Use of Cannabis and Alcohol by patients diagnosed with trauma in a Health Emergency Unit

Uso de Cannabis e Álcool por pacientes com diagnóstico de trauma em uma Unidade de Emergência de Saúde

Consumo de Cannabis y Alcohol por parte de pacientes diagnosticados de trauma en una Unidad de Emergencia

Abstract

There are few data on the association of physical trauma and consumption of psychoactive substances. **Objective:** To investigate the use of marijuana and alcohol by trauma victims becomes important to subsidize prevention actions. **Methods:** 299 willingly given samples from individuals hospitalized in the years 2015–2017 due to trauma associated to the use of drugs of abuse were analyzed; the individuals were considered user of drugs of abuse either due to medical diagnosis or to self-reporting. Biological samples from the patients were first trialed for Cannabis; confirmation of cannabis use was performed via gas chromatography-mass spectrometry. Alcoholaeemia was also investigated. **Results:** Males made up the majority of the assessed subjects (91.4%), their average age being 40 years. The major causes for trauma included traffic accidents (46.82%) followed by violence/aggression (26.77%).
Toxicological trialing for cannabis resulted in 14.72% positive samples and alcohol aemia varied between 9.38 to 17.85%. Conclusion: The abusive use of Cannabis is a risk factor for accidents and violence leading to traumatic injuries. The age range between the second and fourth decade of life and the automotive steering were relevant predictors for the use of Cannabis. Epidemiological studies provide important information to support preventive measures, considering the scarcity of studies on this theme.

Keywords: Cannabis; Injuries; Accidents; Violence.

1. Introduction

The abuse of drugs is both a health and social issue in Brazil, which negatively impacts society and families and leads to acts of violence by the users and to their hospitalization due to traumas and intoxications, overbearing the Unified Health System (Sistema Único de Saúde in Portuguese, Brazilian major public health government organization, abbreviated as SUS). Such problems demand attention (Chitas et al., 2014).

In Brazil, traffic accidents and violence are the major external causes for trauma, morbidity and mortality (Mascarenhas & Barros, 2015). Data from The National Road Safety Observatory state that 400 thousand people become victims of traffic accidents every year in Brazil – 47 thousand of them leading to deaths – and a great deal of financial resources designated for public health end up used for rehabilitation of individuals injured due to such traffic accidents. Also, the majority of these victims are often at work age, which leads to even more negative impact to society as a whole (Falconi, 2017).

Cannabis is the most consumed drug in the world. In Brazil, even though illegal, such scenario is not different. Data from reports published by the Research Unit on Alcohol and Drugs (UNIAD) state that cannabis is the illegal substance most...
consumed in Brazil; 5.8% of the adult population report having used cannabis at least once in life and 2.5% report having used cannabis at least once in 2012 (Laranjeira et al., 2012). Consumption of Cannabis is associated with physical and psychological alterations that become risk factors for the occurrence of traumas (Abreu et al., 2016).

Toxicological analyses involve trialing and confirmation techniques, one of the major ones being gas chromatography coupled to mass spectrometry (GC/MS) (Moreau & Siqueira, 2016). They are fundamental for detection of psychoactive substances when individuals are being tended at urgency and emergency levels, and also provide epidemiological data which can be used for better monitoring of the consumption of drugs in Brazil, considering the scarcity of studies on this theme.

The aim of this study was to investigate the consumption of Cannabis and alcohol by patients hospitalized in an emergency health unit who have been hospitalized due to trauma using trialing and confirmation techniques.

2. Methodology

The present research is a retrospective epidemiological study involving toxicological analyses. This study is part of a larger project named “Epidemiologic monitoring of intoxications caused by drugs of abuse: investigation of sentinel events via epidemiological, clinical and laboratorial criteria” – Research Program for the Unified Health System: Shared Management in Health, which was approved by the Ethics Committee for Research on Humans of the State University of Maringá (COPEP/UEM), n° 458.185.

This is a retrospective transversal cohort study, with a qualitative and quantitative approach. This study followed the methodological recommendations described by Severino et al (2018). Results were obtained from secondary data and toxicological analyzes.

2.1 Studied population

The studied population was selected based on convenience sampling, as subjects were chosen according to sentinel events reports obtained via epidemiological monitoring programs (Rutstein et al., 1976). Sentinel events considered valid for the study amounted to “individuals diagnosed with trauma in association (or possibly associated) with intoxication due to abuse of drugs”, hospitalized” in an urgency and emergency health unit at the University Hospital of Maringá (HUM).

The studied population comprised individuals of both genders aged older than 18 that have been diagnosed with trauma in association with use of drugs that have been hospitalized in the University Hospital of Maringá from 2015 to 2017. The cases were notified to the local Centre for Control of Intoxications (CCI/HUM), either spontaneously or via active monitoring which is carried out daily at the urgency/emergency units of the hospital.

