡), in a linear combination of other functions, called wavelets and scale functions. Some 

references on the subject are Daubechies (1992); Mallat (1989); Burger and Burge (2016), Morettin (2014); Goswami (2011); 

Nason (2008), Souza, et al. (2022), among others. 

The wavelet functions, 𝜓, are defined in the integrable square function space, i.e.,∫ |𝜓(𝑡)|2𝑑𝑡 < ∞
∞

−∞
. Another 

property that the wavelets share is ∫ 𝜓(𝑡) 𝑑𝑡 = 0
∞

−∞
. From the wavelet 𝜓, which is called the mother wavelet, other wavelets 

can be generated by expansion and translation. Then, for 𝑎, 𝑏 ∈ ℝ, 𝑎 ≠ 0, there are 

𝜓𝑎,𝑏(𝑡) = |𝑎|−1 2⁄ 𝜓 (
𝑡−𝑏

𝑎
). 

For the discrete case, we have 𝑗, 𝑘 ∈ ℤ and 𝜓𝑗,𝑘(𝑡) = 2𝑗 2⁄ 𝜓(2𝑗𝑡 − 𝑘). Decomposition allows the analysis of the 

function 𝑓(𝑡) in various levels of detail, such that 

𝑓(𝑡) = ∑ 𝑐𝑗0,𝑘𝜑𝑗0,𝑘(𝑡) + ∑ ∑ 𝑑𝑗,𝑘𝜓𝑗,𝑘(𝑡)𝑘
∞
𝑗=0

∞
𝑘=−∞ . (1) 

In expression (1), the coefficients 𝑐𝑗0,𝑘 are called scaling coefficients, and the coefficients 𝑑𝑗,𝑘 are called detail 

coefficients (Nason, 2008). This decomposition is the discrete wavelet transform of function 𝑓(𝑡). This technique has led to 
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major advances in the analysis of images and signal processing. Wavelet analysis has been an alternative to Fourier analysis 

because of its flexible nature, by preserving local, no periodic and multiscale phenomena (Rodrigues, 2015). A large number of 

studies have used discrete wavelet transforms to analyze images. Ramirez-Cobo and Vidakovic (2013) presented a wavelet 

transform for the two-dimensional case. According to the authors, the two-dimensional wavelet bases are constructed by the 

translation and dilation of products of univariate wavelets and scale functions. They are defined by 

𝜑(𝑡1, 𝑡2) = 𝜑(𝑡1)𝜑(𝑡2), 

𝜓ℎ(𝑡1, 𝑡2) = 𝜑(𝑡1)𝜓(𝑡2), 

𝜓𝑣(𝑡1, 𝑡2) = 𝜓(𝑡1)𝜑(𝑡2), 

𝜓𝑑(𝑡1, 𝑡2) = 𝜓(𝑡1)𝜓(𝑡2), 

in which ℎ, 𝑣 and 𝑑 symbolize the horizontal, vertical and diagonal directions, respectively. Therefore, considering the 

elements of the wavelet bases, we have 

𝜑𝑗,𝒌(𝒕) = 22𝑗𝜑(2𝑗𝑡1 − 𝑘1, 2𝑗𝑡2 − 𝑘2), 

𝜓𝑗,𝒌
𝑖 (𝒕) = 22𝑗𝜓𝑖(2𝑗𝑡1 − 𝑘1, 2𝑗𝑡2 − 𝑘2), 

for 𝑖 = ℎ, 𝑣, 𝑑, wherein 𝒕 = (𝑡1, 𝑡2) ∈ ℝ2, and 𝒌 = (𝑘1, 𝑘2) ∈ ℤ2. Considering the image X as a function in 𝐿2(ℝ2), X can be 

represented as 

𝑋(𝒕) = ∑ 𝑐𝑗0,𝒌
𝜑𝑗0,𝒌

(𝒕)𝒌 + ∑ ∑ ∑ 𝑑𝑗,𝒌𝜓𝑗,𝒌
𝑖

𝑖 (𝒕)𝒌𝑗≥𝑗0
 . 

