Multivariate regression analysis in the probability of deaths in COVID-19 cases: a case study in the State of Pará, Amazon region, Brazil
DOI:
https://doi.org/10.33448/rsd-v9i11.10299Keywords:
Probabilistic model; COVID-19 in Brazil; Risk group; Amazon region.Abstract
Since the first detected cases of COVID-19 in Brazil, researchers have made a great effort to try to understand the disease. Understanding the impact of the disease on people can be instrumental in identifying which groups can be considered at risk. Therefore, this study researches a probabilistic model based on a statistical model of non-linear regression analyzing the following variables: age, if you are a health professional, if you are resident in the Metropolitan Region of Belém (RMB), State of Pará and gender with the objective of identifying those people who have a greater impact on the number of people infected and killed by COVID-19, that is, people who are more likely to die. To carry out the research, we used the data of all infected people by COVID-19 in the State of Pará until July 2020. It can be verified according to the proposal of the probabilistic model that elderly people, with a odds ratio of 1.69 (95% CI 1.52-1.88), residents of Metropolitan Region of Belém, with an odds ratio of 2.14 (95% CI 2.02 - 2.27) and men, with an odds ratio of 1.83 (95% CI 1.73 - 1.95) are groups of people with a higher risk of dying from diseases, while health professionals, with a 0.36 chance ratio (CI9 5% 0.29 - 0.45), are less likely to die.
References
Agresti, A. (1980). Generalized odds ratios for ordinal data. Biometrics, 36, 59–67. https://doi.org/10.2307/2530495
Allison, P. D. (2012). Logistic regression using SAS: Theory and application. In SAS Institute Inc, Second Edition, Cary, North Carolina, USA.
Bland, J. M., & Altman, D. G. (2000). The odds ratio. Bmj, (7247), 1468. https://doi.org/10.1136/bmj.320.7247.1468
Cabral, R. B. G., Chase, S. A. N., Ribeiro, R. C. M., Marques, G. T., Morais, E. C., de Jesus Zissou, A., de Almeida, J. F. S. (2020). On the evolution of new Coronavirus (SARS-CoV-2) in the state of Pará (Brazil), March – June 2020.
Candido, D. D. S., Watts, A., Abade, L., Kraemer, M. U., Pybus, O. G., Croda, J., Faria, N. R. (2020). Routes for COVID-19 importation in Brazil. Journal of Travel Medicine, taaa042.https://doi.org/10.1093/jtm/taaa042.
Cardoso, A. C. D., & Miranda, T. B. (2018). Invisibilidade social e produção do espaço subordinado em Belém (PA). Paisagem e Ambiente, (41), 85–107. https://doi.org/10.11606/issn.2359-5361.v0i41p85-107
Chambers, J. (2008). Software for data analysis: programming with R. In Springer Science and Business Media, Stanford, CA, USA.
Croda, J., Oliveira, W. K. D., Frutuoso, R. L., Mandetta, L. H., Baia-da-Silva, D. C., Brito-Sousa, J. D., & Lacerda, M. V. G. (2020). COVID-19 in Brazil: advantages of a socialized unified health system and preparation to contain cases. Revista da Sociedade Brasileira de Medicina Tropical, 53.
Dias, N. L., Silva, E. V. D., Pires, M. A., Chaves, D., Sanada, K. L., Fecury, A. A., Leal, S. D. (2020). Predição da propagação do SARS-CoV-2 no Estado do Amapá, Amazônia, Brasil, por modelagem matemática. Revista Científica Multidisciplinar Núcleo do Conhecimento, Volume 6(5), 73–95. (in portuguese)
Giancristofaro, R. A., & Salmaso, L. (2007). Model performance analysis and model validation in logistic regression. Statistica, 63(2), 375–396.
Hosmer Jr, D. W., Lemeshow, S., Sturdivant, R. X. (2013). Applied logistic regression. In John Wiley and Sons, Inc, Hoboken, New Jersey, 398.
IBGE (2010). Instituto Brasileiro de Geografia e Estatística (IBGE). In Retrieved from https://www.ibge.gov.br/estatisticas/sociais/populacao/9662-censo-demografico-2010.html ?edicao=9749&t=o-que-e, 2019.
Jesus, J. G., Sacchi, C., Claro, I., Salles, F., Manulli, E., Silva, D., Faria, N. R. (2020). First cases of Coronavirus Disease (COVID-19) in Brazil, South America (2020). United Kingdom: Virological, Retrieved from http://virological.org/t/first-cases-ofcoronavirus-disease-covid-19-in-brazil-south-america-2-genomes-3rd.
