Bioactive compounds and antioxidant activity in tomatoes (Lycopersicon esculentum L.) cultivars in natura and after thermal processing

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.10192

Keywords:

Food processing; Carotenoids; Lycopene; Phenolic compounds; Flavonoids.

Abstract

The aim of the study was to evaluate the impact of processing by cooking in natura fruits on the content of bioactive compounds - vitamin C and ascorbic acid, phenolic compounds, flavonoids, carotenoids and anthocyanins, lycopene and β-carotene - and on antioxidant activity - DPPH and FRAP - of 9 varieties of commercial and non-commercial tomatoes. The fruits were harvested when they reached the point of physiological maturation, selected and evaluated in natura, and after grinding and cooking for 30 minutes. At the end of the experiment it was found that all bioactive compounds analyzed showed quantitative reductions when the fruits were processed, with cherry cultivars - 7, 8 and 9 - those that showed superior results compared to different bioactive compounds evaluated, proving to be interesting to be better explored. Regarding the antioxidant activities, the processed fruits of these cultivars showed less losses showing potential to be submitted to processing.

References

Abreu, W. C., & Barcelos, M. F. P. (2012). Atividade antioxidante total da polpa de tomate submetida ao processamento térmico doméstico em diferentes tempos. Cient Ciênc Biol Saúde, 14(2), 71-6.

Aherne, S. A., Jiwan, M. A., Daly, T., O’brien, N. M. (2009). Geographical location has greater impact on carotenoid content and bioaccessibility from tomatoes than variety. Plant Foods Hum Nutr, 64, (4), 250–256. https://doi.org/10.1007/s11130-009-0136-x

Anthon, G. E., Barrett, D. M. (2012). Pectin methylesterase activity and other factors affecting pH and titratable acidity in processing tomatoes. Food Chemistry, 132(2), 915-920. http://dx.doi.org/10.1016/j.

Araujo, J. C., Silva, P. P. M., Telhado, S. F. P., Sakai, R. H., Spoto, M. H. F., Melo, P. C. T. (2014). Physico-chemical and sensory parameters of tomato cultivares grown in organic systems. Horticultura Brasileira, 32(2), 205-209. https://dx.doi.org/10.1590/S0102-05362014000200015

Azeez, L., Segun, A. A., Oyedeji, A. O., Adetoro, R. O., Tijani, K. O. (2019). Bioactive compounds’ contents, drying kinetics and mathematicalmodelling of tomato slices influenced by drying temperatures and time. Journal of the Saudi Society of Agricultural Sciences, 18, 120–126121. https://doi.org/10.1016/j.jssas.2017.03.002

Benzie, I. F. F. & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Analytical Biochemistry 239. 70–76. http://dx.doi.org/10.1006/abio.1996.0292

Boiteux, L. S., Fonseca, M. E. N., Giordano, L. B., Melo, P. C. T. (2012). Melhoramento genético. In F. M. V. T. Clemente & L. S. Boiteux (Ed.), Produção de tomate para processamento industrial (pp. 31-50). Brasília: Embrapa.

Boonpangrak, S., Lalitmanat, S., Suwanwong, Y. (2016). Analysis of Ascorbic Acid and Isoascorbic Acid in Orange and Guava Fruit Juices Distributed in Thailand by LC-IT-MS/MS. Food Anal. Methods, 9:1616. https://doi.org/10.1007/s12161-015-0337-x

Borguini, R. G. (2002). Tomate (Lycopersicon esculentum Mill.) orgânico: o conteúdo nutricional e a opinião do consumidor. 2002. 110 f. Dissertação (Mestrado em Agronomia)-Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba.

Brand-Williams, W., Cuvelier, M. E., Berset, C. 1995. Use of free radical method to evaluate antioxidant activity. Lebensmittel-Wissenschaft & Technologie, 28, 25-30, https://doi.org/10.1016/S0023-6438(95)80008-5

Cemeroglu, B., Karadeniz, F., Ozkan, M. (2003). Meyve sebze isleme teknolojisi. Gıda Teknolojisi Yayınları, 28, 469-472.

Chanforan, C., Loonis, M., Mora, N. (2012). The impact of industrial processing on health-beneficial tomato microconstituents. Food Chem., 134, 1786–1795. https://doi.org/10.1016/j.foodchem.2012.03.077

Cole, E., & Kapur, N. (1957). The stability of lycopene. I.‐Degradation by oxygen. Journal of the Science of Food and Agriculture, 8:6, 360-365. https://doi.org/10.1002/jsfa.2740080610

Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 3, 350-356. https://doi.org/10.1021/ac60111a017

Food and Agricultural Organization - FAO. (2019). FAO Statistical Yearbook. New York, Recuperado de www.fao.com.

Instituto Adolfo Lutz - IAL. (2005). Métodos físico-químicos para análise de alimentos. 4 ed. Brasília: ANVISA,

Ilahy, R, Hduder, C, Lenucci, M. S., Tlili, I, Dalessandro, G. (2011). Phytochemical composition and antioxidant activity of highlycopene tomato (Solanum lycopersicum L.) cultivares grown in Southern Italy. Scientia Horticulturae, 127:3, 255-261. https://doi.org/10.1016/j.scienta.2010.10.001

Kalogeropoulos, N., Chiou, A., Pyriochou, V. (2012). Bioactive phytochemicals in industrial tomatoes and their processing byproducts. LWT - Food Sci Technol., 49, 213-216. https://doi.org/10.1016/j.lwt.2011.12.036

Nagata M., & Yamashita, I. (1992). Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. Nippon Shokuhin Kogyo Gakkaish, 39:10, 925-928. https://doi.org/10.3136/nskkk1962.39.925

Nicoli, M., Anese, M., Parpinel, M. (1999). Influence of processing on the antioxidant properties of fruit and vegetables. Trends Food Sci Technol., 10, 94–100. https://doi.org/10.1016/S0924-2244(99)00023-0.

