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Abstract 

Deep learning models have been used to improve seismic trace interpolation in recent years. Encode-Decode models, 

such as U-Net, have been implemented to solve interpolation problems. The success of U-Net in seismic interpolation 

has inspired us to test the U-net also as an image generator for further Generative Adversarial Network (GAN) 

interpolation models. The objective of the present paper is to compare the performance of U-Net inside the GAN models 

for seismic interpolation: the U-Net alone and two GAN models, the conditional GAN (cGAN) and the Cycle Consistent 

GAN (CycleGAN), both using the U-Net as a generator inside their workflow. We test the methodologies for two 

scenarios: regular and irregular interpolation. All tests were performed in a real dataset from the Tupi Field which 

belongs to the Brazilian pre-salt region. A comparison of the statistical metrics shows that cGAN performs better than 

CycleGAN and the U-Net alone in most cases. The computational training time of the cGAN model, for all interpolation 

scenarios, is better than the CycleGAN. Finally, the cGAN training time is comparable to the training of the U-Net 

alone. 

Keywords: Seismic interpolation; U-Net; CGAN; CycleGAN; Comparison; Real data. 

 

Resumo 

Nos últimos anos, modelos de aprendizagem profunda têm sido usados para melhorar a interpolação de traços sísmicos. 

Especialmente, modelos Encode-Decode, como U-Net, foram implementados para resolver problemas de interpolação. 

O sucesso da U-Net na interpolação sísmica nos inspirou a testar a U-net também como um gerador de imagens para 

outros modelos de interpolação de Rede Adversarial Gerativa (GAN). O objetivo deste artigo é comparar o desempenho 

da U-Net dentro dos modelos GAN para interpolação sísmica: o U-Net sozinho, e dois modelos GAN: o GAN 

condicional (cGAN) e o GAN de Ciclo Consistente (CycleGAN), ambos usando o U-Net como gerador dentro de seu 

fluxo de trabalho. Testamos as metodologias para dois cenários: interpolação regular e irregular. Todos os testes foram 

realizados em um conjunto de dados reais do Campo de Tupi, que pertence à região do pré-sal brasileiro. Uma 

comparação das métricas estatísticas mostra que o cGAN tem um desempenho melhor do que o CycleGAN e o U-Net 
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sozinho. O tempo de treinamento computacional do modelo cGAN, para todos os cenários de interpolação, é melhor 

que o CycleGAN. Finalmente, o tempo de treinamento do cGAN é comparável ao treinamento apenas da U-Net. 

Palavras-chave: Interpolação sísmica; U-Net; CGAN; CycleGAN; Comparação; Dados reais. 

 

Resumen  

En los últimos años, los modelos de aprendizaje profundo se han utilizado para mejorar la interpolación de trazas 

sísmicas. Se han implementado modelos de codificación y decodificación, como U-Net, para resolver problemas de 

interpolación. El éxito de U-Net en la interpolación sísmica nos ha inspirado a probar U-Net también como generador 

de imágenes para otros modelos de interpolación de redes generativas adversariales (GAN). En el presente artículo el 

objetivo es comparar el desempeño de U-Net dentro de los modelos GAN para interpolación sísmica.: solo U-Net y dos 

modelos GAN: GAN condicional (cGAN) y GAN de Ciclo Consistente (CycleGAN), ambos utilizando U-Net como 

generador dentro de su flujo de trabajo. Probamos las metodologías para dos escenarios: interpolación regular e 

irregular. Todas las pruebas se realizaron en un conjunto de datos reales del campo Tupi, que pertenece a la región pre-

sal brasileña. Una comparación de las métricas estadísticas muestra que cGAN tiene un mejor rendimiento que 

CycleGAN y U-Net solo. El tiempo de entrenamiento computacional del modelo cGAN, para todos los escenarios de 

interpolación, es mejor que el de CycleGAN. Por último, el tiempo de entrenamiento de cGAN es comparable al 

entrenamiento de solo U-Net.  

Palabras clave: Interpolación sísmica; U-Net; CGAN; CycleGAN; Comparación; Datos reales.  

