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Abstract  

The application of machine learning in geophysics has steeply increased in the last decade, with the quality of its results 

varying according to the type of seismic problem in focus and the employed computational method. Deep Learning 

methods are achieving impressive results in this area, but we note that there is still a lack of certainty on whether classical 

machine learning methods can provide similar results. In the present paper, the objective was to attempt to fill part of 

that gap, by comparing a well-known non-DL machine-learning method with a DL method for the direct wave 

propagation and the seismic inversion problems for 2D horizontally-layered models. Both methods are evaluated in 

different scenarios, but under similar conditions, so that it is possible to understand the effect of parameter configuration 

on their final results. The dataset has 20,000 samples, each consisting of three vectors: a velocity vector with 236 values 

(representing a vertical profile of a randomly generated 2D layered model), a reflective vector with 600 values obtained 

directly from the velocity vector, and the associated seismogram vector with 11 traces, each containing 600 values. The 

overall results show that the WaveNet produces a lower Mean Squared Error between predicted and correct outputs 

than that of XGBoost. One challenge yet not dealt with is that the WaveNet can train well in GPU, but we did not 

succeed in doing the same with the XGBoost, due to the amount of data to be processed.  

Keywords: WaveNet; XGBoost; Inversion; Seismic.  

 

Resumo  

A aplicação de aprendizado de máquina em geofísica aumentou vertiginosamente na última década, com a qualidade de 

seus resultados variando de acordo com o tipo de problema sísmico em foco e o método computacional empregado. Os 

métodos de aprendizagem profunda estão alcançando resultados impressionantes nesta área, mas notamos que ainda há 

uma falta de certeza sobre se os métodos clássicos de aprendizagem de máquina podem fornecer resultados semelhantes. 

No presente artigo, o objetivo foi tentar preencher parte dessa lacuna, comparando um método bem conhecido de 

aprendizado de máquina não DL com um método DL para a propagação direta de ondas e os problemas de inversão 

sísmica para modelos 2D em camadas horizontais. Ambos os métodos são avaliados em cenários diferentes, mas sob 

condições semelhantes, para que seja possível compreender o efeito da configuração dos parâmetros nos seus resultados 

finais. O conjunto de dados tem 20.000 amostras, cada uma consistindo em três vetores: um vetor de velocidade com 

236 valores (representando um perfil vertical de um modelo em camadas 2D gerado aleatoriamente), um vetor reflexivo 
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com 600 valores obtidos diretamente do vetor de velocidade e o vetor associado sismograma com 11 traços contendo 

600 valores cada. Os resultados gerais mostram que o WaveNet atinge um MSE inferior entre os resultados previstos e 

corretos do que os resultados do XGBoost. Um desafio ainda não enfrentado é que o WaveNet consegue treinar bem 

em GPU, mas não conseguiu fazer o mesmo com o XGBoost, devido à quantidade de dados a serem processados.  

Palavras-chave: WaveNet; XGBoost; Inversão; Sísmico. 

 

Resumen  

La aplicación del aprendizaje automático en geofísica ha aumentado drásticamente en la última década, y la calidad de 

sus resultados varía según el tipo de problema sísmico en cuestión y el método computacional empleado. Los métodos 

de aprendizaje profundo están logrando resultados impresionantes en esta área, pero observamos que todavía no hay 

certeza sobre si los métodos clásicos de aprendizaje automático podrían proporcionar resultados similares. En el 

presente artículo, el objetivo era intentar llenar parte de ese vacío, comparando un método de aprendizaje automático 

no DL bien conocido con un método DL para la propagación directa de ondas y los problemas de inversión sísmica para 

modelos 2D de capas horizontales. Ambos métodos se evalúan en escenarios diferentes, pero bajo condiciones similares, 

de modo que es posible comprender el efecto de la configuración de parámetros en sus resultados finales. El conjunto 

de datos tiene 20.000 muestras, cada una de las cuales consta de tres vectores: un vector de velocidad con 236 valores 

(que representa un perfil vertical de un modelo en capas 2D generado aleatoriamente), un vector reflectante con 600 

valores obtenidos directamente del vector de velocidad y el vector de velocidad asociado. Vector de sismograma con 

11 trazas que contienen 600 valores cada una. Los resultados generales muestran que WaveNet alcanza un MSE más 

bajo entre las salidas previstas y correctas que el resultado de XGBoost. Un desafío aún no abordado es que WaveNet 

puede entrenarse bien en GPU, pero no logró hacer lo mismo con XGBoost, debido a la cantidad de datos a procesar. 

