Physical and mechanical behavior in soil matrix materials due to residues addition and burning temperature

Authors

DOI:

https://doi.org/10.33448/rsd-v9i11.10308

Keywords:

Pine sawdust; Coffee husk; Waste in construction; Compressive strength; Ceramic materials; Adobe.

Abstract

The building construction is responsible for the largest industrial sectors in the world, with high energy demand and use of natural resources. Given the scarcity of natural resources and the energy crisis, the use of waste in building materials becomes a target. Therefore, this study aimed to evaluate different treatments with pine sawdust and coffee husk additions, both at 10% by mass and also evaluated in drying and burning. The treatments were evaluated by bulk density, linear shrinkage and compressive strength. In the treatments without burning, it was possible to verify that the addition of 10% of residue reduces the mechanical resistance of the material considerably but improves the physical properties. In the burned materials, it was observed that the addition of residues is unsatisfactory due to the high temperature, carbonizing them, increasing the porosity, thus destabilizing the material, negatively affecting the physical and mechanical properties.

References

Alzukaimi, J., & Jabrah, R. (2019). The preparation and characterization of porous alumina ceramics using an eco-friendly pore-forming agent. International Journal of Applied Ceramic Technology, 16(2), 820–831. https://doi.org/10.1111/ijac.13126

Associação Brasileira Da Indústria Do Café - Abic. (2017). Tendências Do Mercado De Cafés EM 2017. http://abic.com.br/estatisticas/pesquisas/pesquisa-tendencias-de-consumo/

Associação Brasileira de Normas Técnicas - ABNT. (2010). NBR 7989. Pulp and wood - Determination of acid-insoluble lignin. Rio de Janeiro, 6 p. 6.

Associação Brasileira de Normas Técnicas - ABNT. (1986). NBR 8112. Carvão vegetal - Análise imediata - Método de ensaio. Rio de Janeiro, 5 p. 5.

Associação Brasileira de Normas Técnicas - ABNT. (2010). NBR 14853. Wood - Determination of soluble matter in ethanol-toluene and in dichloromethane and in acetone. Rio de Janeiro,. 3.

Associação Brasileira de Normas Técnicas - ABNT. (2015). NBR 5738. Concrete - Procedure for molding and curing concrete test specimens, Rio de Janeiro,. 9.

Associação Brasileira de Normas Técnicas - ABNT. (2016a). NBR 6459. Soil - Liquid limit determination. Rio de Janeiro, 5p. 5.

Associação Brasileira de Normas Técnicas - ABNT. (2016b). NBR 7180. Soil — Plasticity limit determination. Rio de Janeiro, 3 p. 3.

Associação Brasileira de Normas Técnicas - ABNT. (2016c). NBR 7181. Soil - Grain size analysis. Rio de Janeiro,. 12. 12.

Associação Brasileira de Normas Técnicas - ABNT. (2009). NBR NM 52. Fine aggregate - Determination of the bulk specific gravity and apparent specific gravity. Rio de Janeiro, p. 06. 6.

Associação Brasileira De Normas Técnicas - ABNT. (1982). NBR 7183. Determinação do limite e relação de contratação de solos. Rio de Janeiro. 3 p. 3.

ASTM. (2014). ASTM E1131. Standard Test Method for Compositional Analysis by Thermogravimetry. ASTM International, West Conshohocken, PA.

Badea, C., & Dan, S. (2016). Unburned clay bound building materials for masonry. Materiale Plastice, 53(4), 681–684.

Barbieri, L., Andreola, F., Lancellotti, I., & Taurino, R. (2013). Management of agricultural biomass wastes: Preliminary study on characterization and valorisation in clay matrix bricks. Waste Management, 33(11), 2307–2315. https://doi.org/10.1016/j.wasman.2013.03.014

Bauer, F. A. F. (2015). Materiais De Construcao - Volume 2 (5a ed.), LTC.

Bonet-Martínez, E., Pérez-Villarejo, L., Eliche-Quesada, D., Sánchez-Soto, P. J., Carrasco-Hurtado, B., & Castro-Galiano, E. (2018). Manufacture of sustainable clay ceramic composite with composition SiO2-Al2O3-CaO-K2O materials valuing biomass ash from olive pomace. Materials Letters, 229, 21–25. https://doi.org/10.1016/j.matlet.2018.06.105

Bories, C., Aouba, L., Vedrenne, E., & Vilarem, G. (2015). Fired clay bricks using agricultural biomass wastes: Study and characterization. Construction and Building Materials, 91, 158–163. https://doi.org/10.1016/j.conbuildmat.2015.05.006

Christoforou, E., Kylili, A., Fokaides, P. A., & Ioannou, I. (2016). Cradle to site Life Cycle Assessment (LCA) of adobe bricks. Journal of Cleaner Production, 112, 443–452. https://doi.org/10.1016/j.jclepro.2015.09.016