 

1. Introduction 

The acquisition of seismic data is a complex issue due to various factors, such as limited access to certain geographical 

areas, equipment malfunctions, and environmental conditions. These factors can lead to information gaps in the data, and to 

mitigate this problem, different interpolation methods can be applied (Yilmaz, 2001). Furthermore, seismic data interpolation is 

usually associated with physical or economic constraints (Porsani, 1999). We cite some interpolation methods used in the 

industry: filters, wave equations, transform domains, and low-rank theory. Prediction-filter-based methods involve the 

convolution of seismic data with filters, mainly the f-x domain seismic traces interpolation method (Spitz, 1991). We also cite a 

method for post-stack 3D data using low-rank matrix completion using information from local events and dips to complete 

meaningful structures (Ma, 2013). 

In general, deterministic methods of seismic data interpolation are used in seismic acquisition, given their effectiveness. 

A growing area in geophysics is seismic data interpolation using deep learning (DL) methods, especially with convolutional 

neural networks (CNN). In this study, we work with U-Net, a neural network proposed by (Ronneberger et al. 2015). for medical 

image segmentation. (Fang et al., 2021). used U-Net in seismic interpolation. In addition, generative adversarial network (GAN) 

models were introduced in the context of image recognition (Goodfellow et al, 2014). GAN models can also be used for seismic 

interpolation, as demonstrated by Duo et al, (2023), Chang et al, (2018) and Gonzalez et al, (2023). Several methodologies have 

been developed according to the situation regarding the GAN methodology. For example, the Conditional GAN (cGAN) 

generated images close to a specific target (Mirza, & Osindero, 2014). In the geophysical context, (Oliveira, Ferreira, Silva, & 

Vital Brazil, 2018) used cGAN to develop a seismic interpolation method. Another GAN-oriented model is the CycleGAN (Zhu 

et al., 2017), which proposes a new training model strategy. For the case of insufficient training datasets, (Kaur et al., 2021). 

employed CycleGAN for seismic interpolation. 

All GAN models need a generator of new images and a discriminator to test the quality of the images. Otherwise, the 

U-Net is largely employed as an image generator.  The success of U-Net in seismic interpolation (Fang et al., 2021), has inspired 

us to test the U-net also as an image generator for further GAN interpolation models. In this research, we present a comparison 

among U-Net, cGAN, and CycleGAN for seismic interpolation. To make clear, we compare three methods of seismic 

interpolation: the U-Net alone, and the cGAN and CycleGAN that use the U-Net as a generator inside their workflow. To compare 

the methods, we employ the Tupi field dataset. In our study, we use the U-Net network with a given set of hyperparameters 

together with cGAN and CycleGAN models to understand how the GAN model can improve the capacity of prediction of the 
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U-Net. Furthermore, we present some scenarios for regular and irregular interpolation and image examples to compare the DL 

methods. To quantify the comparison, we tabulate some metrics of pixel error, such as Mean Absolute Error (MAE), Mean 

Square Error (MSE), and signal-to-noise Ratio (SNR). Finally, we also estimate perceptual metrics such as Peak signal-to-noise 

ratio (PSRN) and Structural Similarity Index (SSIM). 

 

1.1 Generative Networks 

Several types of networks are used to make seismic interpolation, such as Generative Networks and the U-Net. In Figure 

1 we show a schematic diagram of the neural network models used in this study. Here, we employ two distinct GAN frameworks, 

namely cGAN and CycleGAN, together with the U-Net as the generator, see Figure 1. To understand this point and the difference 

between U-net and network type GAN, first, it is important to know that GAN is a framework to train a generative model; this 

means that GAN has several components that can be replaced depending on the type of image to generate. In a GAN framework, 

we have a Generator 𝐺-model that creates news images, which, in this case, is the U-Net network. In addition, the GAN workflow 

has a discriminator 𝐷, a classification network that tries to identify real or fake images. During the training step, the 𝐺 and 𝐷 

play a minimax play. 𝐺 creates real images, and 𝐷 identifies the fake images created for 𝐺. The loss GAN function is given for 

equation 1. 

 

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥[𝑙𝑜𝑔𝐷(𝑥)] + 𝐸𝑥      (1) 

 

Where 𝑥 is the target and 𝑧 is the input. With this scheme, the generator produces a real image. Still, if we aim for a 

specific type of real image, such as interpolated data, it is necessary to modify the GAN framework, applying a conditional for 

the output. This configuration is called Conditional GAN (Figure 1c). We can see this variation in the loss function (equation 2)  

 

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥[𝑙𝑜𝑔𝐷(𝑥 ∨ 𝑦)] + 𝐸𝑥    (2) 

 

Where 𝑦 is the conditional or target, therefore, the generator generates new images similar to the target, and the discriminator D 

learns to identify a real target image. 