Palabras clave: WaveNet; XGBoost; Inversión; Sísmico. 

 

1. Introduction  

During the last five years, the number of scientific publications using Deep Learning methods (DL) in geophysics has 

steeply increased. Among the geophysics problems investigated, the simulation of wave propagation and the seismic inversion 

have the highest demand of computational resources (Krebs et al., 2009; She et al., 2019). Therefore, they have received greater 

attention from the Deep Learning community and are the focus of the current paper. In general, the scientific works in this field 

can be grouped according to the dimension of the geological model being used (2D or 3D) and the type of DL method employed.  

Regarding the nature of the data, 3D velocity/density models with complex geological features express well the earth 

structure in practical cases. Nevertheless, due to the large amount of computation resources to deal with such models, 2D models 

have often been employed in academia. 2D models allow the theoretical validation of new concepts and methods, which can 

later be extended to more complex problems. In fact, even very simple geological structures are commonly employed in 

geophysics studies with Deep Learning, including layered models. Wu et al. (2018) used horizontally-layered models having a 

geological fault for studying the application of a convolutional neural network (CNN) for the inversion problem. Junior et al. 

(2019) applied a Physics-Informed Neural Network (PINN) to solve the elastic wave equation in a three-layered velocity model 

for the estimation of petroelastic properties. Moseley et al. (2020) studied the wave propagation and inversion problems with a 

WaveNet network and an auto-encode network design for both plain horizontally-layered models and similar models that have 

a geological fault. 

Despite the impressive results obtained by the use of DL in this area, there is still a lack of certainty on whether or not 

classical machine learning methods (not based on deep learning) can provide similar results. The advantages of using classical 

ML methods are many: they are more widely available in libraries for several programming languages; they have less 

configuration parameters and are, therefore, easier to tune; their strengths and weaknesses are more well-known; and there are 

more advanced machine-learning explainable strategies for them.  

In the present paper, we attempt to fill part of that gap, by comparing a well known non-DL machine-learning method 

with a DL method for the direct wave propagation and the seismic inversion problems for 2D horizontally-layered models. The 

chosen standard machine learning method is XGBoost. The DL method is the WaveNet algorithm employed by Moseley et al. 

(2020), which consists of one of the most recent investigations into that type of model. Both methods, WaveNet and XGBoost,  
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are evaluated in different scenarios, but in similar conditions, so that it is possible to establish the effect of parameter 

configurations on the training time and the quality of their outcome.  

The remainder of this paper is organized as follows: Section 1 provides a background about the WaveNet and XGBoost 

methods and discusses their use in order to solve a given seismic problem. Section 2 presents the approaches with experimental 

setups for comparing both methods, including the description of the employed dataset. Section 3 provides our results and 

discussions. Finally, Section 4 carries out the conclusion about the work. 

 

1.1 Machine Learning Methods 

1.1.1 WaveNet 

WaveNet was introduced by Oord et al. (2016) as a deep neural network for generating raw audio waveforms. It was 

based on the PixelICNN architecture and was originally applied to the generation of raw speech signals and music, and to audio 

recognition. 

Given that a seismic wave is similar to a sound wave, it is intuitive to think of using WaveNets for the processing of 

seismic data. Moseley et al. (2020) explored this idea by proposing the application of a WaveNet for learning the wave 

propagation process and also the seismic inversion, focused on 2D models with simple horizontal layers. The authors trained the 

WaveNet on a data set consisting of 50,000 randomly generated cases. Each case had a velocity profile of 256 points (that, when 

expanded, would represent a 200 x 256 velocity matrix) and a seismogram with eleven traces (11 receivers x 600 time steps). 

The seismograms were generated by calculating a 2nd-order acoustic Finite Difference (FD) modeling with CPML attenuation 

at the borders. Before usage, the velocity profiles were converted to their corresponding reflectivity signals (with the same 

dimension of the traces, i.e, 600 data points for each seismogram trace). 

