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Abstract 

Use of trifoliate orange [Poncirus trifoliata (L.) Raf.] as a rootstock has intensified in recent 

years in Brazil. Objectives of this study were to evaluate the effects of lime and agricultural 

gypsum on concentration of nutrients in trifoliate orange. Seedlings of trifoliate orange were 

grown in PVC pipe columns, presenting 15 cm in diameter and 35 cm in length. The columns 

were sectioned in two rings: the upper ring, 15 cm high, and the lower ring, 20 cm high. The 

factorial scheme (2×4)+1 was used, being two liming treatments and four agricultural gypsum 

doses (carried out only in the soil of the upper ring), and an additional treatment (with liming 

carried out in the soil of both upper and lower ring). Liming increased Mg and S 

concentrations in roots of the superficial soil layer (0-15 cm). Ca concentration was higher in 

roots of both superficial (0-15 cm) and subsuperficial (15-35 cm) layers. Gypsum without 

liming resulted in higher N, K, and Mn concentrations and lower Mg concentration in roots of 

the soil subsurface layer. Ca and S concentrations in root of the soil superficial layer were 

higher with gypsum. In plant shoot, the concentrations of K, Ca, S and Cu were higher with 

liming, and concentrations of Ca and P were higher and lower, respectively, with gypsum 

application. 

Keywords: Citrus sp.; Acid soil; Soil fertility; Plant nutrition; Citriculture. 

 

Resumo 

O uso de citros trifoliata [Poncirus trifoliata (L.) Raf.] como porta-enxerto tem-se 

intensificado nos últimos anos no Brasil. Objetivou-se avaliar os efeitos de calagem e da 

gessagem sobre as concentrações de nutrientes em mudas de citros trifoliata, cultivadas sob 

condições de casa de vegetação. As colunas de tubo de PVC (vasos), com 15 cm de diâmetro 

e 35 cm de comprimento, foram seccionadas em dois anéis: o anel superior (0-15 cm de 

profundidade), e o anel inferior (15-35 cm de profundidade). Os tratamentos foram dispostos 

em um esquema fatorial (2×4)+1, sendo dois tratamentos de calagem e quatro doses de gesso 

agrícola (aplicadas apenas no solo do anel superior), e um tratamento adicional (com 

realização de calagem no solo de ambos os anéis, superior e inferior). A calagem aumentou os 

teores de Mg e S nas raízes da camada superficial do solo (0-15 cm), havendo também maior 

teor de Ca nas raízes de ambas as camadas de solo (0-15 e 15-35 cm). Para o Ca e S, em geral, 

houve também aumentos de teores das raízes da camada superficial com as doses de gesso. 
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Na parte aérea das mudas de citros trifoliata, a calagem elevou os teores de K, Ca, S e Cu, 

enquanto a gessagem elevou o teor de Ca e reduziu o de P. 

Palavras-chave: Citrus sp.; Solo ácido; Fertilidade do solo; Nutrição de plantas; Citricultura. 

 

Resumen 

El uso de Poncirus trifoliata (L.) Raf. como portainjerto se ha intensificado en los últimos 

años en Brasil. Los objetivos de este estudio fueron evaluar los efectos de las dosis de 

encalado y yeso sobre las concentraciones de nutrientes en Poncirus trifoliata. Las columnas 

de tubo de PVC (jarrones), de 15 cm de diámetro y 35 cm de largo, se seccionaron en dos 

anillos: el anillo superior (0-15 cm de profundidad) y el anillo inferior (15-35 cm de 

profundidad). Los tratamientos se dispusieron en un esquema factorial (2×4)+1, con dos 

tratamientos de encalado y cuatro dosis de yeso (aplicado solo al suelo del anillo superior), y 

un tratamiento adicional (con encalado en el suelo de ambos anillos, superior e inferior). El 

encalado aumentó el contenido de Mg y S en las raíces de la capa superior del suelo (0-15 

cm), y también hubo un mayor contenido de Ca en las raíces de ambas capas del suelo (0-15 y 

15-35 cm). Para Ca y S, en general, también hubo incrementos en el contenido de las raíces de 

la capa superficial con las dosis de yeso. En la parte aérea de Poncirus trifoliata, el encalado 

aumentó los contenidos de K, Ca, S y Cu, mientras que el enyesado aumentó el contenido de 

Ca y redujo P. 

