Indications, materials and properties of 3D printing in dentistry: a literature overview
DOI:
https://doi.org/10.33448/rsd-v9i11.10632Keywords:
3D printing; Dental materials; Dentistry; Accuracy.Abstract
3D printing and digital manufacturing technologies have been largely used in dentistry in recent years and dentists and prosthetic technician are up to date and involved in the subject, following the advancement of technology. The objective of the present manuscript was to carry out a descriptive literature review, covering the processing methods, precision, types of materials used and the applications of 3D printing in dentistry. A bibliographic search was conducted in the PUBMED database (www.pubmed.gov), in which studies published from 2000 to 2020 were collected. Laboratory studies, case reports, systematic and literature reviews were included. Therefore, articles that did not address the topic in question, letters to the editor, opinion articles, duplicate literature and texts that were not in English were excluded. According to the inclusion and exclusion criteria, 75 research articles were selected. In dentistry the most common methods of 3D printing used are: stereolithography (SLA), material jetting (MJ), binder jetting, and Laser sintering. It is important to carefully consider the limitation of each method, material and operator’s skills in 3D printing for this technology to be more affordable in dentistry. Despite that, the accuracy of printing methods and materials used in different dental applications with 3D printing have been improving each day more, allowing a digital workflow with greater applicability and frequency of use in dentistry.
References
Abduo, J., Lyons, K., & Bennamoun, M. (2014). Trends in computer-aided manufacturing in prosthodontics: A review of the available streams. International Journal of Dentistry, 2014:783948, 15. https://doi.org/10.1155/2014/783948
Akova, T., Ucar, Y., Tukay, A., Balkaya, M. C., & Brantley, W. A. (2008). Comparison of the bond strength of laser-sintered and cast base metal dental alloys to porcelain. Dental Materials, 24(10), 1400–1404. https://doi.org/10.1016/j.dental.2008.03.001
Alharbi, N., Osman, R., & Wismeijer, D. (2016a). Effects of build direction on the mechanical properties of 3D-printed complete coverage interim dental restorations. Journal of Prosthetic Dentistry, 115(6), 760–767. https://doi.org/10.1016/j.prosdent.2015.12.002
Alharbi, N., Osman, R., & Wismeijer, D. (2016b). Factors Influencing the Dimensional Accuracy of 3D-Printed Full-Coverage Dental Restorations Using Stereolithography Technology. The International Journal of Prosthodontics, 29(5), 503–510. https://doi.org/10.11607/ijp.4835
Andonović, V., & Vrtanoski, G. (2010). Growing rapid prototyping as a technology in dental medicine, 29(1), 31–39. Retrieved from https://mesj.ukim.edu.mk/sites/default/files/Mech-Eng-29-1-2010.pdf#page=32
Aragón, M. L. C., Pontes, L. F., Bichara, L. M., Flores-Mir, C., & Normando, D. (2016). Validity and reliability of intraoral scanners compared to conventional gypsum models measurements: A systematic review. European Journal of Orthodontics, 38(4), 429–434. https://doi.org/10.1093/ejo/cjw033
American Society for Testing and Materials. (2009). ASTM 52900-15: standard terminology for additive manufacturing - general principles and terminology. West Conshohocken, PA: ASTM International.
Azari, A., & Nikzad, S. (2009). The evolution of rapid prototyping in dentistry: A review. Rapid Prototyping Journal, 15(3), 216–225. https://doi.org/10.1108/13552540910961946
Barazanchi, A., Li, K. C., Al-Amleh, B., Lyons, K., & Waddell, J. N. (2017). Additive Technology: Update on Current Materials and Applications in Dentistry. Journal of Prosthodontics, 26(2), 156–163. https://doi.org/10.1111/jopr.12510
Bibb, R., Eggbeer, D., & Williams, R. (2006). Rapid manufacture of removable partial denture frameworks. Rapid Prototyping Journal, 12(2), 95–99. https://doi.org/10.1108/13552540610652438
Birnbaum NS, A. H. (2008). Dental impressions using 3D digital scanners: virtual becomes reality. Compend Contin Educ Dent, 29(8), 494, 496, 498-505. Retrieved from https://pubmed.ncbi.nlm.nih.gov/18935788/