The WaveNet was implemented with a TensorFlow library, for the wave propagation problem, and had 9 convolutional 

layers, 256 hidden channels and a filter size of 3. The input and output data pairs were the reflectivity signals and the seismograms, 

respectively. Moseley et al. used a learning rate of 10-5, a batch size of 20 training examples and 300,000 epochs. The Adam 

stochastic gradient descent algorithm was employed with a L2 misfit function given by 

 

                                                                                                                                                (1) 

 

where Ŷ is the simulated seismogram response from the WaveNet, Y is the real seismogram produced by a FD modeling, G is a 

gain function with the fixed form  G(t) = tg, with g = 2.0, t = 1,2,…,600, and N the number of training cases in each batch.  

Moseley et al. (2020) showed that the WaveNet was capable of reconstructing the seismogram for a set of 1,000 unseen 

randomly-generated cases, achieving high accuracy when compared numerically and visually to a 1D convolutional wave 

propagation model.  

For the inversion problem, the same structure of the WaveNet was used with some minor changes: the layers of the 

network were inverted to reflect the nature of the problem and it had 128 hidden channels instead of 256. The input data and 

output data consisted of the seismogram and the reflectivity signals, respectively. The function to be minimized by the network 

was similar to Equation 1, but was based on the reflectivity signals as shown below: 

                                                                                                                                                              (2) 

where Ȓ is the predicted reflectivity and R is the real one. 
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The authors also reported good results of the WaveNet for the inversion problem when compared to a dilated 

convolutional network. 

 

1.1.2 XGBoost 

Extreme Gradient Boosting (XGBoost) is a machine learning technique based on gradient tree boosting. It was 

developed to work with a second-order Taylor expansion on the loss function, allowing distributed training. XGBoost 

implements various optimisation strategies, which makes it much faster to train and more scalable than previous approaches. 

This is because XGBoost was developed to work with a second-order Taylor expansion on the loss function, allowing distributed 

training, doing faster than its predecessor, as described by Chen and Guestrin (2016) and Zou et al. (2020). It has been 

successfully used in Kaggle competitions for solving different problems.  

Following the notations of Chen and Guestrin (2016), the general optimization problem embedded in XGBoost can be 

described as presented next. 

For a given data set D with n examples and m features, 

 

                                              𝐷 =  {(𝑋𝑖, 𝑦𝑖)} (|𝐷|  =  𝑛, 𝑋𝑖 𝜖 ℝ𝑚, 𝑦𝑖⬚
𝜖  ℝ),                                                    (3)                                                                                                                                           

 

the tree ensemble model can be written as          

                                      ŷ
𝑖

 =  𝜙 (𝑋𝑖 )  =  ∑ ⬚𝑘
𝑘=1 𝑓𝑘  (𝑋𝑖 ), 𝑓𝑘   𝜖 Ƒ,                                                                (4) 

 

 

where k is the quantity additive function to predict the output ŷ
𝑖
, and fk belong to the space of regression trees. To find a solution 

to equation (3), it is necessary to minimize the loss and regularization objectives describe by Mitchell and Frank 2017 as: 

                                                      Obj = ∑ ⬚⬚
𝑖  𝐿 (𝑦𝑖

  , ŷ
𝑖
 ) +  ∑ ⬚⬚

𝑖  𝛺 ( 𝑓𝑘),                                                      (5) 

 

with L the loss function, and Ω a regularization term that measures how complex the tree model is and helps to avoid the 

overfitting problem. The regularization term can be defined as: 

                                                                                                                                               (6) 

In this equation, fk is a tree of the model, γ and λ are configurable regularization coefficients, T is the number of leaf nodes of the 

tree, and w is a vector of weights of the leaves. The first term γT penalizes for adding tree leaf and the second term penalizes 

when the w is extreme. After applying a mathematical transformation describe by Zhang et al. (2019), we obtain a new expression 

for the objective function, that measures the quality of the tree model: 

 

                                                                                                                           (7)                                                                                                                      

 

where gm,i  and hm,i are the first and second derivatives of the objective function.  

 

 

http://dx.doi.org/10.33448/rsd-v13i5.45797


Research, Society and Development, v. 13, n. 5, e7213545797, 2024 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v13i5.45797 
 

 

5 

1.2 XGBoost In Seismic 

XGBoost is a powerful machine learning algorithm that has gained widespread popularity in recent years due to its 

ability to handle large datasets with high accuracy and efficiency. In the seismic area, XGBoost has proven to be an effective 

tool for predicting earthquake occurrences and analyzing seismic data. 