 The nondecimated wavelet transform (NDWT) is a popular version of the wavelet transform because it has many 

advantages in its application, including that it maintains the same number of coefficients at all levels of detail. For the NDWT, 

there are 

𝜑𝑗,𝒌(𝒕) = 22𝑗𝜑(2𝑗(𝑡1 − 𝑘)1, 2𝑗(𝑡2 − 𝑘2)), 

𝜓𝑗,𝒌
𝑖 (𝒕) = 22𝑗𝜓𝑖(2𝑗(𝑡1 − 𝑘1), 2𝑗(𝑡2 − 𝑘2)). 

In many of these studies, the Hurst exponent is used as a key measure for decision making. The Hurst exponent was 

created in 1951 by Harold Edwin Hurst in order to study temporal data series of rainfall, temperature, and river levels. For 

example, suppose that there is a river that drains into a reservoir of infinite capacity, and an annual amount must be released to 

meet the seasonal needs of the plantations. Next, consider a period of 𝑁 years and that the amount released annually is the 

mean volume that the river flowed into the reservoir during that period. In this context, Hurst found a linear relationship 

between the log (𝑅
𝜎⁄ ) and 𝑙𝑜𝑔(𝑁), where 𝑅 is the absolute sum between the maximum accumulated stock and the maximum 

deficit in the period 𝑁, and σ is the standard deviation of annual discharges. Hurst defined his coefficient as the slope of the 

linear regression line between these 2 variables (Hurst, 1956). 

There are several ways to calculate the Hurst exponent (Feng & Vidakovic, 2017; Lyashenko, et al. 2016; Silva, et al., 

2021), one of which is to use the energy spectrum of the wavelet transform. In this study, the spectrum was calculated in two 

ways. First, the logarithm of the mean of the squares of the detail coefficients was obtained by means of the discrete wavelet 

transform (Nicolis, et al., 2011). Considering a fractional Brownian field, the wavelet coefficients are given by 

𝑑𝑗,𝒌
𝑖 = 2𝑗 ∫ 𝐵𝐻(𝒖)𝜓𝑖(2𝑗𝒖 − 𝒌)𝑑𝒖, 

in which the domain of the integral is ℝ2. These coefficients are random variables with zero mean and variance given by 

𝐸 [|𝑑𝑗,𝒌
𝑖 |

2
] = 22𝑗 ∫ ∫ 𝜓𝑖(2𝑗𝒖 − 𝒌)𝜓𝑖(2𝑗𝒗 − 𝒌)𝐸[𝐵𝐻(𝒖)𝐵𝐻(𝒗)]𝑑𝒖𝑑𝒗,(2) 

(Nicolis, et al., 2011). From (2), the following can be derived 

𝐸 [|𝑑𝑗,𝒌
𝑖 |

2
] =

𝜎𝐻
2

2
𝑉𝜓𝑖2−(2𝐻+2)𝑗, (3) 
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where 𝑉𝜓𝑖 = − ∬ 𝜓𝑖 (𝒑 + 𝒒)𝜓𝑖(𝒒)|𝒑|2𝐻𝑑𝒑𝑑𝒒. Applying the logarithm in base 2 on both sides of expression (3) results in the 

following equation: 

𝑙𝑜𝑔2𝐸 [|𝑑𝑗,𝒌
𝑖 |

2
] = −(2𝐻 + 2)𝑗 + 𝐶𝑖, (4) 

where 𝐶𝑖 =
𝜎𝐻

2

2
𝑉𝜓𝑖(𝐻)(Nicolis, et al., 2011). Equation (4) was used to calculate the Hurst exponent (𝐻) in each direction. 

For the second method, the median logarithm of the square of the detail coefficients was used (Kang & Vidakovic, 

2017). The median was a more robust alternative to possible outliers that could arise after the logarithmic transformation of the 

squares of the coefficients. 

The Hurst exponent can be used as a measure of self-similarity along the scales of image decomposition. This 

decomposition was followed by a simulation of the data using the machine learning algorithm support vector machine to 

validate the proposed methods. Some references on machine learning techniques are Fernández-Delgado et al. (2014); Faceli, 

et al., (2017), Mello, et al., (2018), among others.  

The data used in this study were X-ray images of sunflower seeds (H.annuus L.) captured at the Laboratory of Seed 

Analysis of the Department of Agriculture, Federal University of Lavras (Universidade Federal de Lavras). The samples of the 

sunflower seeds, cultivar Hélio-250, were produced in Uberlândia, state of Minas Gerais, from the harvest of 2010/2011. The 

images were analyzed by a seed specialist, and the seeds were separated into 3 categories: full, slightly damaged and damaged. 