Perez-Conesa, D., Garcia-Alonso, J., Garcia-Valverde, V., Iniesta, M. D., Jacob, K., Sanchez-Siles, L. M. (2009). Changes in bioactive compounds and antioxidant activity during homogenization and thermal processing of tomato puree. Innovative. Food Science and Emerging Technology, 10:2, 179–188. https://doi.org/10.1016/j.ifset.2008.12.001

Pernice, R., Parisi, M., Giordano, I., Pentangelo, A., Graziani, J., Gallo, M., Fogliano, V., Ritieni, A. (2010). Antioxidants profile of small tomato fruits: Effect of irrigationand industrial process. Scientia Horticulturae, 126, 156–163. https://doi.org/10.1016/j.scienta.2010.06.021

Raffo, A., La Malfa, G., Fogliano, V., Maiani, G., Quaglia, G. (2006). Seasonal variations in antioxidant components of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1). Journal of Food Composition and Analysis, 19, 11–19. https://doi.org/10.1016/j.jfca.2005.02.003

Resende, E. C. O. (2010). Enzimas antioxidantes em frutos com diferentes padrões de amadurecimento. Orientadora: BRON, I. U. Campinas: IAC, 2010. 67f. Dissertação (Mestrado) – Instituto Agronômico, Campinas, Recuperado de http://www.iac.sp.gov.br/areadoinstituto/posgraduacao/dissertacoes/Evellyn%20Couto%20Oliveira.pdf. Acesso em: 07 jan. 2020.

Scalfi, L., Fogliano, V., Pentangelo, A. (2000). Antioxidant activity and general fruit characteristics in different ecotypes of Corbarini small tomatoes. J Agric Food Chem., 48:4, 1363–1366. https://doi.org/10.1021/jf990883h

Shi, J., Dai, Y., Kakuda, Y., Mittal, G., Xue, S. J. (2008). Effect of heating and exposure to light on the stability of lycopene in tomato purée. Food Control, 19:5, 514-520, https://doi.org/10.1016/j.foodcont.2007.06.002

Shi, J., Kakuda, Y., Yeung, D. 2004. Antioxidative properties of lycopene and other carotenoids from tomatoes: synergistic effects. Biofactors, 21, 203–210.

Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337-354. https://doi.org/10.1016/S0034-4257(02)00010-X

Singh, P., & Goyal, G. K. (2008). Dietary lycopene: its properties and anticarcinogenic effects. Compr Rev Food Sci Food Saf, 7, 255–270. https://doi.org/10.1111/j.1541-4337.2008.00044.x

Singleton, V. L., & Rossi Jr, J. A. (1965). Colorimetry of total phenolics with phosphomolybidic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144-158.

Singleton, V. L., Orthofer, R., Lamuela, R. M. 1999. Analysis of total phenol and other oxidation subtrates and antioxidants by means of Folin-Ciocauteau reagent. Methods of Enzymology, 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1

Souza, A. V., Vieira, M. R. S., Putti, F. F. (2018). Correlações entre compostos fenólicos e atividade antioxidante em casca e polpa de cultivares de uva de mesa. Brazilian Journal of Food and Technology, 21. https://doi.org/10.1590/1981-6723.10317

Szabo, K., Cătoi, A. F., Vodnar, D. C. (2018). Bioactive Compounds Extracted from Tomato Processing by-Products as a Source of Valuable Nutrients. Plant Foods Hum Nutr., 73:268. https://doi.org/10.1007/s11130-018-0691-0

Takeoka, G. R., Dao, L., Flessa, S., Gillespie, D. M., Jewell, W. T., Huebner, B. (2003). Processing effects on lycopene content and antioxidant activity of tomatoes. J Agric Food Chem.,, 49, 3713-7. https://doi.org/10.1021/jf0102721

Terada, M, Watanabe, Y, Kunitoma, M, Hayashi, E. (1978). Diferential rapid analyses of ascobic acid and ascorbic acid 2-sulfate by dinitrophenil hydrazine method. Am Biochem., 84, 604-608. https://doi.org/10.1016/0003-2697(78)90083-0

Taco -Tabela Brasileira de Composição de Alimentos/Nepa. (4th ed.). Campinas: Nepa-Unicamp, 2011

Vanzoonen, P. (1996). Analytical methods for pesticide residues in foodstuffs. (6th ed.), Netherlands: Ministery of Public Health, Welfare and Sport.

Vieira, M. C. S. (2016). Investigação dos compostos bioativos em tomates (Lycopersicon esculentum L.) após processamento térmico. 59 f. Dissertação (Mestrado) - Curso de Mestre em Agronomia (horticultura), Faculdade de Ciências Agronômicas da Unesp – Campus de Botucatu, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Botucatu.

Vítolo, H. F., Souza, G., M., Silveira, J. (2012). Cross-scale multivariate analysis of hysiological esponses to high temperature in two tropical crops with C3 and C4 metabolism. Environmental and Experimental Botany, 80:1. https://doi.org/10.1016/j.envex pbot.2012.02.002

Downloads

Published

21/11/2020

How to Cite

Souza, A. V. de ., Mello, J. M. de ., Fávaro, V. F. da S. ., Silva, V. F. da ., Sartori, D. de L. ., & Putti, F. F. . (2020). Bioactive compounds and antioxidant activity in tomatoes (Lycopersicon esculentum L.) cultivars in natura and after thermal processing . Research, Society and Development, 9(11), e44991110192. https://doi.org/10.33448/rsd-v9i11.10192

Issue

Section

Agrarian and Biological Sciences