Seismic data can be complex and challenging to analyze due to its high dimensionality and variability. XGBoost is well-

suited to these challenges because it can effectively handle large feature spaces, deal with missing data, and automatically detect 

non-linear relationships between variables. This makes it a suitable tool for identifying patterns and relationships within seismic 

data, enabling researchers to better understand seismic activity and predict future events. 

One of the first reported studies of the use of XGBoost in seismic was described by Priezzhev et al. (2019). The problem 

solved in that study was the improvement of the seismic characterization of a fluvial-deltaic reservoir in the Zapotal field, in the 

Talara basin. Seismic characterization is important for understanding the distribution of fluids in the subsurface and the 

identification of possible hydrocarbon reservoirs, being essential for the exploration and production of oil and gas. The output 

of the study was a better seismic characterization of the fluvial-deltaic reservoir in question.  

 

2. Methodology  

As previously mentioned, our aim is to compare the WaveNet and the XGBoost approaches on two groups of tasks, 

related to direct wave propagation and seismic inversion, using 2D layered models. For carrying out such a comparison, we used 

the dataset1 built by Moseley et al. to test the WaveNet in one of their preliminary works (Moseley et al., 2018). The dataset has 

20,000 samples, produced via a process similar to the one described in Section 2.1. Each sample consists of three vectors: a 

velocity vector with 236 values (representing a vertical profile of a randomly-generated 2D layered model), a reflective vector 

with 600 values directly obtained from the velocity vector, and the associated seismogram vector with 11 traces containing 600 

values each. Due to the simple horizontal-layered structure assumed, only one profile in depth is sufficient to represent a velocity 

model. 

For the present research, we split the dataset into a set for training with the first 18,000 samples, and a set for testing 

with the remaining 2,000 samples. A further separation of the training samples was performed in order to support the calibration 

of the XGBoost, as explained later. The seismograms were amplified by applying the gain function G (mentioned in Equation 1) 

on every trace, as a preprocessing phase.  

 

Figure 1 - Flowchart detailing the input, output, and metrics data in the machine learning methods used. 

 

1 The dataset is available at https://github.com/benmoseley/seismic-simulation-wavenet. Source: Authors (2024). 
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For the direct wave propagation tasks, we followed the framework shown in Figure 1. Firstly, a machine learning model 

(ML) is trained using the reflectivity data (computed from the velocity data) and the related seismic traces from the training 

samples. Then, the trained model runs. It inputs the reflectivity data from the test set and outputs predicted seismic traces. Finally, 

the Mean Squared Error (MSE) between the predicted seismograms and the test (correct) seismograms are computed. The output 

consists of MSE measures (minimum, maximum, mean and standard deviation of the MSE calculated on the 2,000 test samples), 

that, combined with the required time for training, represents the performance of the machine learning method.  

The ML method could be either a WaveNet or a XGBoost. For the first option, we adopted the WaveNet with the same 

parameters specified by Moseley et al. (2018) and briefly described in Section 1.1.1. When choosing the XGBoost, we explored 

and then fixed three parameters: the number of estimators (number of trees), the maximum depth of the trees and the learning 

rate. 

Another difference between the methods is that the WaveNet outputs multiple values, while the XGBoost regressor 

generates just one value at a time. Therefore, we have to embed the XGBoost in a MultiOutput Regressor approach, which fits 

one regressor per target, in order to produce results with the correct dimension1. 

The data flow for running seismic inversion tasks was similar to that used for direct wave propagation. The main 

difference consisted in swapping the inputs and outputs of the ML method. In addition, the internal parameters of the WaveNet 

for inversion had minor changes, as previously explained. The XGBoost was also set up with the proper parameters tuned for 

inversion tasks. 