2.2 Source of data

Information on the hospitalized patients was used as the major source of data, which included the Report on Toxicological Event involving ethanol and/or other drugs of abuse (OT/IA) from the CCI/HUM alongside patient information sheets.

The variables preditoras associated with individual characteristics, circumstances of the accidents and conditions of post-accident hospitalization were compiled in electronic datasheets using Microsoft Office Excel 10.0.

2.3 Statistical Analysis

Data were analyzed using Stata version 9.0® (Stata Corporation, College Station, TX, USA). The chi-square test was used assuming statistical significance when p<0.05 for univariate analysis. Odds/ratio (OR) and Confidence Interval (CI) were
used for univariate analysis and for logistic regression. Only variables of p values < 0.20 were considered for logistic regression analysis. The predictor variables were adjusted for the final analyses.

2.4 Laboratorial investigation

Biological samples obtained from the assessed subjects were used for toxicological trialing of cannabis and alcoholaemia. Collection of samples was carried out by trained technicians of the Laboratory of Clinical Analyses of the University Hospital of Maringá. Urine for analysis of cannabis was obtained via spontaneous urination, which was then placed in sterile collection flasks. Blood samples for analysis of alcoholaemia were obtained via venous puncture and assessed for ethanol using a Vitros Analyzer 250 (Johnson & Johnson Company®).

Toxicological analyses for assessment of alcoholaemia, trialing and confirmation of cannabis were performed at the Laboratory of Toxicology of the State University of Maringá. Trialing for cannabis was carried out via immunochromatography in urine for qualitative assessment of drugs (RapidTox, AmericaBiomedica®), according to manufacturer specifications. Urine samples of positive result during trialing for cannabis were further analyzed for confirmation using a GC/MS apparatus DSQ II, with a gas chromatography column HP-5MS and injector Triplus AS (Thermo Scientific®).

3. Results

In the period ranging from 2015 to 2017, the emergency unit of the University Hospital of Maringá tended to 299 cases of trauma. There were 96, 91 and 112 cases in the years of 2015, 2016 and 2017, respectively. For all 299 trauma victims quick tests were performed for cannabis trialing, and 44 samples were positive for cannabis. Further confirmation analyses were performed via GC-MS; two samples (one collected in 2015, and the other in 2016) were not confirmed positive when analyzed via GS/MS. Patient data are show in Table 1.
Males made up the majority of individuals hospitalized (91.97%). Most of the subjects were aged under 46 (58.19%). The majority of the patients reported having had formal education for less than 8 years (51.17%). A significant percentage of the patients (23.41%) did not report the educational level, then it was not possible to include this variable in the statistical analyzes. As for patient origin, most reported being from the city of Maringá (68.23%), and most remained hospitalized for more than 24h in the University Hospital of Maringá (87.96%). The main reason for hospitalization was trauma due to accidents (67.56%), including falls and traffic accidents, followed by violence/aggression (28.56%). Of the 299 patients assessed, 42 (14.05%) of them were positive for cannabis and blood samples from 37 (12.37%) of them were positive for alcohol.

Table 2 shows the univariate analysis. There was no significant difference in cannabis use between males and females (p = 0.820) and patient origin (p = 0.631). However, the use of cannabis presented statistical significance for age, hospitalization time and event. As for alcohol, no variable in any analysis led to any kind of significant result.
<table>
<thead>
<tr>
<th>Predictor variable</th>
<th>Cannabis</th>
<th>Univariate analysis</th>
<th>Alcoholaemia > 10mg/dL</th>
<th>Univariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive n (%)</td>
<td>Negative n (%)</td>
<td>OR (95% IC)</td>
<td>p-value</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masculino</td>
<td>39(92.86)</td>
<td>236(91.83)</td>
<td>1.16 (0.33-4.06)</td>
<td>0.820</td>
</tr>
<tr>
<td>Feminino</td>
<td>3(7.14)</td>
<td>21(8.17)</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-25</td>
<td>14(33.33)</td>
<td>45(17.51)</td>
<td>4.01(1.58-10.20)</td>
<td>0.002</td>
</tr>
<tr>
<td>26-45</td>
<td>19(45.24)</td>
<td>96(37.35)</td>
<td>2.55(1.09-5.96)</td>
<td>0.025</td>
</tr>
<tr>
<td>>46</td>
<td>9(21.43)</td>
<td>116(45.14)</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Origin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maringá</td>
<td>30(14.71)</td>
<td>174(85.29)</td>
<td>1.19 (0.58-2.45)</td>
<td>0.631</td>
</tr>
<tr>
<td>Outskirts</td>
<td>12(12.63)</td>
<td>83(87.37)</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Time hospitalized</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24h</td>
<td>9(21.43)</td>
<td>27(10.51)</td>
<td>2.32(1.00-5.41)</td>
<td>0.044</td>
</tr>
<tr>
<td>More than 24h</td>
<td>33(78.57)</td>
<td>230(89.49)</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>Event</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accident</td>
<td>21(51.22)</td>
<td>181(73.88)</td>
<td>2.69 (1.35-5.35)</td>
<td>0.003</td>
</tr>
<tr>
<td>Violence/Aggression</td>
<td>20(48.78)</td>
<td>64(26.12)</td>
<td>Reference</td>
<td></td>
</tr>
</tbody>
</table>