A total of 175 images of full seeds, 130 images of slightly damaged seeds and 140 images of damaged seeds were considered. 

In Figure 1, an X-ray sheet is used for analysis and classification. 

 

Figure 1 – Example of X-ray sheet used for classification of seeds as full, slightly damaged and damaged. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Authors (2022). 

 

Because the images had different sizes, we decided to work with subimages, which allows for the observation of the 

"same part" of all images, namely, a 64 x 64 pixel matrix. This cut was performed automatically using a function in the R 

software. Figure 2 shows the described procedure.  
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Figure 2 – Representation as the nucleus each image was extracted for decomposition. 

 

 

 

 

 

 

 

 

 

 

Source: Authors (2022). 

 

Wavelet decomposition was initially used in all images. The wavelet coefficients were obtained through the non-

decimated discrete wavelet transform using the function proposed by Daubechies (1992). Nicolis, et al. (2011) studied several 

wavelet families, including Daubechies, and concluded that the differences between the parametric values were not significant, 

except for the Haar basis. We chose to work with Daubechies using 4 null moments and 4 levels of decomposition. 

Subsequently, the wavelet spectrum S(𝑗), using the mean and the median as measures of location, which is defined as the 

ordinate presented, is  

(𝑗, 𝑙𝑜𝑔2|𝑑𝑗,𝒌
𝑖 |

2̅̅ ̅̅ ̅̅ ̅̅
), 𝑖 = ℎ, 𝑑, 𝑣,         (2.1) 

where |𝑑𝑗,𝒌
𝑖 |

2̅̅ ̅̅ ̅̅ ̅̅
is the mean of the squares of the detail coefficients in the scale 𝑗 and  

(𝑗, 𝑚𝑒𝑑𝑖𝑎𝑛 (𝑙𝑜𝑔2|𝑑𝑗,𝒌
𝑖 |

2
)), 𝑖 = ℎ, 𝑑, 𝑣,            (2.2) 

where ℎ, 𝑣 and 𝑑 arethe horizontal, vertical and diagonal directions, respectively.  

A linear regression was fitted to the ordered pairs using the ordinary least squares in (2.1) and (2.2). Considering 𝛼 as 

the regression slope, the Hurst exponents are given by  

 

𝐻 = −
𝛼+2 

2
 and 𝐻 = −

α

2𝑙𝑜𝑔2
− 1.        (2.3) 

 

The objective of the decomposition was to verify the Hurst directional exponent characteristics for the different types 

of seeds. These exponents then formed a set of data for training and set of data for validation with a machine learning 

algorithm. More specifically, we used support vector machine with the linear core function. Others core functions were tested, 

e.g., Gaussian, but the best result was found with the linear core. For both the training and validation sets, the decompositions 

were used in the horizontal, vertical and diagonal direction of each image. Decomposition was performed using the waveslim 

package (Whitcher, 2015) from the R software. Four groups were considered in this analysis: all seeds, full and slightly 

damaged seeds, full and damaged seeds, and slightly damaged and damaged seeds.  

For each seed group, a random selection of 75% of the seeds was performed for the algorithm training. The remaining 

25% were used to verify the learning, or accuracy, of the algorithm by constructing a confusion matrix. This procedure was 

repeated 1000 times in each seed group. Other ratios for training and validation were tested, but the ratio that provided the best 
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result was 75% and 25%, respectively. The R software packages that were used in this simulation were caTools (Tuszynski, 

2014) e1071 (Meyer, et al., 2017) and the caret (Kuhn, 2017).  

 

3. Results and Discussion 

First, we present descriptive statistics of the Hurst exponents obtained with the wavelet decomposition for the mean 

and median as location measurements. Subsequently, the results from a thousand simulations are presented, with the objective 

of validating the proposed method. The results of the simulations are presented for each group, namely, all seeds, full and 

damaged seeds, slightly damaged and damaged seeds, and full and slightly damaged seeds. 

Figure 3 shows the distribution of the Hurst coefficient, with the mean (a) and median (b) as measures of location in 

the horizontal, vertical and diagonal directions. Each subfigure contains the empirical distribution for the full, slightly damaged 

and damaged seeds. Regarding the mean value, the full and slightly damaged seed distributions overlapped in all cases. 