All codes were implemented in Python v3.7 and set up for exploiting parallelism when running the machine learning 

methods. The WaveNet was configured to run on a GPU NVidia Tesla K40, installed on a machine with 2x CPU Intel Xeon(R) 

Ten-Core E5-2650 v3 of 2.3 GHz, totalizing 20 visible cores, 25 MB of cache and 128 GB of DDR4 2133 DIMM RAM. We 

also tested a standard GPU implementation of the XGBoost from the Python repository, but it did not work well on that machine, 

halting with “segmentation fault” for some amounts of training cases. Therefore, the XGBoost exploited only multi-core CPU 

parallelism, using a machine with 2x CPU Intel Xeon(R) Sixteen-Core E5-2698 v3 of 2.3 GHz, totalizing 64 visible cores with 

hyperthreads, 40MB of cache and 256 GB of DDR4 2133 DIMM RAM.  

The data flow for running seismic inversion tasks was similar to that used for direct wave propagation. The main 

difference consisted in swapping the inputs and outputs of the ML method. In addition, the internal parameters of the WaveNet 

for inversion had minor changes, as previously explained. The XGBoost was also set up with the proper parameters tuned for 

inversion tasks. 

All codes were implemented in Python v3.7 and set up for exploiting parallelism when running the machine learning 

methods. The WaveNet was configured to run on a GPU NVidia Tesla K40, installed on a machine with 2x CPU Intel Xeon(R)   

Ten-Core E5-2650 v3 of 2.3 GHz, totalizing 20 visible cores, 25 MB of cache and 128 GB of DDR4 2133 DIMM RAM. We 

also tested a standard GPU implementation of the XGBoost from the Python repository, but it did not work well on that machine, 

halting with “segmentation fault” for some amounts of training cases. Therefore, the XGBoost exploited only multi-core CPU 

parallelism, using a machine with 2x CPU Intel Xeon(R) Sixteen-Core E5-2698 v3 of 2.3 GHz, totalizing 64 visible cores with 

hyperthreads, 40MB of cache and 256 GB of DDR4 2133 DIMM RAM.  

 

 

 

 
1 For this project, we performed preliminary experiments with both a MultiOutput Regressor approach and a Regressor Chain approach. The Regressor Chain 

computes predictions in a sequential order using the available original input data extended with the predictions of the earlier models in the chain. Preliminary 

experiments showed that the Regressor Chain is much slower than the MultiOutput Regressor and that it did not provide significant improvements. Therefore, 

we adopted the MultiOutput Regressor as our standard approach. 
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3. Results and Discussion  

3.1 Direct Propagation  

We now describe comparative experiments between the WaveNet and the XGBoost methods for direct wave 

propagation. We start in Section 4.1.1 by analyzing the fine-tuning process of the XGBoost method. Then, the WaveNet and the 

XGBoost are compared in Section 4.1.2 in terms of training time and accuracy (the mean MSE) as the training set increases in 

size. Finally, in Section 4.1.3, we analyze the outputs of the WaveNet and the XGBoost for two test samples.  

 

3.1.1 Parameter Tuning  

In order to tune the XGBoost method, we used the first 3000 samples of the dataset. From them, the first 1000 were 

employed as a training set, and the remainder formed the validation set. We explored different values for the Number of 

Estimators, Learning Rate and Max Depth parameters, as shown in Table 1, consisting of 84 combinations. Each combination 

was evaluated independently and resulted in two metrics: the training time of the XGBoost and the mean of the MSE values for 

the 2000 samples.   

 

Table 1 - Parameters for tuning the XGBoost for the direct wave propagation. 

 Parameters Values 

 Number of Estimators  5, 10, 20, 40 

 Max. Depth  5, 10, 20, 40, 50, 100, 200 

 Learning Rate  0.005, 0.01, 0.05 

Source: Authors (2024). 

 

 

 

Figure 2 shows the effect of the parameters on the metrics, with each dot representing a configuration.  

 

Figure 2 - Parameter tuning of the XGBoost for the forward problem.  

 

(a)                                                                                                (b) 
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(c)                                                                                                (d) 

 

(e)                                                                                                (f) 

Source: Authors (2024). 

 

In Figure 2(a), we can see that the spread of mean MSE values decreases as the Number of Estimators increases. 

However, for all Numbers of Estimators, there are configurations that provide very low mean MSE. In Figure 2(b), we have the 

opposite effect, with the training time (even the lowest ones) increasing with the Number of Estimators. Therefore, reducing the 

Number of Estimators as much as possible may be a better strategy. For the Max Depth parameter, shown in Figure 2(c) and (d), 

it can be seen that it has no much effect on the mean MSE but may affect the Training Time. Configurations with higher Max 

Depth had a larger spread of Training Time.  