On the other hand, Cycle GAN (CyleGAN) (Figure 1d) proposed by (Zhu et al, 2020), is a GAN framework that can be 

used when there are not sufficient datasets to train the DL model. This framework uses two generators 𝐺 and 𝐹 and two 

discriminators, 𝐷𝑦 and 𝐷𝑥. The workflow train starts with the Generator 𝐺 to generate an image 𝐺(𝑧 ∨ 𝑦) and then, with the 

output of 𝐺, it is used as the input of generator 𝐹 to get an image 𝐹. The mean idea is to train the 𝐺 to get an image close to 𝑦 

(target) from the input 𝑧, and with the 𝐹, it is to get an image close to 𝑧 (input) from a 𝐺(𝑧 ∨ 𝑦) image. The loss function for 

CycleGAN is defined in equation 3. 

 

𝐿(𝐺, 𝐹, 𝐷𝑥, 𝐷𝑦) = 𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷𝑥) + 𝐿𝑐𝐺𝐴𝑁(𝐹, 𝐷𝑦) + 𝜆𝐿𝑐𝑦𝑐(𝐺, 𝐹)   (3) 

 

Where 𝐿𝑐𝐺𝐴𝑁 is the GAN loss function and 𝐿𝑐𝑦𝑐 is the Cycle consistency loss, induced by the error of each generator to each 

cycle, and 𝜆is the regularized parameter to the Cycle consistency loss. Finally, according to (Zhu et al, 2020), we can have an 

expression (4) similar to GAN and cGAN. 
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 𝐺∗𝐹∗ = 𝑎𝑟𝑔𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝐿(𝐺, 𝐹, 𝐷𝑥 , 𝐷𝑦)    (4) 

 

Where 𝐺 and 𝐹 play the minimax game with 𝐷𝑥 and𝐷𝑦 to try to generate a real image, while each discriminator learns to identify 

real and fake images. 

 

Figure 1 - Diagram of the neural network models used in this study.  

 
Source: Authors (2024). 

 

Figure 1 shows the General diagram of (a) simple U-Net networks and the frameworks: (b) GAN, (c) cGAN, and (d) 

CycleGAN. The U-Net network is a decoder-encoder model and can be used inside GAN models as a Generator. In this research, 

we use U-Net as a generator for the cGAN and CycleGAN.  The cGAN is a variation of GAN with a conditional variable during 

the training by its turn the CycleGAN uses the cGAN in two times in a cycle during the training. 

 

1.2 Error Metrics 

Metrics are a valuable tool for quantifying image reconstruction results. The pixel-wise metrics are based on measuring 

the correspondence between the pixels of the original image and the reconstructed image. The neural network literature typically 

employs the Mean-Squared Error (MSE) or the Mean-Absolute Error (MAE) to measure the quality of an image reconstruction 

(Snell et al, 2017)., but also the Signal Noise Ratio (SNR). The SNR measures the proximity in amplitude between the target 

signal and the recovered signal. On the other hand, we applied perceptual metrics to extract structural information and texture, 

such as Peak Signal to Noise ratio (PSNR), which measures the quality of reconstructed data by comparing it to the original 

(Wang, Bovik, Sheikh, & Simoncelli, 2004a), and SSIM (Structural Similarity Index) which is focused on structural differences 

between two images (Wang, Simoncelli, & Bovik, 2004b).The SSIM rates the similarities between an original/reference image 

and a distorted/compressed image by considering factors such as brightness, contrast, and structure (Wang et al, 2004). 

 

2. Methodology 

The fundamental focus of this research is to compare the U-Net network used alone with the U-Net used as a generator 

inside cGAN and CycleGAN. Using real Tupi field data, the methodologies are tested for seismic interpolation in regular and 

irregular decimations. To achieve our goal, we first built a dataset with several scenarios. We pre-selected the train, validation, 

and test sets to ensure that all DL models employ the same training set. Then, we trained the U-Net, cGAN, and CycleGAN 

models. After training, we applied error metrics to compare the results.  