Palabras clave: Citrus sp.; Suelo ácido; Fertilidad del suelo; Nutrición vegetal; Citricultura. 

 

1. Introduction 

 

O Brazil is one of the largest producers of citrus fruits and derivatives as well as 

largest exporter of concentrated orange juice in the world (FAO 2017). Rootstock directly 

influences precocity, tolerance to biotic and abiotic stresses, water and nutrient uptake, yield 

and quality of the fruits harvested from citrus orchard. 

Trifoliate orange [Poncirus trifoliata (L.) Raf.], also known as trifoliate, bitter lemon 

or ‘Flying Dragon’, has been used as a rootstock since the beginning of the first millennium in 

Asia. Currently it is one of the most used rootstocks in the world, for example in the USA 

(State of California), Argentina, Australia and Japan. In the latter country the species is 

widely used as a rootstock for the 'Satsuma' tangerine (Citrus unshiu Marc.). 

In Brazil, use of trifoliate orange as a rootstock has intensified in recent years. As 

advantages it is tolerant to gummosis, nematodes and sadness virus and exhibits good quality 
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fruits. In addition, trifoliate orange presenting dormancy after continuous periods of low 

temperatures, followed by loss of leaves, which provides greater tolerance to cold. Thus, 

trifoliate orange has provided good yield in citrus orchards located in the Southern region of 

Brazil (Bastos et al., 2014; Nesom, 2014; Passos, Peixouto, Santos, Caldas, & Soares Filho, 

2006). However, as disadvantages, there is lower yield and low tolerance to water deficit 

(Passos et al., 2006). 

Yield increase in citrus orchards driven by programs to improve varieties and use 

suitable rootstocks resulted in higher nutrient export from citrus areas, such as calcium (Ca) 

and sulfur (S). One of the alternatives for provide these nutrients is use of agricultural 

gypsum, which has about 23% Ca and 15% S as sulfate anion (SO4
2-) (Caires, Joris, & 

Churka, 2011). When supplied through gypsum application, both Ca2+ and SO4
2- percolate 

into soil profile, forming ionic pairs between Al3+ and SO4
2- in soil subsurface layer. 

Consequently, gypsum reduces Al3+ activity and provides Ca2+ and SO4
2- in deepest layers of 

the soil, stimulating growth of roots in depth, which results in greater tolerance of plants to 

water deficit stress. However, high-dose agricultural gypsum changes availability of nutrients 

in the soil and may influence the nutrient uptake by plant (Michalovicz et al., 2019; Rampim, 

Lana, Frandoloso, & Fontaniva, 2011; Ritchey & Sousa, 1997; Sousa, Lobato, & Rein, 2005; 

Vicensi et al., 2016). Thus, gypsum may affect accumulation of macronutrients and 

micronutrients in root and shoot of trifoliate orange plants. 

The management of soil acidity may be enhanced with association of liming and 

gypsum, instead of using only the first practice in isolation. Liming has function of correcting 

acidity and providing bases (Ca2+ and Mg2+) in soil superficial layer, while gypsum, although 

not a soil acidity corrective, reduces the harmful effects of subsurface acidity and provides Ca 

and S to plant nutrition (Raij, 2011; Silva, Van Raij, Carvalho, De, Bataglia, & Kondo, 1997; 

Sousa, Miranda, & Oliveira, 2007; Vicensi et al., 2020). 

The aim of this study was to evaluate the effects of liming and doses of agricultural 

gypsum on concentration of nutrients in root and shoot of the trifoliate orange rootstock. 

 

2. Materials and Methods 

 

In this study, a qualitative and quantitative experimental research was carried out 

(Pereira, Shitsuka, Parreira, & Shitsuka, 2018). Trifoliate orange (Poncirus trifoliata (L.) 

Raf.) seedlings were obtained from germination of seeds and kept in pots with intermittent 
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irrigation, under greenhouse conditions of the CEDETEG Campus of the State University of 

Mid-West (UNICENTRO), Guarapuava, Paraná State, Brazil. 