Finally, based on Figure 2(e) and (f), we can see that the Learning Rate had some effect on the spread and on the lowest 

value of both the mean MSE and the Training Time. The first Learning Rate (0.001) represents the worst case, while the latest  

(0.5) is associated with a slightly better set of combinations.  

In order to choose a suitable combination, it is necessary to evaluate the trade-off between Training Time and mean 

MSE, which is possible via Figure 3.  
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Figure 3 - Tradeoff between the mean MSE and training time in the forward problem.  

 

Source: Authors (2024). 

 
Figure 3(a) shows all configurations in a single picture. Above 300 seconds of training time, all configurations resulted 

in Mean MSE below 0.03. There were, however, configurations in that range with a much lower mean MSE. They are indicated 

in the red rectangle in the lower-left corner of the chart, and are zoomed in Figure 3(b). We manually selected the configuration 

setup in that figure with the lowest Mean MSE, indicated by an arrow, that has the Number of Estimators equals 20, Max. Depth 

of 5 and Learning Rate equals 0.5. These values were used in the next experiments of the XGBoost for the forward propagation 

problem.  

 

3.1.2 Changes in Training Time and MSE Due to the Training Set Increase 

The effect of increasing the amount of training cases on the behavior of both machine learning methods was evaluated, 

as we can see in Figure 4. 

Figure 4(a) illustrates how the number of training cases affects the MSE. The values are quite low, with a slight 

difference between them, but the WaveNet performed better than the XGBoost in all MSE measures. Furthermore, the WaveNet 

seems to improve its accuracy over time at a higher rate than the XGBoost.  

Figure 4(b) shows the changes in training time in seconds as the number of training cases varied. We recall that the 

WaveNet was run on a GPU, while the XGBoost ran on a multi-core CPU machine. The training time of the WaveNet did not 

change much as the number of the training cases increased (the number of epochs were kept the same). The training time of the 

XGBoost, on the other hand, increased steadily with the number of training cases. This behavior demonstrates that the WaveNet 

will become more efficient to train as the size of the training set keeps increasing. In fact, such turning point can be already 

reached by using more advanced GPU cards, which can significantly reduce the training time of the WaveNet (to less than one 

third of the current time).  

The prediction time of both methods were very low (around 13 seconds for the WaveNet, and between 15 and 16 

seconds for the XGBoost) for the entire 2000 test sample, thus considered negligible at the current work. 
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Figure 4 - The effect of increasing the number of training cases on (a) the Maximum, Mean and Minimum MSE and on (b) the 

training time for the direct propagation. Data from the WaveNet are in orange (lighter color), while the ones for the XGBoost  

are in blue (darker color).  

 

(a)  

 

(b)  

Source: Authors (2024). 

 

3.1.3 Case Analysis 

We now illustrate how the WaveNet and the XGBoost perform when producing good results, by means of the analysis 

of two cases.  

Figure 5, with images (a) and (b), refers to Sample 1289, the one for which the WaveNet produced the best result (lowest 

MSE) among all samples. Figure 5(a) shows the input and the output of the WaveNet, while Figure 5(b) provides the input and 

the output of the XGBoost. The first two drawings on the left-hand side of these images are the velocity profile and its reflective 

data. They are the same for both machine learning methods. The right-hand side of the images contains the seismogram produced 

by the method (by the WaveNet on the top, and by the XGBoost at the bottom) compared against the observed (correct) 

seismogram.  
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Figure 5 - Comparison of the methods for the forward propagation using Sample 1289, the best case for the Wavenet. The 

images are: (a) the input data and the seismogram produced by the WaveNet (MSE=8.03x10-7), and (b) the input and the 

seismogram of the XGBoost (MSE=2.39x10-5). 

 

(a) 

 

(b) 

Source: Authors (2024). 

 

We clearly see that the WaveNet generated a seismogram that most closely matches the observed data. Its MSE is two 

orders of magnitude lower than that of XGBoost. Interestingly, we see that, when the WaveNet misfitted the correct seismogram, 

it did so by overestimating its values. The XGBoost showed the same pattern for the first wave signals, but tended to 

underestimate the remaining data. 

