Obtaining and characterizing hydroxyapatite obtained by hydrothermal synthesis and characterization

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.10247

Keywords:

Hydroxyptite; Hydrothermal Synthesis; Characterization.

Abstract

Hydroxyapatite (HA) is a ceramic material present in human bones and teeth. Synthetic HA has osteointegration and biocompatibility properties and it is widely used in implants and prostheses. One of the ways to synthesize HA is by the hydrothermal method, an efficient method that allows the control of temperature and pressure, creating high crystallinity products. This research aimed to obtain the hydrothermal HA, which was analyzed under different characterization forms. The synthesis performed was based on France and Pereira (2000), with adaptations, where 3.71 g of calcium phosphate (Ca(H2PO4)2) and 2.54 g of  calcium hydroxide (Ca(OH)2) were used, the reaction was made in a stove at 245 °C for two hours and with a heating rate of 5 °C/min. After the reaction, the HA was washed and dried in an oven at 60 °C for twenty four hours, the final mass obtained was 0.268 g. The obtained product was characterized by Raman light scattering, absorption in the infrared (IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), Multimolecular Adsorption Theory (BET) and Scanning Electron Microscopy (SEM). Based on the results obtained in the analyzes and comparisons with experiences reported in the literature, the hydrothermal HA synthesis performed in this work was valid.

Author Biographies

Maria Nicheilly Pontes Araújo, Federal University of Pernambuco

Technical in Edificações by the Federal Institute of Ceará - IFCE, Engineering of Materials at the Federal University of Cariri - UFCA and Master of Science in the Federal University of Pernambuco - UFPE. Currently conducting research in the area of polymeric materials with a focus on the development of active packaging. Main areas of study and interest: ceramic materials, polymeric materials, active packaging, natural and biodegradable products.

Welly Evilly da Silva Vieira, Federal University of Pernambuco

Graduated in Chemistry from the Federal Institute of Education, Science and Technology of Pernambuco. Currently, master's student in Materials Science at the Federal University of Pernambuco. Member of the research group Supramolecular and Multifunctional Materials (SupraMMat) and works mainly in the area of Hybrid Materials, synthetic chemistry and nanocomposite applications for environmental purposes.

Lucelma Pereira de Carvalho, Federal University of Pernambuco

Graduated in Chemistry from the Federal University of Pernambuco, and master's student in Materials Science from the Federal University of Pernambuco. Member of the Interdisciplinary Group of Molecular Modeling and Materials Simulation, acting mainly in the areas: structure, reactivity and chemoselectivity of transition metal complexes and calculations of electronic spectroscopic, vibrational and nuclear magnetic resonance (NMR) properties of organic compounds, transition metal and lanthanide complexes.

Higor Diego Farias de Melo, Federal University of Pernambuco

Degree in Chemistry from the Federal Institute of Education, Science and Technology of Pernambuco (IFPE) - Vitória de Santo Antão campus. He was a Researcher in the Institutional Program for Scientific Initiation Scholarships, (PIBIC - Affirmative), (PIBIC - CNPQ), (PIBIC - Graduation) and participated in the Pedagogical Residency Program. Currently pursuing a master's degree in Materials Science from the Federal University of Pernambuco (UFPE). Develops research in the area of Nuclear Magnetic Resonance (NMR) in the structural determination of organic compounds based on NMR in oriented media.

Thais Cavalcante de Souza, Federal University of Pernambuco

Graduated in Chemical Engineering from Catholic University of Pernambuco, master's degree student in Materials Science, at the Federal University of Pernambuco, integrated the Environmental Sciences Research Center (NPCIAMB), at the Catholic University of Pernambuco, as a student of scientific initiation, now associated with the Petrochemical Laboratory (LPQ), at the Federal University of Pernambuco, also accomplishes working on projects related to the Advanced Institute of Technology and Innovation (IATI). Currently develops research on various topics, such as biocomposites, electrical and magnetic materials, organic syntheses and solutions applied to industries.

Romildo Alves Berenguer, Federal University of Pernambuco

Civil Engineer. Professor at Unifacol, Master in Civil Engineering from the Federal University of Pernambuco (2019), PhD, in progress in Materials Science from the Federal University of Pernambuco. He is a Participant in the Research Group on Mechanical and Microstructural Characterization of Construction Materials / UFPE of the Department of Fundamental Chemistry at the Federal University of Pernambuco. He is interested in the Research Lines: Industrial Waste, Portland Cement, Limestone Filler, Mechanical and Microstructural Characterization of Materials, Composites and Interfaces (MEV, DRX, DTA-TG, XRF, Rietveld Structural Refinement), Civil Construction Materials, Building Pathologies , Recovery of Reinforced Concrete Structures, Durability of Concrete Structures.