Borges, A. L. S., Dal Piva, A. M. D. O., Paes-Junior, T. J. D. A., & Tribst, J. P. M. (2020). Mouthguard Use Effect on the Biomechanical Response of an Ankylosed Maxillary Central Incisor during a Traumatic Impact: A 3-Dimensional Finite Element Analysis. Life, 10(11), 294. https://doi.org/10.3390/life10110294
Chang, S. L., Lo, C. H., & Jiang, C.-P. (2015). The Manufacture of Molar and Dental Bridge through 3D Printing. Applied Mechanics and Materials, 789–790, 1217–1222. https://doi.org/10.4028/www.scientific.net/amm.789-790.1217
Chen, H., Wang, H., Lv, P., Wang, Y., & Sun, Y. (2015). Quantitative evaluation of tissue surface adaption of CAD-designed and 3D printed wax pattern of maxillary complete denture. BioMed Research International, 2015:453968, p. 5 https://doi.org/10.1155/2015/453968
Chung, Y. J., Park, J. M., Kim, T. H., Ahn, J. S., Cha, H. S., & Lee, J. H. (2018). 3D printing of resin material for denture artificial teeth: Chipping and indirect tensile fracture resistance. Materials, 11(10), 1–13. https://doi.org/10.3390/ma11101798
Dawood, A., Marti, B. M., Sauret-Jackson, V., & Darwood, A. (2015). 3D printing in dentistry. British Dental Journal, 219(11), 521–529. https://doi.org/10.1038/sj.bdj.2015.914
Denry, I., & Kelly, J. R. (2014). Emerging ceramic-based materials for dentistry. Journal of Dental Research, 93(12), 1235–1242. https://doi.org/10.1177/0022034514553627
Ebert, J., Özkol, E., Zeichner, A., Uibel, K., Weiss, Ö., Koops, U., & Fischer, H. (2009). Direct inkjet printing of dental prostheses made of zirconia. Journal of Dental Research, 88(7), 673–676. https://doi.org/10.1177/0022034509339988
Eggbeer, D., Bibb, R., & Williams, R. (2005). The computer-aided design and rapid prototyping fabrication of removable partial denture frameworks. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 219(3), 195–202. https://doi.org/10.1243/095441105X9372
Ender, A., & Mehl, A. (2013). Accuracy of complete-Arch dental impressions: A new method of measuring trueness and precision. Journal of Prosthetic Dentistry, 109(2), 121–128. https://doi.org/10.1016/S0022-3913(13)60028-1
Fahad, M., Dickens, P., & Gilbert, M. (2013). Novel polymeric support materials for jetting based additive manufacturing processes. Rapid Prototyping Journal, 19(4), 230–239. https://doi.org/10.1108/13552541311323245
Goodacre, C. J., Garbacea, A., Naylor, W. P., Daher, T., Marchack, C. B., & Lowry, J. (2012). CAD/CAM fabricated complete dentures: Concepts and clinical methods of obtaining required morphological data. Journal of Prosthetic Dentistry, 107(1), 34–46. https://doi.org/10.1016/S0022-3913(12)60015-8
Groth, C., Kravitz, N. D., Jones, P. E., Graham, J. W., & Redmond, W. R. (2014). Three-dimensional printing technology. Journal of Clinical Orthodontics, 48(8), 475–485. Retrieved from http://www.kravitzorthodontics.com/assets/pdfs/3-Dimensional-Printing-Technology.pdf
Hada, T., Kanazawa, M., Iwaki, M., Arakida, T., Soeda, Y., Katheng, A., & Minakuchi, S. (2020). Effect of printing direction on the accuracy of 3D-printed dentures using stereolithography technology. Materials, 13(15), 1–12. https://doi.org/10.3390/ma13153405
Hatamleh, M. M., & Watson, J. (2013). Construction of an Implant-Retained Auricular Prosthesis with the Aid of Contemporary Digital Technologies: A Clinical Report. Journal of Prosthodontics, 22(2), 132–136. https://doi.org/10.1111/j.1532-849X.2012.00916.x
Hoang, L. N., Thompson, G. A., Cho, S. H., Berzins, D. W., & Ahn, K. W. (2015). Die spacer thickness reproduction for central incisor crown fabrication with combined computer-aided design and 3D printing technology: An in vitro study. Journal of Prosthetic Dentistry, 113(5), 398–404. https://doi.org/10.1016/j.prosdent.2014.11.004
Homsy, F. R., Özcan, M., Khoury, M., & Majzoub, Z. A. K. (2018). Marginal and internal fit of pressed lithium disilicate inlays fabricated with milling, 3D printing, and conventional technologies. Journal of Prosthetic Dentistry, 119(5), 783–790. https://doi.org/10.1016/j.prosdent.2017.07.025