In November 2017, trifoliate orange seedlings were transplanted into PVC pipe 

columns filled with subsurface soil, a clayey dystrophic Oxisol (Typic Hapludox), collected 

from an area under native forest, located on CEDETEG Campus of the UNICENTRO. Soil 

samples were dried, ground, sieved in a 2 mm mesh and analyzed chemically (EMBRAPA, 

2009; Pavan, Bloch, Zempulski, Miyazawa, & Zocoler, 1992), with results as follows: pH 

(CaCl2) = 3.83; P-Mehlich I = 2.09 mg dm-3; K+ = 0.23 cmolc dm-3; Ca2+ = 1.42 cmolc dm-3; 

Mg2+ = 0.55 cmolc dm-3; Sum of Bases = 2.20 cmolc dm-3; Al3+ = 3.30 cmolc dm-3;  H+Al = 

11.69 cmolc dm-3; Cation Exchange Capacity = 13.89 cmolc dm-3; Saturation of Bases = 

15.84%; Saturation of Al = 43,02%; and Organic Matter = 43.02 g dm-3. 

The PVC pipe columns, 15 cm in diameter and 35 cm in length, were composed of 

two rings: upper ring, 15 cm high (surface layer, 0-15 cm deep), and lower ring, 20 cm high 

(subsurface layer, 15-35 cm deep). To avoid contact between roots and inner wall of the PVC 

pipes, a coating of kaolin on the inner face of the PVC pipes was used before filling them 

with the soil. The upper and lower rings of each soil column were joined with “silver tape” 

adhesive. Both planting and topdressing fertilizations were carried out only in the soil of the 

upper ring, in order to provide macronutrients (except Ca and S, which were provided only 

with liming and gypsum dose treatments) and micronutrients recommended (Malavolta, Vitti, 

& Oliveira, 1997), followed by the planting seedlings. 

The experimental design was of randomized blocks (DBC), with four replicates, in a 

factorial scheme (2×4)+1, with two liming treatments (without and with applications of 

calcium and magnesium carbonates, carried out only in soil of upper ring), combined with 

four gypsum dose treatments (0.0, 2.5, 5.0 and 10.0 g kg-1 of agricultural gypsum, also 

applied only in soil of upper ring). An additional treatment (with applications of calcium and 

magnesium carbonates, carried out in soil of both rings, upper and lower) was carried out to 

evaluate the potential of agricultural gypsum, applied on soil surface, in improving the 

conditions of soil subsurface, comparing with the soil subsurface corrected with liming. Each 

experimental plot consisted of a PVC pipe column with two plants of trifoliate orange. 

Based on the results of the chemical analysis of the soil, in treatments that received 

liming, the application of calcium (MgCO3) and magnesium (MgCO3) carbonates was made 

aiming to raise the saturation of bases to 70% and to adjust Ca/Mg ratio to 4/1, with a dose of 

3.84 and 1.87 g kg-1 of CaCO3 and MgCO3, respectively (both reagent p.a.). In treatments 

with agricultural gypsum, the doses were 0.0, 2.5, 5.0 and 10.0 g kg-1 (dry weight basis), 
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simulating the approximate doses of 0, 5, 10 and 20 Mg ha-1 gypsum in the field. The 

agricultural gypsum was obtained from local commerce of Guarapuava, Paraná State, Brasil. 

Plant shoot and roots in upper and lower rings were harvested in each separately, on 

April 10, 2018, at 153 DAT. Roots were previously washed in running water and deionized 

water to separate the soil particles, dried on paper towels and, subsequently, in an oven with 

forced air circulation at 58 °C for four days.  

Dry shoot and root were ground in a Willey mill. Nutrient analyzes in root (0-15 and 

15-35 cm depths) and shoot samples were carried out at Soil and Plant Nutrition Laboratory 

of the CEDETEG Campus of the UNICENTRO, according to EMBRAPA (2009). 