Figure 6 refers to Sample 1911, for which the XGBoost produced the lowest MSE among all test samples. In this case, 

the WaveNet still produced a better result, but its distance in MSE to the XGBoost was much shorter, of only 1.6 times. The 

mismatch patterns between predicted and correct seismograms observed in Figure 5 are also present in Figure 6 for both methods.  
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Figure 6 - Comparison of the methods for the forward propagation using Sample 1911, the best case for the XGBoost. The 

images are: (a) the input data and the seismogram produced by the WaveNet (MSE=2.93x10-6), and (b) the input data and the 

seismogram of the XGBoost (MSE=4.63x10-6). 

 

(a)  

 

 (b) 

Source: Authors (2024). 

 

3.2 Seismic Inversion 

We now compare the WaveNet and the XGBoost methods for the seismic inversion problem, following the same steps 

taken in the previous sections for the direct wave propagation problem. In Section 4.2.1, we describe a parameter tuning study 

of the XGBoost. In Section 4.2.2, we investigate the effect of the size of the training set on the training time and on the MSE for 

both ML methods. In Section 4.2.3, we compare the results of the methods (the outputted reflectivity/velocity profile) for two 

test samples. It is worth noting that, for the inversion problem, the WaveNet also ran on a GPU, and the XGBoost had to be run 

on a multicore CPU machine. However, the XGBoost required more RAM memory, thus using the same multi-CPU machine 

than before but with 512 GB of RAM. 

 

3.2.1 Parameter Tuning 

 In order to select the best parameters for the XGBoost for the inversion problem, we used again the first 3000 case 

samples of the database. The first 1000 of them were separated for training, and the following 2000 ones formed the validation 

set. The main difference between this process and the previous one is that the input and the output data of the XGBoost were 
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swapped here. We also explored parameters for turning the XGBoost, but now with more values, as shown in Table 2, consisting 

of 280 distinct combinations. 

 

Table 2 - Parameters for tuning the XGBoost for the inverse problem. 

 Parameters Values 

 Number of Estimators  50, 100, 150, 200, 250, 300 

 Max. Depth  5, 10, 20, 40, 50, 100, 200 

 Learning Rate  0.005, 0.01, 0.05, 0.1, 0.5 

Source: Authors (2024). 

 

Figure 7 shows the effect of these parameters on the Mean MSE and on the Training Time considering all combinations.  

In Figure 7(a), we can see an overall reduction of the MSE with an increase in the number of estimators. There are, 

nevertheless, combinations that provide low MSE values independently of the number of estimators. In Figure 7(b), we see the 

opposite effect, with training time increasing as the estimator increases. Therefore, choosing a low number of estimators seems 

a reasonable option for both MSE and Training Time. 

Figures 7(c) and (d) show that both MSE and training time are not significantly affected by the maximum depth 

parameter. Regarding the learning rate, Figure 7(e) shows that there is a slight decrease in the MSE as the value of this parameter 

increases. Small values of training time, however, can be achieved at extreme learning rates of 0.005 and 0.5, as demonstrated 

in Figure 7(f). 

Finally, Figure 8(a) shows the relationship between training time and MSE for the studied configurations. We see a 

progressive reduction in MSE as training time increases. However, there are parameter combinations with low MSE and low 

training time, as highlighted in the red rectangle in the picture. Figure 8(b) shows an enlarged image of the highlighted area, with 

a red arrow indicating the chosen configuration. This configuration represents an intermediate option between low MSE and low 

training time, and consists of the following parameters: Number of Estimator equals 50, Max. Depth of 5 and Learning Rate 

equals to 0.5. 

 

Figure 7 - Parameter tuning for the XGBoost in the inversion problem.  

  

(a)                                                                                                (b) 
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(c)                                                                                                (d) 

  

(e)                                                                                                (f) 
Source: Authors (2024). 

 

Figure 8 - Tradeoff between mean MSE and training time in the inversion problem. 

 

Source: Authors (2024). 

 

3.2.2 Changes in Training Time and MSE Due to the Training Set Increase 

Similar to what was done for the forward propagation, we also analyzed the effect of increasing the size of the training 

set (number of training cases) on the mean MSE and on the training time of machine learning models. 