Section 2.1 describes the field dataset used for this study. In section 2.2, we describe the four scenarios for the regular 

interpolation test and four scenarios for the irregular scenarios test and present some decimated image examples. Section 2.3 

describes the workflow and hyperparameters for training the deep learning models. In section 2.4, we present the error pixel 
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metric and perceptual error metric for each scenario. These initial values will help us to compare the result with the seismic data 

interpolated using U-Net and GAN models.  

For this research, we apply the study case method (Pereira et al., 2018), identifying the capacity of U-Net for seismic 

interpolation, and its enhancement for a GAN model as a Generator. To conduct this study, we evaluate regular and irregular 

interpolation. First, we make four datasets for training each one of the models details in section 2.2; each dataset represents a 

specific scenario; before training the model, we measure the error pixel metric of each scenario with the decimated data. Then, 

we selected the best hyperparameters after a tuning process. With these hyperparameters, we train the U-Net, cGAN, and 

CycleGAN (Section 2.3). The quantity of epoch and the learning rate are the same for the Generators and discriminator with the 

GAN models. This method ensure that all models are trained with the same dataset and parameters. After the training, we measure 

the error metric for each scenario, presented in section 3. To identify the best result, we visually compare real and predicted 

image, in addition we numerically compare the error metrics. Finally, we perform a complete interpolation for all inline sections 

using the cGAN model, which is the model that presented the best error metric and visual results. 

 

2.1 Dataset 

 This research uses post-stack data from the Tupi field in the Santos Basin, 400 km from Sao Paulo, Brazil. Figure 2a 

shows the location and shape of the field (Figure 2b). Tupi is the primary oil and natural gas-producing field in the pre-salt 

reservoir (Boletim Mensal da Produção de Petróleo e Gás Natural, 2020). The geometry of this dataset has a bin size of 25m × 

25m and a depth sample rate of 5m. For this work, we take part in all post-stack sections, obtain 3D cube data composed of 490 

Xline and 430 Inline, and take 800 samples from 2500m depth. Because we are using a 2D U-Net network, we use the 2D image 

for training. Therefore, we employ the Inline section as a dataset to train the DL model. To apply the DL methodology, 80% of 

the Inlines were used for training and 20% for testing. From the 80% training data, 75% was used in the training process, and 

25% for validation. 

 

Figure 2 - Geographic position and survey of Tupi field. (a) The brown rectangle corresponds to the Tupi field. (b) Survey with 

Inline and Xline extremes. 

 

Source: Image extracted from Google earth software (2024). 

 

After splitting the dataset, we defined the Inline section as the target and the decimated Inline section as the input of the 

DL models. The decimated scenarios are defined in the next section. All DL models were trained with the same dataset, it means 

that the training, validation, and test data were selected with a random function just a single time, and then the same data was 

used to train, validate, and test each DL model in this study. 
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2.2 Data Scenarios 

This research compares three different DL structures applied to seismic data interpolation. To ensure that the data is the 

same and make a real comparison, we carefully carried out the scenarios of the decimated data to ensure that the same ones are 

always used with the different DL models. Exploring the capacity of each DL model for post-stack seismic interpolation, we 

prepared two scenarios with regular and irregular decimation. Besides, each scenario presented several fractions of decimated 

traces. These scenarios were created to find which generative network performs best with seismic interpolation using U-Net.  

We performed regular decimation inline by inline to create the regular interpolation scenario. We developed four setups: 

the first with one trace interspersed and decimated, the second with two traces interspersed and decimated, and so on until four 

traces interspersed and decimated. Figure 3 depicts an example of regular decimation. We created four setups for the irregular 

scenario (Figure 4) to test the DL model. In this case, we randomly selected a percentage of traces to decimate: 30%, 40%, 50%, 

and 60%. To clarify, we did not set continuous traces in the scenarios; in some cases, we could have up to 294 traces decimated. 

In total, we created 8 decimated datasets: 4 for regular and 4 for irregular interpolation. 

 

Figure 3 - Example of four scenarios for regular interpolation.  

 

Source: Authors (2024). 

 

In Figure 3, we show the four scenarios of seismic regular interpolation. Figure 3(a) is an example of Inline section with 

1 trace decimated, in Figure 3(b) we have an Inline section with 2 traces decimated, Figure 3(c) is an example of an Inline section 

with 3 traces decimated, and Figure 3(d) an example with 4 traces decimated. We can observe in each scenario the loss 

information, but, in each image, it is also possible to find the geological events. 