The data obtained were submitted to analysis of variance (ANOVA, P ≤ 0.05), 

considering the design in DBC in a scheme (2×4)+1, using software R version 3.5.1. (R 

Development Core Team 2016). In ANOVA, degrees of freedom were adjusted according to 

treatments of liming, gypsum doses and interaction between liming × gypsum doses, and a 

contrast between additional treatment and factorial (2×4) experiment average. When there 

was a significant effect of gypsum dose treatments, linear and quadratic regression analysis 

was performed (P ≤ 0.05). The normality of data was tested by Shapiro-Wilk test (P ≤ 0.05). 

 

3. Results and Discussion 

 

Figure 1 shows nutrient concentrations in roots collected from both 0-15 and 15-35 cm 

depths. 

It may be seen in Figure 1 that nitrogen (N) (Figure 1A) and phosphorus (P) (Figure 

1B) concentrations of the root had similar behaviors. In roots collected from 0-15 cm depth, N 

and P concentrations were not significantly influenced by the liming and gypsum dose 

treatments, presenting an average of 22.76 and 2.91 g kg-1 of N and P, respectively. In this soil 

layer there was also no significant difference between additional treatment and factorial 

experiment average. 

However, in roots collected from 15-35 depth, N (P ≤ 0.001) and P (P ≤ 0.05) 

concentrations were affected by the interaction between liming × gypsum doses. Without 

liming, N and P concentrations responded to gypsum doses in a quadratic form, decreasing at 

the lowest gypsum doses (0 and 5 g kg-1) but with a strong increase (126 and 82%, 

respectively) of values between the two highest gypsum doses (5 and 10 g kg-1). However, 

with liming, there was no significant variation in N and P concentrations of the root with 

gypsum doses. 



Research, Society and Development, v. 9, n. 10, e7449109096, 2020 

(CC BY 4.0) | ISSN 2525-3409 | DOI: http://dx.doi.org/10.33448/rsd-v9i10.9096 

7 

Figure 1. Nutrient concentrations in trifoliate orange roots collected from both soil layers (0-

15 and 15-35 cm depths) at 153 DAT, as a function of liming and gypsum dose treatments 

applied in soil of upper ring (0-15 cm deep). Additional treatment (ad.) received liming in 

both upper (0-15 cm deep) and lower (15-35 cm deep) rings. Figures 1A, 1B, 1C, 1D, 1E, 1F, 

1G, 1H and 1I corresponding to root concentrations of N, P, K, Ca, Mg, S, Mn, Zn and Cu, 

respectively. ***, **, * and ns = P ≤ 0.001, P ≤ 0.01, P ≤ 0.05 e P > 0.05, respectively, for linear 

and quadratic regression equations for gypsum dose response. 

 
Source: Authors (Guarapuava-PR, Brazil, 2020). 

 

Figure 1 shows that agricultural gypsum contains calcium and its application may 

decrease the P solubility in the soil due to precipitation. Lower P availability in soils treated 

with gypsum were reported (Anderson, Tuovinen, Faber, & Ostrokowski, 1995; Boruvka & 
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Rechcigl, 2003; Callahan, Kleinman, Sharpley, & Stout, 2002; Stout, Sharpley, & Weaver, 

2003). On the other hand, under acidic soil, agricultural gypsum in high dose may improve 

the uptake efficiency of some nutrients by root system (Backes et al., 2018; Vicensi et al., 

2020), as it was reported that gypsum increased both N and P uptake in pawpaw (Asimina 

triloba) (Picchioni, Graham, & Ulery, 2004). Agricultural gypsum is a by-product of 

phosphate fertilizer manufacture and may contain small concentrations of P (about 0,3%) 

(Caires et al., 2011). Thus, high gypsum doses in the soil provide considerable amounts of P. 

In this soil layer (15-35 depth), N and P concentrations of the root in additional 

treatment was 128% higher (P ≤ 0.001) and without significant variation (P > 0.05), 

respectively, compared to the average N and P concentrations of the factorial experiment. 

Thus, liming application also in soil subsurface layer improved the availability of N for 

trifoliate orange plants. As is known, liming improves the soil N availability for plants by 

correcting soil acidity (Raij, 2011; Troeh & Thompson, 2005). 