However, there was an increase in the variability of the exponent values in the diagonal decomposition of the slightly damaged 

seeds, resulting in a flattening of the distribution curve. We also observed a slight shift to the right in the mean value of the 

Hurst coefficients for the slightly damaged seeds group. The distribution of the damaged seed exponents was quite different 

from the distributions of the other seeds in the 3 directions. We found a considerable shift to the right in the mean of the Hurst 

coefficients of the damaged seeds. This technique is effective in extracting characteristics from each type of image. We also 

observed that most Hurst exponent values for all seeds were negative. This result may be related to the data from Jeon, et al. 

(2014), which indicated a correlation in the residuals. 

The replacement of the mean with the median changed the results, albeit less than expected. Figure 3 (b) shows plots 

of the sample distribution of the Hurst coefficients in the 3 directions. The mean to median substitution caused an "overlap" in 

the empirical directional distribution of the coefficients for all seeds. In the horizontal direction, however, this overlap was 

smaller due to a gradual displacement to the right of the mean of the slightly damaged and damaged seed distributions, 

respectively. In general, there was a shift to the right in the distribution of the coefficients for all types of seeds, indicating a 

decrease in the correlation of residues, as shown by Jeon, et al. (2014). 

The simulation showed that the mean rate of correct classification in the full and damaged seed groups was 99.76%, 

using the mean as a measure of location. This rate was 80.93% when the median was used. For this group of seeds, we found a 

clear increase in the classification power when the mean was used rather than the median. In addition, the correct classification 

rate when using the mean was much higher than the rates found in the methodology proposed by Sáfadi, et al. (2016). In the 

present study, the authors observed 64% accuracy using slopes s1 and s2 and 82% accuracy using slopes s1, s2, s3 and s4. We 

found that the rate was slightly lower than the results from Sáfadi, et al. (2016) for the 4 inclinations when the median was 

used as a measure of location. It is notable that for this group of seeds, 813 simulations of 1000 were made correctly. 
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Figure 3 - Empirical distributions of Hurst’s exponent in horizontal, vertical and diagonal directions using the mean and the median as measures of localization. 

Source: Authors (2022). 
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Table 1 presents the confusion averaging matrices for the 1000 simulations. 

 

Table 1 – Mean confounding in 1000 simulations for full seeds (f) and damaged (d), using the mean and 

the median as measures of localization. 

  Classified as  Classified as  

  f d Total c d Total 

Real classification 

f 43.79 0.00 43.79 37.05 6.81 43.86 

d 0.19 35.02 35.21 8.26 26.89 35.15 

Total 43.98 35.02 79 45.31 33.70 79 

  (a) Mean  (b) Median  

Source: Authors (2022). 

 

In Table 1, the elements of the main diagonal represent the mean number of correct 

classifications. The other elements represent the mean number of classification errors (confusion). We 

observed almost no confusion in the classification of images using the mean as a measure of location. A 

mean of 0.19 damaged seeds were classified as full seeds by the proposed method. Using the median as a 

localization measure, there was confusion both for full seeds that were classified as damaged and for 

damaged seeds that were classified as full. Averages of 8.26 damaged seeds were classified as full and 

6.81 full seeds were classified as damaged. 

The results were similar for the slightly damaged and damaged seed groups. Considering the 

mean as a measure of location, the mean accuracy was 99.26%, and with the median the accuracy was 

76.22%. Using the 4 slopes for this seed group, Sáfadi, et al. (2016) found an accuracy rate of 63%. In 

this study, both the mean and median provided better results, although using the mean resulted in a 

considerably better outcome than using the median. 

Table 2 presents the confusion averaging matrices for the 1000 simulations. 

 

Table 2 – Mean confounding in 1000 simulations for damaged(d) and slightly damaged seeds (sli. dam.), 

using the mean and the median as measures of localization. 

  Classified as  Classified as  

  d sli. dam. Total d sli. dam. Total 

Real classification 

d 35.10 0.03 35.13 26.38 8.90 35.28 

sli. dam. 0.47 32.40 32.87 7.27 25.45 32,72 

Total 35.57 32.43 68 33,65 34.35 68 

  (a) Mean  (b) Median  

Source: Authors (2022). 