Note: Significant OR in bold letters. OR = Odds Ratio; CI = Confidence Interval. Source: Authors.
The variables with statistical significance in the chi-square test were accompanied by confirmation of the adjusted model for logistic regression (Table 3).

Table 3 - Logistic regression analysis of cannabis use by patients hospitalized due to trauma in the HUM from 2015 to 2017, Maringá-PR.

<table>
<thead>
<tr>
<th>Event</th>
<th>Cannabis</th>
<th>Multivariate analysis*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td>Incident (n(/))</td>
<td>n(%)</td>
<td>n(%)</td>
</tr>
<tr>
<td>Accidents</td>
<td>21(51.22)</td>
<td>181(73.88)</td>
</tr>
<tr>
<td>Violence/Aggression</td>
<td>20(48.78)</td>
<td>64(26.12)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13-25</td>
<td>14(33.33)</td>
<td>45(17.51)</td>
</tr>
<tr>
<td>26-45</td>
<td>19(45.24)</td>
<td>96(37.35)</td>
</tr>
<tr>
<td>>46</td>
<td>9(21.43)</td>
<td>116(45.14)</td>
</tr>
<tr>
<td>Time hospitalized</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24h</td>
<td>9(21.43)</td>
<td>27(10.51)</td>
</tr>
<tr>
<td>>24h</td>
<td>33(78.57)</td>
<td>230(89.49)</td>
</tr>
</tbody>
</table>

*Adjusted by event, age and time of hospitalization. OR = Odds Ratio; CI = Confidence Interval. Source: Authors.

The analysis confirmed that individuals in adulthood (26-45 years) are 1.9 times more likely to use cannabis (OR 2.98, 95%, CI: 1.16-7.71) when compared to other age groups. Regarding the type of trauma, patients who used cannabis were 1.1 times more likely to be hospitalized due to trauma caused by accidents (OR 2.16, 95% CI 1.07-4.35) and were more likely to remain hospitalized for less than 24 hours (OR 2.21 95% CI: 1.08-5.52).

4. Discussion

Physical trauma and use of psychoactive substances are two common health issues in Brazil which affect individuals at work age, harming them at both social and professional levels (Ibiapino et al., 2017; Mascarenhas & Barros, 2015). Males are usually more prone to the abuse of illicit drugs than females and are thus also more likely to be hospitalized in emergency units due to overdose or trauma (Tice, 2017), as also seen in the present study. Males are also more likely to become addicted to illicit drugs or ethanol than females, and such is linked to the fact males are more easily and more often exposed to drugs than females (UNODC, 2018).

A sociodemographic study carried out in Brazil has demonstrated there is a correlation between education level and use of psychoactive substances, the prevalence of use of drugs being higher among individuals with less than 8 years of formal education (Abreu et al., 2016), similarly to what is reported in the present study, suggesting more time of formal education is a protective factor which prevents the use of drugs. We believe the more information one individual has access to, including formal education in schools and universities, the better the comprehension of the harmful effects caused by use of such substances leading to a lifestyle aimed at preserving health and quality of life, avoiding the use of drugs.

In Brazil, most hospitalizations due to external causes involve young adults at productive age (Mascarenhas & Barros, 2015; Ribeiro et al., 2014), reducing the power of the national workforce and burdening health care systems.

A study on causes of hospitalizations in emergency units in Brazil reported a prevalence of 69.6% of hospitalizations caused by falls and/or traffic accidents (Ibiapino et al., 2017), results very similar to the data described in our study, as these events are common causes for hospitalizations.
Other studies carried out outside Brazil involving trauma and use of drugs report the incidence of cannabis use varies from 5.8% to 27% (Bakke et al., 2016; Liakoni et al., 2018), results similar to the ones described in our study. Another study, in Brazil, reported that from samples obtained from 365 fatally injured victims, 14% were positive for cannabis (Andreuccetti et al., 2018).

Traffic accidents remain a great public health issue worldwide. The World Health Organization (WHO) estimates that more than 1.2 million of people die every year due to traffic accident, more than 91% of such deaths taking place in underdeveloped countries (WHO, 2016).

It has been reported that the potency of the cannabis commercialized in the past 2 decades has increased (Pharm et al., 2016), which is another reason for worry, as the effects caused by its use can be potentialized as well even though the same amount of cannabis is consumed.