Potassium (K) concentration of the roots (Figure 1C) collected from 0-15 cm depth 

was affected by the interaction between liming × gypsum doses (P ≤ 0.05). Without liming, K 

concentration increased linearly with gypsum doses, showing values of 10.93 to 12.88 g kg-1 

(18% increase). However, with liming, K concentration did not vary significantly. In this soil 

layer (0-15 cm depth), additional treatment caused a significant decrease (P ≤ 0.05) of 10% in 

K concentration of the root when compared to factorial experiment average. Thus, without 

liming, agricultural gypsum improved K uptake of the soil surface layer by trifoliate orange 

plants, possibly by decreasing acidity and increasing cation exchange capacity (CEC) of the 

soil (Kumar et al., 2014; Troeh & Thompson, 2005). 

For the roots of the 15-35 cm depth, liming did not significantly affect K 

concentration, however, there was a linear increase in K concentration by increasing gypsum 

doses (P ≤ 0.01), ranging from 15.75 to 21.56 g kg-1 (increase of 37%). However, K 

concentration in additional treatment did not differ statistically of the factorial experiment 

average in this soil layer.  

Picchioni et al. (2004) also found a considerable increase in K accumulation in the 

root of pawpaw (Asimina triloba) with gypsum application, showing that gypsum may 

increase K uptake by root system. Moreover, sulfur as sulfate (SO4
2-) added with agricultural 

gypsum provides greater mobility of nutrients, such as Mg2+ and K+, from the surface layers, 

together with water, transferring them to soil deeper layers (Caires et al., 2011; Vicensi et al., 

2016). This experiment was carried out in a greenhouse with intermittent irrigation 
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throughout the experimental period, which may have contributed even more to redistribution 

of some nutrients into the soil. 

Calcium (Ca) concentration in the roots (Figure 1D), in general, increased with liming 

and gypsum, with significant interaction between liming × gypsum doses (P ≤ 0.01). The 

roots of the 0-15 cm depth had about 13% more Ca concentration with liming, verified in 

treatments without gypsum (0.0 g kg-1 treatment). However, increased variation in Ca 

concentration was found with gypsum, responding in a linear way to gypsum doses. On 

average, Ca concentration of the root varied from 7.27 to 9.47 g kg-1 (30% increase) between 

doses 0 and 10 g kg-1 of agricultural gypsum, respectively. 

In roots of the 15-35 cm depth, there was also a significant effect of the interaction 

between liming × gypsum doses (P ≤ 0.01) for Ca concentration. Unlike the superficial layer, 

in treatments without gypsum, liming considerably increased Ca concentration (73% 

increase). Without liming, there was also a strong increase in Ca concentration with gypsum 

doses, ranging from 5.21 to 10.22 g kg-1 (96% increase) between doses 0 and 10 g kg-1 of 

gypsum, respectively. With liming, variations in Ca concentration with gypsum doses were of 

lesser magnitude, probably due to effect of liming in also supplying Ca to soil. In this case, 

there was a quadratic effect of gypsum doses on Ca concentration of the root, showing an 

increase between the two highest gypsum doses. For the roots of both soil layers (0-15 cm and 

15-35 cm depths), additional treatment did not show significant variation in Ca concentration 

when compared to factorial experiment average. 

In field conditions, limestone applied on soil surface, without incorporation, has 

effects only on soil superficial layer, due to low solubility and mobility of limestone into soil. 

However, in this study, correctives (CaCO3 and MgCO3) were incorporated into soil of the 

upper ring (0-15 cm depth), associated with intermittent irrigation throughout the 

experimental period, potentiating the effect of liming also on soil subsurface layer (15-35 cm 

depth), which is a favorable factor for production of rootstocks under greenhouse conditions. 

On the other hand, gypsum has good effect on soil subsurface layer, even when applied on 

soil surface, without incorporation (Michalovicz et al., 2019; Raij, 2011; Vicensi et al., 2016). 

In general, liming together with gypsum application may enhance the benefits on plant 

development, in relation to the management of only one of these (Raij, 2011; Silva et al., 

1997; Sousa et al., 2007). 

Without or with liming, the gypsum doses did not provide a defined behavior of the 

magnesium (Mg) concentration in roots (Figure 1E) of the 0-15 cm depth, which were 

significant the quadratic equations, but with a low determination coefficient (R2 ≤ 0.58). In 
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this case, without liming, it was found that Mg concentration was high with highest gypsum 

dose.  