 

Figure 4 - Example of irregular interpolation scenarios.  

 

Source: Authors (2024). 
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In Figure 4, we show four scenarios for irregular interpolation, Figure 4(a) is an example of an Inline section with 30% 

of traces decimated, Figure 4 (b) an example of an Inline section with 240% of traces decimated, Figure 4(c) a case of 50% of 

traces decimated and in Figure 4(d) a case of 60% of traces decimated. In this last scenario, it is possible to find sections of 

missed traces higher than in the regular scenarios. This means, that even having a section with valuable information, there are 

sections without any information, making it more difficult to get a correct seismic interpolation.  

 
2.3 Training U-Net, cGAN and CycleGAN 

In this work, we use the U-Net network proposed by (Isola, Zhu, Zhou, & Efros, 2017). with some modifications. We 

fixed the input and output size to 256x256x1 and employed just one channel because the seismic image has only one seismic 

amplitude channel. Moreover, we normalized the input between -1 and 1. The general architecture of the U-Net model consists 

in five down-sample layers and five up-sample layers, with all output layers having a rectified linear (ReLU) activation function. 

However, the last layer has a Tanh activation function to produce an output between -1 and 1, similar to the input amplitude 

range. In our study, this U-Net description was used to perform interpolation and as the Generator in cGAN and CycleGAN 

interpolation frameworks. To train the U-Net network, we used a kernel of 3x3 for the convolutional operations with a stride of 

2 and zero padding, a learning rate of 2x10-4, and trained for 50,000 epochs. All these hyperparameters were used for the 

generator G in the cGAN (Figure 1c) and the generators  G  and  F  (Figure 1d) in CycleGAN. The implementation of 

discriminators for cGAN and CycleGAN is the same as that proposed by (Isola et al, 2017)., which is called PatchGAN. This 

setup ensures that the U-Net has similar conditions during training and ensures that the predictions from U-Net make sense and 

allows a fair comparison between the GAN models. 

 

Figure 5 - General workflow for training and prediction. 

 

Source: Authors (2024). 

 

Figure 5 shows the general workflow implemented for training and prediction. We used the Inline section to train the 

U-Net and the two GAN models. As previously mentioned, we built a decimated dataset scenario. A notable point is the 

difference in size between inline sections and the input of the U-Net. As shown in Figure 5, we split each inline section into 

windows of 256x256 for the training process. Therefore, this process is reversed at the prediction step., We rebuild the predicted 

windows for each inline from the testing dataset with a taper function to get a full interpolated section. The DL models U-Net, 

cGAN, and CycleGAN employ the same dataset to train, validate, and test. The decimation process involves regular and irregular 

decimation. 
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2.4 Metrics for Decimated Data 

For each inline section of the testing dataset, we measured several types of errors grouped into pixel error metrics and 

perceptual metrics. To estimate pixel metrics error we used MAE, MSE, and SNR. We measured the error inline by inline and 

then calculated an average across all inline sections from the test. This process was repeated for each scenario of irregular and 

regular interpolation. For the perceptual metrics, we estimated PSNR and SSIM. This kind of measure provides non-local 

information, which means, it computes the error in pixel and spatial correlations. The process for calculating these metrics was 

the same as for the other metrics: inline by inline on the test dataset, and then we calculated the average for each regular and 

irregular interpolation scenario. Before showing the interpolation result metrics, we can see the result of the measurements carried 

out on the data without interpolating. Table 1 shows the values related to the pixel-wise metrics and Table 2 shows the values 

resulting from the perception metrics. 

 

Table 1 - Pixel error metrics using each regular and irregular interpolation scenario. 

Decimatio

n 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 

 MAE MSE SNR MAE MSE SNR MAE MSE SNR MAE MSE SNR 

Regular 8.46E-03 4.81E-04 3.011 1.13E-02 6.41E-04 1.763 1.27E-02 7.22E-04 1.246 1.35E-02 7.69E-04 0.968 

Irregular 5.06E-03 2.91E-04 5.253 6.77E-03 3.81E-04 4.020 8.36E-03 4.77E-04 3.072 1.03E-02 5.88E-04 2.140 

Source: Authors (2024). 