Cimò, G., Kucerik, J., Berns, A. E., Schaumann, G. E., Alonzo, G., & Conte, P. (2014). Effect of heating time and temperature on the chemical characteristics of biochar from poultry manure. Journal of Agricultural and Food Chemistry, 62(8), 1912–1918. https://doi.org/10.1021/jf405549z

Corrêa, A. A. R., de Paula Protásio, T., de Lima, J. T., Tonoli, G. D., & Mendes, L. M. (2014). Mechanical Properties of Adobe Made with Sugar Cane Bagasse and “Synthetic Termite Saliva” Incorporation. Key Engineering Materials, 634, 351–356. https://doi.org/10.4028/www.scientific.net/kem.634.351

Corrêa, A. A. R., Mendes, L. M., Barbosa, N. P., De Paula Protásio, T., De Aguiar Campos, N., & Tonoli, G. H. D. (2015). Incorporation of bamboo particles and “synthetic termite saliva” in adobes. Construction and Building Materials, 98, 250–256. https://doi.org/10.1016/j.conbuildmat.2015.06.009

Corrêa, A. A. R., Teixeira, V. H., Lopes, S. P., & Oliveira, M. S. de. (2006). Avaliação Das Propriedades Físicas E Mecânicas Do Adobe (Tijolo De Terra Crua) Evaluation of physical and mechanical properties of adobe bricks. Scielo, 30(3), 503–515. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-70542006000300017

Csicsely, Á. O., Józsa, Z., & Sajtos, I. (2009). Analysis of Adobe-Clay as an Envorinmental-Friendly Structural Material. Materials Science Forum, 537–538, 17–24. https://doi.org/10.4028/www.scientific.net/msf.537-538.17

Danso, H., Martinson, D. B., Ali, M., & Williams, J. B. (2015). Physical, mechanical and durability properties of soil building blocks reinforced with natural fibres. Construction and Building Materials, 101, 797–809. https://doi.org/10.1016/j.conbuildmat.2015.10.069

do Vale, A. T., Gentil, L. V., Goncalez, J. C., & da Costa, A. F. (2007). Caracterização Energética e Rendimento da Carbonização de Resíduos de Grãos de Café e de madeira Duke. Cerne, 13(4), 416–420.

EMBRAPA. (2013). Brazilian system of soil classification (3rd ed.).

Faria, O. B., Oliveira, B. M. de, Tahira, M., & Battistelle, R. A. G. (2008). Realização Do Programa Interlaboratorial Proterra. TerraBrasil, 1–12.

Ferreira, D. F. (2014). Sisvar: a Guide for its Bootstrap procedures in multiple comparisons. Ciência e Agrotecnologia, 38(2), 109–112. https://doi.org/10.1590/s1413-70542014000200001

Galán-Marín, C., Rivera-Gómez, C., & Petric, J. (2010). Clay-based composite stabilized with natural polymer and fibre. Construction and Building Materials, 24(8), 1462–1468. https://doi.org/10.1016/j.conbuildmat.2010.01.008

Gandia, R.M., Campos, A, T., Corrêa, A, A, R., & Gomes, F, C. (2018). Energy costs comparison of masonry made from different materials. THEORETICAL AND APPLIED ENGINEERING, 2(1), 1–8. http://www.taaeufla.deg.ufla.br/index.php/TAAE/i ssue/view/5/R1023

Gandia, R.M., Gomes, F. C., Corrêa, A. A. R., Rodrigues, M. C., & Mendes, R. F. (2019). Physical, mechanical and thermal behavior of adobe stabilized with glass fiber reinforced polymer waste. Construction and Building Materials, 222, 168–182. https://doi.org/10.1016/j.conbuildmat.2019.06.107

Gandia, Rômulo M, Corrêa, A. A. R., Gomes, F. C., Marin, D. B., & Santana, L. S. (2019). PHYSICAL, Mechanical And Thermal Behavior Of Adobe Stabilized With " SYNTHETIC TERMITE SALIVA ". Engenharia Agrícola, 39(2), 139–149. https://doi.org/http://dx.doi.org/10.1590/1809-4430-Eng.Agric.v39n2p139-149/2019 PHYSICAL,

Garcez, Mônica, R., Santos, T., & Gatto, Darci, A. (2013). Avaliação Das Propriedades Físicas E Mecânicas De Concretos Pré-Moldados Com Adição De Serragem Em Substituição Ao Agregado Miúdo. Science & Engineering Journal, 22(2), 95–104.

Jokhio, G. A., Syed Mohsin, S. M., & Gul, Y. (2018). Two-fold sustainability - Adobe with sawdust as partial sand replacement. IOP Conference Series: Materials Science and Engineering, 342(1). https://doi.org/10.1088/1757-899X/342/1/012069

Junior, A. V. I., & Kämpf, N. (2005). Variabilidade De Goethita E Hematita Via Dissolução Redutiva Em Solos De Região TropicaL E SUBTROPICAL. Revista Brasileira de Ciência Do Solo, 29(6), 851–866.