In roots of the 15-35 cm depth, there was no significant effect of liming on Mg 

concentration of the root. Gypsum doses resulted in a decrease (P ≤ 0.01) of Mg 

concentration, especially between 5 and 10 g kg-1 of gypsum (the linear equation was 

statistically significant, but with a low determination coefficient). In additional treatment, 

there was a significant increase in Mg concentration of the root of both soil depths, compared 

to factorial group average. 

In general, the effect of liming on Mg concentration of the roots was small. A more 

pronounced effect was expected, due to addition of MgCO3 to soil of the upper ring with 

liming. In a study by Fochesato, Souza, Schäfer and Maciel (2006), it was found that trifoliate 

orange naturally has a lower potential for Mg2+ accumulation in roots, in comparison with 

other rootstocks, such as lemon (Citrus limonia Osbeck) and citrange C13 [Citrus sinensis 

(L.) Osbeck × Poncirus trifoliata (L.) Raf.]. 

Sulfur (S) concentration in roots (Figure 1F) collected from 0-15 cm depth varied with 

liming and gypsum treatments (P ≤ 0.01). Without gypsum (0 g kg-1 treatment), liming 

increased S concentration by 28%. The gypsum effect on S concentration in this soil layer 

was increased without liming application, increasing the S concentration of the root by also 

28%. 

In roots of the 15-35 cm depth there was also interaction (P ≤ 0.01) of the treatments 

on S concentration. As in soil surface layer, gypsum was more efficient in raising the S 

concentration when liming was not carried out, with an increase of 84% between doses 0 and 

10 g kg-1 of gypsum. With liming, there was no defined behavior of gypsum doses on S 

concentration of the root. For both soil layers, there was no significant variation in S 

concentration between additional treatment and factorial experiment average. 

Agricultural gypsum has about 15% S as SO4
2- and its application in the soil increases 

the uptake of this nutrient by plants (Vicensi et al., 2020). However, the availability of SO4
2- 

in soil depends on both density and type of predominant electrical charges. On weathered 

soils from tropical and subtropical regions, SO4
2- is more adsorbed in more acidic soil layers, 

where there is a higher density of positive charges. Associated with this, in agricultural soil 

surface layer, there is a high concentration of phosphate anion (H2PO4
- and HPO4

2-), which 

competes with SO4
2- for adsorption on soil colloid surfaces (Novais & Smyth, 1999; Raij, 

2011). 
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As for the micronutrient concentrations of the root, there was no significant effect (P > 

0.05) of liming and gypsum treatments on iron (Fe) concentration, with roots exhibiting 934 

mg kg-1 of Fe.  

Manganese (Mn) concentration of the root (Figure 1G) in both soil depth decreased 

with liming (P ≤ 0.01). In 15-35 cm depth, this liming effect was reinforced by reducing Mn 

concentration in the additional treatment when compared to factorial experiment average. Due 

to liming effect in decreasing Mn concentration of the root, gypsum effect was significant 

only in 15-35 cm depth and without liming. In this treatment, Mn concentration increased by 

38% between 5 and 10 g kg-1 of gypsum. 

Zinc (Zn) concentration of the root (Figure 1H), considering both soil depth, had little 

variation, although there was a significant effect of the interaction between liming × gypsum 

doses in 0-15 cm layer. Higher variation range was observed in the additional treatment, 

which in 15-35 cm layer showed a 6% reduction (P ≤ 0.01) of Zn concentration of the root 

when compared to factorial experiment average. 

Copper (Cu) concentration of the root (Figure 1I) in 0-15 cm depth was 30% higher (P 

≤ 0.01) with liming and did not vary significantly with gypsum doses. In 15-35 cm depth 

there was only gypsum effect (P ≤ 0.05), with intermediate doses (2.5 and 5.0 g kg-1 of 

gypsum) showing the highest values of Cu concentration. In both soil layers, there was no 

significant difference in Cu concentration between additional treatment and factorial 

experiment average. 