 

The behavior of the group composed of the full and damaged seeds was maintained. There was 

little confusion in classification when the mean was used. An average of, 0.47 slightly damaged seeds 

were classified as full, and 0.03 damaged seeds were classified as slightly damaged. Using the median as 

a measure of location, these values were 7.27 and 8.90, respectively. 

http://dx.doi.org/10.33448/rsd-v11i14.36211
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When the group of full and slightly damaged seeds was considered, there was a considerable 

decrease in the accuracy when either the mean or the median was used. When the mean was used as a 

measure of location, the mean rate of accuracy was 63.09%, and with the median the accuracy was 

58.28%. This rate is much lower than that observed by Sáfadi, et al. (2016), who obtained a rate of 89%. 

It is important to note the subjectivity and difficulty in characterizing seeds as full and slightly damaged, 

as they are very similar groups (Leite, et al., 2013). Interestingly, the method used by Sáfadi, et al. (2016) 

was superior in detecting such differences. 

Table 3 presents the matrices of confounding means for the 1000 simulations for the full and 

slightly damaged seed group. 

 

Table 3 – Mean confounding in 1000 simulations for full (f) and slightly damaged (sli. dam.) seeds, using 

the mean and the median as measures of localization. 

  Classified as  Classified as  

  f sli. dam. Total f sli. dam. Total 

Real classification 

f 41.39 2.99 44.38 38.13 6.01 44.14 

sli. dam. 25.43 7.19 32.62 26.11 6.75 32.86 

Total 66.82 10.18 77 64.24 12.76 77 

  (a) Mean  (b) Median  

Source: Authors (2022). 

 

We observed (Table 3) considerable confusion in the classification of slightly damaged seeds 

that were considered full seeds. Using the mean as a measure of localization, we found a mean of 25.43 

slightly damaged seeds that were classified incorrectly. When the median was used as a localization 

measure, the mean was 26.11. 

For the group of all seeds, the mean rate of correct classification, using the mean as a measure of 

location, was 74.15%. When the median was used, this rate was 57.05%. We found increased accuracy of 

the classification algorithm when the mean was used instead of the median. The rate when using the 

median was similar to that observed by Sáfadi, et al. (2016), which was 57%. For the group of all seeds, 

we can compare our results with the work of Leite, et al. (2013). These authors, using independent 

components, achieved a rate of approximately 80% accuracy in seed classification. According to the 

variation in the number of independent components, this rate varied slightly. However, the authors did not 

use a simulation process to estimate the mean accuracy rate, which complicates the comparison between 

the methodology proposed in this study and that used in Leite, et al. (2013). 

In Table 4, the mean confounding matrices are presented for the 1000 simulations for the group 

of all seeds. Again, we observed confusion in the classification of slightly damaged seeds. We found a 

mean of 25.58 slightly damaged seeds that were classified as full when the mean was used as the 

localization measurement. Using the median as a localization measure, this number was 24.36. In the 

same seed group, 80.1% were classified incorrectly using the mean. Using the median, the classification 

error percentage was 95%. This high confounding rate is a result of the overlapping distributions of the 

http://dx.doi.org/10.33448/rsd-v11i14.36211
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Hurst coefficients for the group of slightly damaged and full seeds in the 3 directions of decomposition 

(Figure 3). 

 

Table 4 – Mean confounding for all the seeds in 1000 simulations, by considering the mean and the 

median as measures of localization. 

  Classified as  

  f d sli. dam. Total 

Real classification 

f 41.56 0.00 2.68 44.24 

d 0.17 35.01 0.03 35.21 

sli. dam. 25.58 0.49 6.48 32.55 

 Total 67.31 35.5 9.19 112 

  (a) Mean  

  Classified as  

  f d sli. dam. Total 

Real classification 

f 36.53 5.66 1.71 43.9 

d 7.29 25.82 2,07 35.18 

sli. dam. 24.36 7.01 1.55 32.92 

 Total 68.18 38.49 5.33 112 

  (b) Median  

f: full; d: damaged and sli. dam.: slightly damaged. Source: Authors (2022). 

 

4. Conclusion 

The use of the Hurst exponent in combination with the non-decimated wavelet transform was 

efficient for seed classification. The use of the mean as a localization measurement in the calculation of 

the Hurst exponent produced a superior result compared to the median for the considered set of images. 

The technique proposed in this study presented good results in most scenarios. The subjective difficulty in 

distinguishing between full and slightly damaged seeds was reflected in the proposed method, which 

exhibited reduced accuracy when this group of seeds was considered. 
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