Kazmi, S. M. S., Abbas, S., Saleem, M. A., Munir, M. J., & Khitab, A. (2016). Manufacturing of sustainable clay bricks: Utilization of waste sugarcane bagasse and rice husk ashes. Construction and Building Materials, 120, 29–41. https://doi.org/10.1016/j.conbuildmat.2016.05.084

Khurshid, I., Ahmad, S., Nawaz, R., Arshad, M., Dar, M. E. U. I., Imran, M., Aslam, F., Nasir, R., Shah, G. M., Ahmad, N., & Naeem, M. A. (2018). Development of fire bricks from organic waste: An eco-friendly energy solution. Applied Ecology and Environmental Research, 16(4), 3919–3932. https://doi.org/10.15666/aeer/1604_39193932

Malaiskiene, J., MacIulaitis, R., & Kicaite, A. (2011). Dependence of ceramics physical-mechanical properties on chemical and mineralogical composition. Construction and Building Materials, 25(8), 3168–3174. https://doi.org/10.1016/j.conbuildmat.2010.12.047

Marques, M. L., Silva, E. J., Velasco, F. G., & Fornari Junior, C. C. M. (2014). Potencialidades Do Uso De Resíduos De Celulose (Dregs/Grits) Como Agregado Em Argamassas. Revista Brasileira de Produtos Agroindustriais, 16(4), 423–431. https://doi.org/10.15871/1517-8595/rbpa.v16n4p423-431

Menezes, R. R., Ferreira, H. S., Neves, G. A., Lira, H. de L., & Ferreira, H. C. (2005). Use of granite sawing wastes in the production of ceramic bricks and tiles. Journal of the European Ceramic Society, 25(7), 1149–1158. https://doi.org/10.1016/j.jeurceramsoc.2004.04.020

Muñoz V., P., Morales O., M. P., Letelier G., V., & Mendívil G., M. A. (2016). Fired clay bricks made by adding wastes: Assessment of the impact on physical, mechanical and thermal properties. Construction and Building Materials, 125, 241–252. https://doi.org/10.1016/j.conbuildmat.2016.08.024

Nakamatsu, J., Kim, S., Ayarza, J., Ramírez, E., Elgegren, M., & Aguilar, R. (2017). Eco-friendly modification of earthen construction with carrageenan: Water durability and mechanical assessment. Construction and Building Materials, 139, 193–202. https://doi.org/10.1016/j.conbuildmat.2017.02.062

Neves, C., & Faria, O. B. (2008). Programa Interlaboratorial Proterra . Ensaios De Adobe. TerraBrasil, 2(1), 1–10.

Norma Técnica de Edificacion - NTE. (2000). NTE E.080. Reglamento nacional de construcciones.

Ornam, K., Kimsan, M., Ngkoimani, L. O., & Santi. (2017). Study on Physical and Mechanical Properties with Its Environmental Impact in Konawe - Indonesia upon Utilization of Sago Husk as Filler in Modified Structural Fly Ash - Bricks. Procedia Computer Science, 111(2015), 420–426. https://doi.org/10.1016/j.procs.2017.06.043

Ouajai, S., & Shanks, R. A. (2005). Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polymer Degradation and Stability, 89(2), 327–335. https://doi.org/10.1016/j.polymdegradstab.2005.01.016

Pérez-Villarejo, L., Eliche-Quesada, D., Iglesias-Godino, F. J., Martínez-García, C., & Corpas-Iglesias, F. A. (2012). Recycling of ash from biomass incinerator in clay matrix to produce ceramic bricks. Journal of Environmental Management, 95(SUPPL.), S349–S354. https://doi.org/10.1016/j.jenvman.2010.10.022

Resende, M., Curi, N., Ker, J. C., & Rezende, S. B. (2005). Mineralogia de solos brasileiros: interpretação e aplicações (UFLA (ed.)). UFLA.

Shafizadeh, F. (1985). Pyrolytic reactions and products of biomass. In: Fundamentals of Biomass Thermochemical Conversion. Elsevier, 183–217. https://doi.org/10.1007/978-94-009-4932-4_11

Velasco, P. M., Ortiz, M. P. M., Giró, M. A. M., Melia, D. M., & Rehbein, J. H. (2015). Development of sustainable fired clay bricks by adding kindling from vine shoot: Study of thermal and mechanical properties. Applied Clay Science, 107, 156–164. https://doi.org/10.1016/j.clay.2015.01.017

Vilane, B. R. T. (2010). Assessment of stabilisation of adobes by confined compression tests. Biosystems Engineering, 106(4), 551–558. https://doi.org/10.1016/j.biosystemsen g.2010.06.008

Downloads

Published

28/11/2020

How to Cite

GANDIA, R. M. .; SOUZA, G. R. de .; MACEDO, L. L. .; PAULA, W. C. de .; PORTELA , J. D. .; GOMES, F. C. . Physical and mechanical behavior in soil matrix materials due to residues addition and burning temperature. Research, Society and Development, [S. l.], v. 9, n. 11, p. e59891110308, 2020. DOI: 10.33448/rsd-v9i11.10308. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10308. Acesso em: 15 jan. 2025.

Issue

Section

Engineerings