The liming effect in raising soil pH value decreases the micronutrient availability for 

uptake by plants (Raij, 2011), as found in common bean (Phaseolus vulgaris L.) by 

Ndakidemi, Bambara and Makoi (2011). Corroborating this study, higher Mn availability for 

plants with gypsum application was found in other researches (Caires, Blum, Barth, Garbuio, 

& Kusman, 2003; Habte & Soedarjo, 1995; Moraes, Brito, Fioretto, & Moreira, 2016; 

Walker, 1961).  

Figure 2 shows nutrient concentrations in trifoliate orange shoot. 
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Figure 2. Nutrient concentrations in trifoliate orange shoot at 153 DAT, as a function of 

liming and gypsum dose treatments applied in soil of upper ring (0-15 cm deep). Additional 

treatment (ad.) received liming in both upper (0-15 cm deep) and lower (15-35 cm deep) 

rings. Fig. 3A, 3B, 3C, 3D, 3E, 3F, 3G, 3H and 3I corresponding to root concentrations of N, 

P, K, Ca, Mg, S, Fe, Zn and Cu, respectively. **, * and ns = P ≤ 0.01, P ≤ 0.05 e P > 0.05, 

respectively, for linear and quadratic regression equations for gypsum dose response. 

 

Source: Authors (Guarapuava-PR, Brazil, 2020). 

 

It may be seen in Figure 2 that nitrogen (N) concentration of the shoot (Figure 2A) 

was not significantly affected by the liming and gypsum dose treatments, exhibiting about 

30.03 g kg-1 of N in shoot. For phosphorus (P) concentration of the shoot (Figure 2B) there 

was no significant effect of liming, but the two highest gypsum doses (5 and 10 g kg-1) 

resulted in 11% decreased in P concentration (P ≤ 0.05), with values varying from 2.24 to 2.0 

g kg-1. For both N and P concentrations, there was no significant difference between 
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additional treatment and factorial experiment average, reinforcing that liming had no 

influence on the concentrations of these two macronutrients in trifoliate orange shoot. 

Nitrogen is present in all proteins and many other components of plant cells, acting on 

plant growth and development (Marschner, 2012). Critical level for leaf N concentration in 

citrus is about 25 g kg-1 (Silva, Silva, & Simão, 2016). Low gypsum dose (from 0 to 5 g kg-1) 

without liming also decreased P concentration of the root collected from 15-35 cm depth 

(Figure 1B). Phosphorus has great importance for energy transfer and physiological processes 

in plants (Marschner, 2012; Tofanelli, Santos, & Kogeratski, 2018).  

Potassium (K) concentration of the shoot (Figure 2C) was not significantly affected by 

the gypsum doses, but increased on average by 14% (P < 0.01) with liming application. In the 

plant, K plays a role in osmotic, ionic balance and stomatal regulation, in addition to 

activating many enzymes. The supply of this nutrient in adequate doses for plants promotes 

positive relationships in leaf growth and photosynthesis (Silva et al., 2016; Tofanelli et al., 

2018). 

Calcium (Ca) concentration of the shoot (Figure 2D) was affected by the interaction 

between liming × gypsum doses (P < 0.01). Without liming, Ca concentration increased 

linearly with gypsum doses, ranging from 7.39 to 9.84 g kg-1 (33% increase). However, with 

liming, there was no significant gypsum effect, and average Ca concentration was 9.72 g kg-1 

(that is, a value close to the treatment without liming and with 10 g kg-1 of gypsum). 

Corroborating these results, in roots (especially in the 15-35 cm depth) (Figure 1D) it was 

shown that Ca concentration was strongly high when liming was not done, however, with 

liming, the effect was less, reinforcing that gypsum doses were more effective in providing 

Ca2+ to plants when liming was not carried out. Agricultural gypsum contains about 24% of 

Ca (Caires et al., 2011), which explains the strong increase of Ca concentration in trifoliate 

orange root and shoot by increasing gypsum doses. 

Magnesium (Mg) concentration of the shoot (Figure 2E) there was no significant 

effect of the liming and gypsum dose treatments, and average Mg concentration was 1.47 g 

kg-1, also confirming the results observed in the roots (Figure 1E) whose values varied in 

small magnitude.  