 

Table 1 shows the error metric of the test dataset for regular and irregular interpolation scenarios, these values help us 

to compare the results. In Table 1 we notice that the MAE and MSE have small values once the difference between decimated 

and target dataset is just in the missed traces, the other traces of decimated data are equal to the target traces, and the SNR values 

are low due to the decimated missed trace being taken as a noise. 

 

Table 2 - Perceptual error metrics using each regular and irregular interpolation scenario. 

Decimatio

n 

Scenario 1  

 

Scenario 2  

 

Scenario 3  

 

Scenario 4  

 

 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Regular 39.63 0.913 38.38 0.868 37.87 0.843 37.59 0.827 

Irregular 41.87 0.949 40.64 0.927 39.69 0.907 38.76 0.879 

Source: Authors (2024). 

 

Table 1 shows the perceptual error metric of the test dataset for regular and irregular interpolation scenario, these values 

will help us to compare the results. In Table 2, we notice that the PSNR values are close to 40db, we expect that after interpolation 

these values increase and the SSIM values should be closer to 1 after interpolation.  

 

3. Results and Discussion 

The results of this research can be divided into two parts: the first part discusses the error metrics for regular 

interpolation and the second part for irregular interpolation. Each section shows illustrative examples for all studied scenarios, 

followed by the error metrics.  
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3.1 Regular Interpolation Results 

Figure 6 shows an illustrative example of the prediction result of the seismic interpolation DL models. The first column 

corresponds to the decimated input image, and the other columns are the prediction results for U-Net, cGAN, and CycleGAN. 

In the first row, we have the scenario with one trace decimated; we can see that all DL models make a satisfactory interpolation. 

However, Table 3 shows that cGAN shows the best metrics result, including perceptual metrics (Table 4). The second scenario, 

which has two decimated traces, only U-Net and cGAN produce valuable images; CycleGAN is not able to recover the missing 

information. In Tables 3 and 4, we can see that the pixel and perceptual metrics corroborate the visual inspection of the images 

in figure 6. For the last scenario with four decimated traces, only cGAN generates a good image. In this case, U-Net generates 

an image with some noise. This means that training U-Net within a framework like cGAN can, in fact, improve the interpolation 

of U-Net. 

 

Table 3 - Metrics for pixel error, and regular interpolation.  

Model Scenairio 1 (1 Decimated trace) Scenario 2 (2 Decimated traces) Scenario 3 (3 Decimated traces) Scenario 4 (4 Decimated traces) 

 MAE MSE SNR MAE MSE SNR MAE MSE SNR MAE MSE SNR 

U-Net 2.47E-03 4.47E-05 13.415 4.59E-03 1.13E-04 9.377 5.95E-03 1.77E-04 7.416 6.98E-03 2.18E-04 6.495 

cGAN 2.97E-03 6.23E-05 11.997 5.06E-03 1.38E-04 8.511 6.34E-03 1.99E-04 6.902 7.91E-03 2.76E-04 5.480 

CycleGA

N 
3.51E-03 8.04E-05 10.885 1.39E-02 7.52E-04 1.081 9.43E-03 3.86E-04 4.032 1.15E-02 6.19E-04 1.976 

Source: Authors (2024). 

 

Table 3 shows the pixel error metric for regular interpolation. The quantity of decimated traces is indicated in the header. 

The rows correspond to U-Net, cGAN, and CyleGAN DL models. If we compare the first row of Table 1 for each scenario, we 

find that the U-Net and cGAN have better metrics, in oppostion to the CycleGAN model. 

 

Table 4 - Perceptual metrics, regular interpolation.  

Model 
Scenario 1 

(1 Decimated trace) 

Scenario 2 

(2 Decimated traces) 

Scenario 3 

(3 Decimated traces) 

Scenario 4 

(4 Decimated traces) 

 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

U-Net 50.03 0.992 46.00 0.981 44.04 0.969 43.11 0.960 

cGAN 48.62 0.990 45.13 0.978 43.52 0.966 42.10 0.953 

CycleGA

N 
47.51 0.987 37.70 0.857 40.65 0.938 38.60 0.901 

Source: Authors (2024). 