As shown in Figure 9(a), both methods tend to improve their results as the training set grows, but the WaveNet method 

obtained lower minimum, mean and maximum MSE values than XGBoost. The difference between the minimum MSE values 

of WaveNet and XGBoost also varied greatly in the current scenario, showing that XGBoost was not stable in providing lower 

MSE values than the other method. 
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Figure 9(b) is similar to Figure 4(b), with the WaveNet training time being constant and XGBoost training time raising 

as the training set size increases. Nevertheless, a new aspect should be noted: the training time of XGBoost for solving the 

inversion problem is shorter and grows more regularly than that for the direct propagation. We believe this behavior is due to 

the fact that the XGBoost output size is much smaller in the inversion problem (256 points compared to 6600 points in the 

forward problem), thus requiring fewer instances of machine learning models in the MultiOutput Regressor approach  (see 

discussion at the end of Section 3).  

The prediction time for the 2000 test samples of the inversion problem was also very low for both methods (around 13 

seconds for the WaveNet, and between 15 and 16 seconds for the XGBoost), therefore, considered negligible at the current work. 

 

Figure 9 - The effect of increasing the number of training cases on (a) the Maximum, Mean and Minimum MSE and on (b) the 

training time for the inverse problem. Data from the WaveNet are in orange (lighter color), while the ones for the XGBoost are 

in blue (darker color).  

 

(a)  

 

 

(b)  

Source: Authors (2024). 

 

3.2.3 Case Analysis 

As in Section 4.1.3, the WaveNet and the XGBoost are compared again in terms of their outputs in two cases, now for 

the inversion problem.  

Figure 10 refers to Sample 1726, for which the WaveNet produced the best result (lowest MSE). The first image is the 

seismogram, used as input to both WaveNet and XGBoost. The next image on the right shows the reflectivity signals generated 

by the methods and the ground truth reflectivity. The last image on the right-hand side represents the velocity profiles, generated 
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from the reflectivity data. The WaveNet resulted in a reflectivity signal closer to the ground truth (with a lower MSE), although 

the machine learning methods are very familiar in the initial part of the output data. 

 

Figure 10 - Comparison of the machine learning methods for the inverse problem using Sample 1726, the best case for the 

WaveNet. The images are: (a) the input seismogram, (b) the reflectivity signals outputted by the methods (with MSE=7.78x10 -

8, for the WaveNet, and MSE=1.01x10-6, for the XGBoost), and (c) the associated velocity profiles. 

 

Source: Authors (2024). 

 

Figure 11, on the other hand, refers to Sample 365, for which the XGBoost produced the best result among the 2000 

cases. As in the forward propagation, the WaveNet still produces the output with lowest MSE, but the gap between both methods 

are much shorter. 

 

Figure 11 - Comparison of the machine learning methods for the inverse problem using Sample 365, the best case for the 

WaveNet. The images are: (a) the input seismogram, (b) the reflectivity signals outputted by the methods (with MSE=1.43x10 -

7, for the WaveNet, and MSE=3.39x10-7, for the XGBoost), and (c) the associated velocity profiles. 

 

Source: Authors (2024). 

http://dx.doi.org/10.33448/rsd-v13i5.45797


Research, Society and Development, v. 13, n. 5, e7213545797, 2024 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v13i5.45797 
 

 

17 

4. Conclusion  

A comparison between the WaveNet and XGBoost regression methods was performed for both directed propagation 

and seismic inversion using 2D velocity models with horizontal layers. The results showed that the WaveNet method produced 

lower MSE values overall, and that it can be competitive in training time as the training set increases in size. This result is 

important for geologists because it allows them to choose which method is appropriate for the problem at hand. Furthermore, the 

analysis methodology adopted in this article can be used to compare other machine learning methods. 

As future work, we recommend exploring more attributes to investigate possible improvements in Wavenet and 

XGBoost results. For example, reflectivity and velocity data can be concatenated and used together as a single input/output to 

train machine learning models. As a classic method, the XGBoost can benefit from higher-level attributes, which provide more 

descriptive information than standard wave signals. Thus, a compact version of the velocity profile could be used, describing, 

for each layer, its velocity and depth value. Furthermore, given that WaveNet and XGBoost make mistakes in complementary 

aspects, a possible strategy is to combine them in an ensemble model, aiming to improve their results. Finally, studying how to 

efficiently run the XGBoost multiregression on multi-GPU architectures represents a useful contribution. 
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