References

Azevedo, A. G.; Strecker, K.; Gorgulho, H. F. (2015). Efeito da temperatura em processos de sinterização de pós de hidroxiapatita. Cerâmica, 61 (357), 52-59. doi: 10.1590/0366-69132015613571879

Azevedo, A. G. (2012). Avaliação das mudanças cristalográficas e morfológicas com o aumento da temperatura de sinterização de pós de hidroxiapatita. Revista da Universidade Vale do Rio Verde, 10 (2), 297-307. doi: 10.5892/ruvrv.2012.102.297307

Barbosa, R. M. (2019). Incorporação de hidroxiapatita em matrizes de quitosana e xantana e liberação de doxiciclina em membranas aplicáveis na regeneração tecidual e terapia avançada [dissertação de mestrado não publicada]. Universidade Estadual de Campinas.

Boanini, E.; Gazzanob, M.; Bigi, A. (2010). Ionic substitutions in calcium phosphates synthesized at low temperature”. Acta Biomaterialia, 6 (6), 1882–1894. doi: 10.1016/j.actbio.2009.12.041

Bulina, N. V.; Chaikina, M. V.; Prosanov, I. Y.; Dudina, D. V. (2020). Strontium and silicate co-substituted hydroxyapatite: Mechanochemical synthesis and structural characterization. Materials Science & Engineering B, 262, 1-5. doi: 10.1016/j.mseb.2020.114719

Ciobanu, C. S.; Massuyeau, F., Constantin, L. V.; Predoi, D. (2013). Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100°C. Nanoscale Research Letters, 6 (1), 613-621. doi: 10.1186/1556-276X-6-613

Cividatti, L. N.; Santos, V.; Urbano, A.; Silva, A. F.; Dall´Antonia, L. H. (2014). Estudo da Influência do Tempo de Síntese na Obtenção de Hidroxiapatita por Hidrotermal/micro-ondas. Orbital, 6 (1), 7-13. Retirado de: http://www.orbital.ufms.br/index.php/Chemistry/article/view/529

Coco, A. M. A. (2018). Síntese e caracterização de Scaffolds de Hidroxiapatita para aplicações na regeneração óssea [monografia não publicada]. Centro Federal de Educação Tecnológica de Minas Gerais.

Costa, A. C. F. M.; Lima, M. G.; Lima, L. H. M. A.; Cordeiro, V. V.; Viana, K.M.S.; Souza, C.V.; Lira, H. L. (2009). Hidroxiapatita: Obtenção, caracterização e aplicações. Revista eletrônica de Materiais e Processos, 4 (3), 29-38. Retirado de: http://slabo.org.br/cont_anais/anais_9_colaob/manuscript/15-022TT.pdf

Elliott, J. C. (1994). Structure and chemistry of the apatites and other calcium orthophosphates (1nd ed.). Elsevier Science.

França, I. R.; Pereira, M. M. (2000). Produção de hidroxiapatita via síntese hidrotermal e caracterização dos pós obtidos. Anais do Congresso Brasileiro de Engenharia e Ciência dos Materiais, Brasil, 14, 15901-15917. https://www.ipen.br/biblioteca/cd/cbecimat/2000/Docs/TC111-001.pdf

Hoppe Filho, J.; Gobbi, A.; Pereira, E.; Quarcioni, V. A.; Medeiros, M. H. F. (2017). Atividade pozolânica de adições minerais para cimento Portland (Parte II): Índice de atividade pozolânica com cimento Portland (IAP), difração de raios-X (DRX) e termogravimetria (TG/DTG), Revista Matéria, 22 (3). doi: 10.1590/s1517-707620170003.0206

Ionashiro, M. G. (2004). Fundamentos da Termogravimetria, Analise Térmica Diferencial e Calorimetria Exploratória Diferencial. GIZ.

Ivanova, T. I.; Frank-Kamenetskaya, O. V.; Kol'tsova, V. L.; Ugolkovet, A. B. (2001). Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal Decomposition. Journal of Solid State Chemistry, 160 (2), 340-349. doi: 10.1006/jssc.2000.9238

Lacerda, K. A.; Lameiras, F.S.; Silva, V. V. (2009). Avaliação da Biodegradação de Matrizes Porosas à Base de Hidroxiapatita para Aplicação como Fontes Radioativas em Braquiterapia. Química Nova, 32 (5), 1216-1221. doi: 10.1590/S0100-40422009000500025

Lacerda, K. A.; Lameiras, F. S.; Silva, V. V. (2006). Síntese e caracterização de matrizes porosas de hidroxiapatita para aplicação como fontes radioativas em braquiterapia. Revista Escola de Minas, 59 (2), 217-223. doi: 10.1590/S0370-44672006000200012

Lima, C. O. D. (2015). Hidroxiapatitas modificadas com prata aplicadas como agentes antimicrobianos [dissertação de mestrado não publicada]. Universidade Federal de Paraíba.