 

Table 4 shows the perceptual metric for regular interpolation. The quantity of decimated traces is indicated in the header 

of the table. The rows correspond to U-Net, cGAN, and CyleGAN DL models. When we compare the first row of Table 1, the 

PSNR and SSIM values of U-Net and cGAN are better than CycleGAN, and even we observe that the CycleGAN has values 

similar to the decimated image. 

 

 

 

  

http://dx.doi.org/10.33448/rsd-v13i7.46226


Research, Society and Development, v. 13, n. 7, e1613746226, 2024 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v13i7.46226 
 

 

10 

Figure 6 - Regular Interpolation prediction image for the studied DL models.  

 

Source: Authors (2024). 

 

In Figure 6 column 1 corresponds to the input image (Decimated Inline), column 2 to the prediction from U-Net, column 

3 to the cGAN prediction, and column 4 to the CycleGAN prediction. Each row shows an example of the scenarios with 1, 2, 3, 

and 4 decimated traces. We illustrate a typical window selected from all inline sections. 

 

Figure 7 - Example of cGAN model, an inline section for the regular interpolation scenario. (a) Input image with 4 traces 

decimated. (b) The target Inline section. (c) Predicted image. 

 

Source: Authors (2024). 
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In the following, we show the results corresponding to an illustrative inline section of cGAN interpolation, this DL 

model presents the best results for both regular and irregular decimation. Figure 8 corresponds to an inline interpolation using 

an input with four decimated traces (Figure 7a). Moreover, Figure 7b corresponds to the target image, and Figure 7c to the 

predicted interpolated image. We notice that the predicted image recovers most of the missing traces. 

 

3.2 Irregular Interpolation Results 

The results for irregular scenarios Figure 8 are remarkably like regular scenarios. For 30% of traces decimated, U-Net 

and the GAN models produce reasonable interpolated images. This situation is also verified in Tables 5 and 6, where all metrics 

show similar values. However, the results differ significantly for a scenario of 40% and 50% decimation, especially for the 

CycleGAN model. Visually, U-Net and cGAN present comparable results even for 60% of traces decimated, see Tables 5 and 

6. A comparative analysis of Tables 5 and 6 reveals that U-Net and cGAN results are very close, but cGAN performs better. 

Therefore, for irregular interpolation, similar to regular interpolation, using U-Net as a generator in a cGAN framework improves 

the prediction results for seismic trace interpolation. 

 

Table 5 - Metrics for pixel error, irregular interpolation.  

Model 
Scenario 1 

(30 Decimated traces) 

Scenario 2 

(40 Decimated traces) 

Scenario 3 

(50 Decimated traces) 

Scenario 4 

(60 Decimated traces) 

 MAE MSE SNR MAE MSE SNR MAE MSE SNR MAE MSE SNR 

U-Net 5.02E-03 1.65E-04 7.772 6.34E-03 2.16E-04 6.495 7.38E-03 2.54E-04 5.820 9.68E-03 3.81E-04 4.044 

cGAN 4.74E-03 1.45E-04 8.363 6.05E-03 1.98E-04 6.886 7.82E-03 2.76E-04 5.489 9.72E-03 3.83E-04 4.019 

CycleGA

N 
4.93E-03 1.61E-04 7.852 7.79E-03 3.50E-04 4.390 9.10E-03 4.13E-04 3.704 1.14E-02 5.49E-04 2.426 

Source: Authors (2024). 

 

Table 5 shows the pixel error metrics for irregular interpolation. The quantity of decimated traces is indicated in table 

header. The rows correspond to U-Net, cGAN, and CyleGAN DL models. We can compare the result with the second row of 

Table 1. For U-Net and cGAN we find the best results. CycleGAN shows the worst performance.  

 

Table 6 - Perceptual metrics, irregular interpolation. 

Model 
Scenario 1 

(30 Decimated traces) 

Scenario 2 

(40 Decimated traces) 

Scenario 3 

(50 Decimated traces) 

Scenario 4 

(60 Decimated traces) 

 PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

U-Net 44.39 0.969 43.12 0.957 42.44 0.952 40.66 0.922 

cGAN 44.98 0.974 43.51 0.962 42.11 0.952 40.64 0.921 

CycleGA

N 
44.47 0.972 41.01 0.929 40.32 0.914 39.05 0.881 

Source: Authors (2024). 