Kermack, W. O., & McKendrick, A. G. A (1927). Contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character, 115(772), 346 700–721.
Kounev, S., Lange, K. D., von Kistowski, J. (2020). Review of basic probability and statistics. In Systems Benchmarking, Springer, Cham, 23–44).
Lewis-Beck, C., and Lewis-Beck, M. (1984). Applied regression: An introduction. InSage publications, 22, 384.
Martins, L. K., Carvalho, A. R. D. S., Oliveira, J. L. C. D., Santos, R. P. D., Lordani, T. V. A. (2020). Quality of life and perception of health status among hospitalized individuals, Escola Anna Nery, 24(4), e20200065, 405 https://doi.org/10.1590/2177-9465-ean-2020-0065
Menard, S. (2002). Applied logistic regression analysis. In Sage publication, 106, Thosand Oak, London, New Delhi.
Mendes, L. A. S. (2018). A Geografia-Histórica da região metropolitana de Belém. Revista Espacialidades, 14(01), 10–39.
Neter, J., Wasserman, W., Kutner, M. H.(1983). Applied linear statistical models. In Richard D. Irwin. Inc., Homewood, IL, 842.
Oliveira, W. K. D., Duarte, E., França, G. V. A. D., Garcia, L. P. (2020). How Brazil can stop COVID-19. Epidemiologia e Serviços de Saúde, 29(2), e2020044. https://doi.org/10.5123/S1679-49742020000200023. (in portuguese).
Oliveira Ribeiro, W. (2016). Entre a metrópole e a cidade média: a complexidade das interações espaciais e 351 das dinâmicas de centralidade da cidade de Castanhal no nordeste paraense. GEOUSP Espaço e Tempo(Online), 20(1), 115–129.
Petropoulos, F., & Makridakis, S., Forecasting (2020). The novel coronavirus COVID-19. PloS one, 15(3), e0231236. https://doi.org/10.1371/journal.pone.0231236
Pregibon, D. (1981). Logistic regression diagnostics. The Annals of Statistics, 9(4), 705–724.
Priyadarshan, P. M. (2019). Basic Statistics. In PLANT BREEDING: Classical to Modern, Springer, Singapore, 131–169.
Pulkstenis, E., and Robinson, T. J. (2002). Two goodness-of-fit tests for logistic regression models with continuous covariates. Statistics in medicine, 21(1), 79–93. https://doi.org/10.1002/sim.943
Qin, X., Chen, C., Yam, K. C., Huang, M., Ju, D. (2020). The double-edged sword of leader humility: Investigating when and why leader humility promotes versus inhibits subordinate deviance. Journal of Applied Psychology, 105(7), 693-–712. https://doi.org/10.1037/apl0000456
Romano, J. P., & Wolf, M. (2005). Stepwise multiple testing as formalized data snooping. Econometrica, 73(4), 1237–1282. https://doi.org/10.1111/j.1468-0262.2005.00615.x
Sarkar, S. K. (2002). Some results on false discovery rate in stepwise multiple testing procedures. Annals of statistics, 30(1), 239–257. Retrieved from https://www.jstor.org/stable/2700010
Silva, P. C., Batista, P. V., Lima, H. S., Alves, M. A., Guimarães, F. G., Silva, R. C. (2020). COVID-ABS: An agent-based 348 model of COVID-19 epidemic to simulate health and economic effects of social distancing interventions. Chaos, Solitons & Fractals, 110088. https://doi.org/10.1016/j.chaos.2020.110088
Szumilas, M. (2010). Explaining odds ratios. Journal of the Canadian academy of child and adolescent psychiatry, 19(3), 227–229.
Xie, X. J., Pendergast, J., Clarke, W. (2002). Increasing the power: A practical approach to goodness-of-fit test for logistic regression models with continuous predictors. Computational Statistics and Data Analysis, 52(5), 2703–2713. https://doi.org/10.1016/j.csda.2007.09.027
Werneck, G. L., and Carvalho, M. S (2020). A pandemia de COVID-19 no Brasil: crônica de uma crise sanitária anunciada. Caderno de Saúde Pública, 36(5), https://doi.org/10.1590/0102-311X00068820
Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., ... Chen, H. D. A (2020). Pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579(7798), 270–273. https://doi.org/10.1038/s41586-020-2012-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Cássio Pinho dos Reis; Herson Oliveira da Rocha; Nayara de Araújo Muzili Reis; Sávio Pinho dos Reis ; Gustavo Nogueira Dias; Gilberto Emanoel Reis Vogado; Vanessa Mayara Souza Pamplona ; Washington Luiz da Silva Junior
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.