For the three cationic macronutrients (K, Ca and Mg), there was no significant 

difference in shoot concentrations between additional treatment and factorial experiment 

average. In general, this behavior was also verified for the roots (Figure 1C, 1D and 1E), 

showing that liming in soil subsurface layer did not contribute significantly to increase of K, 

Ca and Mg concentrations in the trifoliate orange plant. 
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Sulfur (S) concentration of the shoot (Figure 2F) increased (P < 0.05) by an average of 

37% with liming, however, there was no significant effect of gypsum doses. This result is 

contrary to those observed in the roots (Figure 1F), which was found a considerable increase 

in S concentration with gypsum doses in treatments without liming. In this case, it seems that 

the S uptake by the plants without gypsum application was sufficient for the development of 

the shoot, and it is assumed that the surplus of S added to the soil with the gypsum doses was 

uptake by the plant and accumulated in the roots.  

Additional treatment had no significant difference in S concentration of the shoot 

when compared to factorial experiment average, the same behavior also was evident in the 

root (Figure 1F). 

It is still rare to find in the literature information about research that addressed the 

effects of agricultural gypsum associated with liming on citrus rootstock growth under 

greenhouse conditions. In fieldwork, Minato, Esper Neto, Sakurada, Inoue and Batista (2017) 

observed that gypsum doses did not influence the K, Ca and Mg concentrations in corn 

leaves, collected at phenological stage R1 (beginning of the reproductive period). Santos et al. 

(2012) found that gypsum did not affect Mg, K, P and S concentrations in the shoot biomass 

of elephant grass varieties. However, in annual crops under field conditions, agricultural 

gypsum has been responsible for raising leaf concentrations of Ca and S in soybeans, corn, 

beans, wheat and barley (Michalovicz et al., 2019; Vicensi et al., 2016). 

As for micronutrients, manganese (Mn) concentration of the shoot was not 

significantly altered by the liming and gypsum dose treatments, presenting an average value 

of 29.6 mg kg-1. 

Iron (Fe) concentration of the shoot (Figure 2G) was also not significant with liming 

and gypsum dose treatments (presenting an average value of 147.8 mg kg-1), although there 

was an increase in Fe concentration at the dose 2.5 g kg-1 of gypsum.  

Zinc (Zn) concentration of the shoot (Figure 2H) was affected by the interaction 

between liming × gypsum doses. Without liming, gypsum reduced Zn concentration between 

doses 0 and 5 g kg-1. However, with liming, the effect was opposite, which was observed an 

increase in Zn concentration of the shoot.  

Copper (Cu) concentration of the shoot (Figure 2I) was higher with liming (32% 

increase) and there was no significant effect of gypsum doses. This behavior was similar to 

that seen in the roots of the soil superficial layer (Figure 1I).  

For the four micronutrients (Fe, Mn, Zn and Fe), the concentrations of the shoot did 

not vary significantly between additional treatment and factorial experiment average, 
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differently from the Mn and Zn concentrations of the roots (Figure 1G and 1H, respectively), 

which showed a significant difference between additional treatment and factorial experiment 

average. The Zn and Mn are among the most important micronutrients for citrus growth and 

yield. Orchards in formation may show a certain Cu deficiency. The application of certain 

fungicides has been a form of Cu supplementation for citrus orchards (Mattos Junior, 

Cantarella, Quaggio, & Boaretto, 2009).  

 

4. Final Considerations 

 

Liming increased Ca content and reduced Mn content of the root in both soil layers, 

and increased Mg and S contents of the root in soil surface layer. Gypsum provided without 

liming resulted in increased contents of N, K, and Mn and decreased Mg content of the root in 

soil subsurface layer. There were also increased Ca and S contents of the roots in soil surface 

layer with the gypsum doses. 

Contents of K, Ca, S and Cu in the trifoliate orange shoot were increased by liming, 

while gypsum increased Ca content and decreased P content. 

Future studies with different genotypes are necessary to better understand the effect of 

the interaction between liming and agricultural gypsum on nutrition and development of 

trifoliate orange [Poncirus trifoliata (L.) Raf.] seedlings.  
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