 

Table 6 shows the perceptual metrics for irregular interpolation. The quantity of decimated traces is indicated in table 

header. The rows correspond to U-Net, cGAN, and CyleGAN DL models. Comparing the result with the second row of Table 2, 

we notice that U-Net and cGAN have values greater than CycleGAN, this means that the perception of an correctly interpolated 

image is better in U-Net and  cGAN models. 
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Figure 8 - Irregular Interpolation prediction image for the studied DL models.  

 

Source: Authors (2024). 

 

In Figure 8 column 1 corresponds to the input image (Decimated Inline), column 2 to the prediction from U-Net, column 

3 to the cGAN prediction, and column 4 to the CycleGAN prediction. Each row shows an example of the scenarios with 30%, 

40%, 50%, and 60% decimated traces. We illustrate a typical window selected from all inline sections. 

 

Figure 9 - Example of cGAN model, an inline section for the irregular interpolation scenario. (a) Input image with 60% of traces 

decimated. (b) The target inline section. (c) Predicted image.  

 

Source: Authors (2024). 
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Figure 9 is an example of an irregular interpolation with 60% of traces decimated (Figure 9a). It follows, Figure 9b 

which is the target, and Figure 9c, which shows the predicted image. In this last case, we observe a significant gap in some 

regions with many missing traces; in this case, the cGAN model cannot fully recover the lost traces' information. However, 

increasing the number of training epochs could improve the model results. We have not performed such a task because the main 

idea of this study is to compare the performance of U-Net within GAN-type networks. 

 

Figure 10 - Comparing the computational time for 1000 epochs for U-Net, cGAN, and CycleGAN. 

 

Source: Authors (2024). 

 

Finally, to compute the performance of the models, Figure 10 shows the training time for each model and a comparison 

among U-Net, cGAN, and CycleGAN. We noticed that U-Net has the lowest value and CycleGAN has the highest. In the case 

of CycleGAN, it is a framework that requires training on two generative models, so the training time increases. Therefore, for 

commercial purposes, using CycleGAN as an interpolation tool for large seismic acquisitions can be inefficient, and finding the 

best hyperparameters could be even more challenging. On the other hand, the training time for cGAN is close to U-Net, with 

better results. Therefore, using cGAN in interpolation problems is the best choice in real datasets.  

 

4. Conclusion  

The results of our study corroborate previous results showing that the U-Net is a good seismic interpolation method. In 

addition, we show that the cGAN together with the U-Net generator is a valuable seismic interpolator. For regular decimation, 

the cGAN framework shows good prediction accuracy. Comparing the statistical metrics, cGAN shows better values than 

CycleGAN and the U-Net alone in most cases. This fact indicates that cGAN recovers the information of decimated traces for 

both regular and irregular scenarios. Moreover, the computational training time of the cGAN model for several interpolation 

scenarios, both regular and irregular, is much better than the CycleGAN.  

CycleGAN can be an option for seismic interpolation, but this method requires tuning the hyperparameters which is a 

time-consuming task, moreover, the training time for achieving accurate seismic interpolation is also challenging. On the other 

hand, using the same U-Net setup used for seismic interpolation, we can train the model within a cGAN framework and improve 

the precision of predictions. One important advantage of cGAN is that its training time is not higher than that of U-Net alone. 

Regarding the interpolation capacity, when U-Net was trained alone with regular decimation, it could only correctly recover 

information with up to 3 traces decimated and with irregular decimation up to 50% of traces. However, when the U-Net is trained 

within a cGAN framework, the interpolation is boosted, as we obtained superior quality images with four traces decimated for 

regular interpolation and accurate predictions for irregular interpolation even for 60% of traces decimated. To conclude, the 

cGAN model improves the precision of image prediction, increasing the capacity for seismic interpolation. 
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In future work, we plan to explore other GAN models. For instance, the Deep Convolutional GAN (DCGAN), and 

Super Resolution GAN (SRGAN). Additionally, we could research variations of the hyperparameters, as different 

hyperparameters might yield different results for the GAN model with U-Net, especially considering the hyperparameter of the 

framework used. Another topic we recommend is evaluating the models with alternative datasets with geological characteristics 

different from the Tupi field and even testing in the pre-stack domain. Finally, we are planning to use another setup of the U-Net 

model, with more layers or even with a ResNet-Unet model. 
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