For alcoholamia, concentrations higher than 10 mg/dL can lead to subtle subclinical effects. Concentrations between 30 and 90 mg/dL can lead to euphoria, reduced attention and reduced ability to critically assess situations. Concentrations between 90 and 180 mg/dL cause excitement accompanied by total loss of the ability to critically assess situations, also decreasing the ability to respond to outer stimuli. Concentrations ranging from 180 to 300 mg/dL lead to mental confusion, disorientation, debility, loss of balance and impaired perception (Marinho & F Passugli, 2013). According to Brazilian law (Federal Law 12.760/2012, article 276), driving under the effects of ethanol at blood concentrations higher than 10 mg/dL leads to legal penalties, and driving under the effects of concentrations higher than 6 dg/mL is considered criminal. It is very well established that driving under the effects of alcohol significantly increases the risks for traffic accidents (Zhao et al., 2015), but little is known regarding the influence of other substances on traffic accidents.

Little is known on the simultaneous effects of ethanol and cannabis, but a recent study has demonstrated that the simultaneous use of both substances can increase THC blood concentrations (Hartman et al., 2015), increasing the effects of the cannabis consumed.

Studies on the effects of driving under the influence of cannabis have demonstrated that subjects driving under such conditions have impaired attention and reflexes, increased reaction times and impaired motor and cognitive abilities (Fornari et al., 2016; Hartman, 2014). Other studies have also evidenced there is a greater risk for traffic accidents due to use of cannabis even when there is no ethanol involved, demonstrating cannabis by itself can compromise the ability of individuals to drive safely, causing traffic accidents (Bondallaz et al., 2017).

In our study, the prevalence of cannabis use was even higher than the prevalence for ethanol use among the assessed patients, evidencing cannabis has become as important and frequent as alcohol as a drug of abuse associated with traumas.

Cannabis is the most prevalent substance found in samples obtained from drivers (Banta-Green, 2016; Logan et al., 2018). Studies involving fatal victims or severely injured individuals have demonstrated cannabis as the illicit drug most often found in samples obtained from such individuals in developed countries; the prevalence varies from 1.3% to 25% (Favretto et al., 2018; Håvard et al., 2018; Valen et al., 2017). These data evidence cannabis has become a substance which poses as much risk as alcohol for drivers. A 7-year survey study carried out in Greece, evidenced that cannabis is prevalent in 46.6% of the victims that tested positive for psychoactive substances and were involved in fatal traffic accidents (Papalimperi et al., 2019).

Data from South American countries, such as Brazil, and from other underdeveloped countries are usually scarce or even non-existent. The use of cannabis while driving has become an important cause for traffic accidents. It is important that more studies on this topic be carried out, so more data can be gathered in order to allow government and health care agencies to better develop public policies aimed at increasing consciousness on use of cannabis and driving.
As for violence, a study on the links between violence/aggression and use of drugs has demonstrated that cannabis is the second most often found drug of abuse in samples from patients which had suffered some sort of violence (Liakoni et al., 2018). There are few studies on the use of cannabis and its links to violent events, but as cannabis impairs cognitive abilities, it is expected that its use can cause individuals to more easily engage in violent behaviors (Liakoni et al., 2018; Schoeler et al., 2016). The use of cannabis can cause panic and paranoia, and abstinence can lead to irritability, anger and violent, explosive behavior (Liakoni et al., 2018; Schoeler et al., 2016). Feelings of fear, “loss of control” and panic can also induce violent behavior (Gibson-Smith et al., 2015; Hammersvik, 2015). The use of cannabis also increases heart rates, making individuals more prone to become agitated and act violently (Daniel et al., 2015; Drug Enforcement Agency, 2014).

5. Conclusions

The toxicological analysis allowed to show that the period between the second and fourth decade of life and the automotive steering were configured as relevant predictors for Cannabis use. Attention should be focused on the relationship between the consumption of psychoactive substances and occurrence of trauma. The data showed that the probable relationship between the variables cannot be ignored, evidencing that the data of the study are relevant in the Brazilian scenario. Such data are important for public health agencies to better develop strategies aimed at preventing use of drugs and protecting the population from its harmful effects.

Health surveillance systems and toxicological testing allow for the establishment of better public health policies aimed at preventing the abuse of alcohol and Cannabis. As a perspective for future work, we intend to implement active methods of epidemiological surveillance, events and sentinel units, that can be used in the formulation of indicators for monitoring care and implementing local public policies.

Acknowledgements

To Decit/SCTIE/MS; CNPq; CAPES; Fundação Araucaria and SESA-PR for the support and funding. To the Poison Control Center of University Hospital of Maringa (CCI/HUM) for cooperation in the active search and to the Laboratory for Clinical Analyses of the University Hospital of Maringa (LAC/HUM) for obtaining and separating patient samples.

References