Liu, D. M.; Troczynskia, T.; Tseng, W. J. (2001). Water-based sol–gel synthesis of hydroxyapatite: process development. Biomaterial, 22 (13), 1721-1730. doi: 10.1016/S0142-9612(00)00332-X

Lopes, C. C.; Pinheiro, W. A.; Rocha, D. N.; Santos, J. L. (2018). Interação da hidroxiapatita nanométrica na superfície do grafeno. Anais do 73º Congresso Anual da ABM, Brasil, 73 (73). doi: 10.5151/1516-392X-31811-1537552741

Mavropoulos, E. (1999). A hidroxiapatita como absorvedor de metais [dissertação de mestrado não publicada]. Fundação Oswaldo Cruz.

Pai, S.; Kini, M. S.; Selvaraj, R.; Pugazhendhi, A. (2020). A review on the synthesis of hydroxyapatite, its composites and adsorptive removal of pollutants from wastewater. Journal of Water Process Engineering, 38. doi: 10.1016/j.jwpe.2020.101574

Pereira, A. S.; Shitsuka, D. M.; Parreira, F. J.; Shitsuka, R. (2018). Metodologia da Pesquisa Científica [e-book]. 1. ed. Santa Maria, RS: UFSM, NTE. Retrieved from: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

Ramesh, S.; Aw, K. L.; Tolouei, R.; Amiriyan, M.; Tan, C. Y.; Hamdi, M.; Purbolaksono, J.; Hassan, M. A. (2013). Sintering properties of hydroxyapatite powders prepared using different methods, Ceramics International, 39 (1), 111-119. doi: 10.1016/j.ceramint.2012.05.103

Ramos, I. Y. O. (2015). Produção, Caracterização e Avaliação da Resposta Celular de Recobrimentos de Zinco-Hidroxiapatita Sobre a Superfície de Titânio para Aplicações Sobre Implantes [dissertação de mestrado não publicada]. Universidade Federal do Rio de Janeiro.

Ribeiro, D. V.; Morelli, M. R. (2014). Effect of Calcination Temperature on the Pozzolanic Activity of Brazilian Sugar Cane Bagasse Ash (SCBA). Materials Research, 17 (4), 974-981. doi: 10.1590/S1516-14392014005000093

Santos, M. L.; Florentino, A. O.; Saeki, M. J.; Aparecida, A. H.; Fook, M. V. L.; Guastaldi, A. C. (2005). Síntese de hidroxiapatita pelo método solgel utilizando precursores alternativos: nitrato de cálcio e ácido fosfórico. Eclética Química, 30 (3), 29-35. doi: 10.1590/S0100-46702005000300004

Santos, M. V. B.; Osajima, J. A.; Silva Filho, E. C. (2016). Hidroxiapatita: suporte para liberação de fármacos e propriedades antimicrobianas. Cerâmica, 62 (363), 256-265. doi: 10.1590/0366-69132016623631980.

Souza, T. S.; Rangel, F. S.; Tokumoto, M. S.; Lôbo, I. P.; Cruz, R. S. (2019). Síntese, caracterização e modificação da hidroxiapatita com zinco para aplicação na reação de esterificação. Matéria (Rio J.), 24 (1). doi: 10.1590/s1517-707620190001.0659

Stafin, G.; Antunes, S. E. M.; Saito, R. E.; Souza, E. C. F.; Andrade, A. V. C.; Borges, C. P. F. (2016, Outubro 13-14). Síntese e Caracterização de Hidroxiapatita pelo Método Hidrotermal Visando sua Utilização como Biomaterial [Resumo da apresentação da conferência]. XXV Encontro Anual de Iniciação Científica, Londrina, PR, Brasil. http://apps.uepg.br/propesp/pesquisa/eaic/public/storage/uploads/2016/08374249927/2016-09-20_18-49-48.pdf

Supová, M. (2015). Substituted Hydroxyapatites for Biomedical Applications: A review. Ceramics International, 41 (8), 9203–9231. doi: 10.1016/j.ceramint.2015.03.316

Published

25/11/2020

How to Cite

ARAÚJO, M. N. P.; VIEIRA, W. E. da S.; CARVALHO, L. P. de; MELO, H. D. F. de; SOUZA, T. C. de; BERENGUER, R. A. Obtaining and characterizing hydroxyapatite obtained by hydrothermal synthesis and characterization. Research, Society and Development, [S. l.], v. 9, n. 11, p. e535911100247, 2020. DOI: 10.33448/rsd-v9i11.10247. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10247. Acesso em: 15 jan. 2025.

Issue

Section

Exact and Earth Sciences