Huang, H. L., Hsu, J. T., Fuh, L. J., Lin, D. J., & Chen, M. Y. C. (2010). Biomechanical simulation of various surface roughnesses and geometric designs on an immediately loaded dental implant. Computers in Biology and Medicine, 40(5), 525–532. https://doi.org/10.1016/j.compbiomed.2010.03.008
Huang, Z., Zhang, L., Zhu, J., & Zhang, X. (2015). Clinical marginal and internal fit of metal ceramic crowns fabricated with a selective laser melting technology. Journal of Prosthetic Dentistry, 113(6), 623–627. https://doi.org/10.1016/j.prosdent.2014.10.012
Inokoshi, M., Kanazawa, M., & Minakuchi, S. (2012). Evaluation of a complete denture trial method applying rapid prototyping. Dental Materials Journal, 31(1), 40–46. https://doi.org/10.4012/dmj.2011-113
Jang, Y., Sim, J. Y., Park, J. K., Kim, W. C., Kim, H. Y., & Kim, J. H. (2020). Accuracy of 3-unit fixed dental prostheses fabricated on 3D-printed casts. Journal of Prosthetic Dentistry, 123(1), 135–142. https://doi.org/10.1016/j.prosdent.2018.11.004
Kanazawa, M., Inokoshi, M., Minakuchi, S., & Ohbayashi, N. (2011). Trial of a CAD/CAM system for fabricating complete dentures. Dental Materials Journal, 30(1), 93–96. https://doi.org/10.4012/dmj.2010-112
Katase, H., Kanazawa, M., Inokoshi, M., & Minakuchi, S. (2013). Face simulation system for complete dentures by applying rapid prototyping. Journal of Prosthetic Dentistry, 109(6), 353–360. https://doi.org/10.1016/S0022-3913(13)60316-9
Katkar, R. A., Taft, R. M., & Grant, G. T. (2018). 3D Volume Rendering and 3D Printing (Additive Manufacturing). Dental Clinics of North America, 62(3), 393–402. https://doi.org/10.1016/j.cden.2018.03.003
Kattadiyil, M. T., Goodacre, C. J., Baba, N. Z. (2013). CAD/CAM complete dentures: A review of two commercial fabrication systems. J. Calif. Dent. Assoc, (41), 407–416. Retrieved from https://pubmed.ncbi.nlm.nih.gov/23875432/
Keating, A. P., Knox, J., Bibb, R., & Zhurov, A. I. (2008). A comparison of plaster, digital and reconstructed study model accuracy. Journal of Orthodontics, 35(3), 191–201. https://doi.org/10.1179/146531207225022626
Kessler, A., Hickel, R., & Reymus, M. (2019). 3D Printing in Dentistry — State of the Art, 45(1), 30–40. https://doi.org/http://doi.org/10.2341/18-229-L
Kim, T. H., Varjao, F. (2016). 3D printed complete dentures. Quintessence Dent. Technol, (39), 141–149. Retrieved from https://scholar.google.com/scholar?hl=es&as _sdt=0%2C5&q=Kim%2C+T.H.%3B+Varjao%2C+F.+%282016%29.+3D+printed+complete+dentures.+Quintessence+Dent.+Technol%2C+%2839%29%2C+141%E2%80%93149.&btnG=
Kim, K. B., Kim, W. C., Kim, H. Y., & Kim, J. H. (2013). An evaluation of marginal fit of three-unit fixed dental prostheses fabricated by direct metal laser sintering system. Dental Materials, 29(7), e91–e96. https://doi.org/10.1016/j.dental.2013.04.007
Krar S, G. A. (2003). Exploring Advanced Manufacturing Technology. New York, Industrial Press Inc, 721.
Lal, K., White, G. S., Morea, D. N., & Wright, R. F. (2006). Use of stereolithographic templates for surgical and prosthodontic implant planning and placement. Part I. The concept. Journal of Prosthodontics, 15(1), 51–58. https://doi.org/10.1111/j.1532-849X.2006.00069.x
Liu, Q., Leu, M. C., & Schmitt, S. M. (2006). Rapid prototyping in dentistry: Technology and application. International Journal of Advanced Manufacturing Technology, 29(3–4), 317–335. https://doi.org/10.1007/s00170-005-2523-2
Maeda, Y., Mitioura, M., Tsutsum, S., Tsumi, T., Okad, M., & Nokub, T. (1994). A CAD / CAM System for Removable Denture . Part I : Fabrication of Complete Dentures. The International Journal of Prosthodontics, 7(1), 17–22. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8179777
Masood, S. H., Rattanawong, W., & Iovenitti, P. (2003). A generic algorithm for a best part orientation system for complex parts in rapid prototyping. Journal of Materials Processing Technology, 139(1-3 SPEC), 110–116. https://doi.org/10.1016/S0924-0136(03)00190-0
Melchels, F. P. W., Feijen, J., & Grijpma, D. W. (2010). A review on stereolithography and its applications in biomedical engineering. Biomaterials, 31(24), 6121–6130. https://doi.org/10.1016/j.biomaterials.2010.04.050
Melo Filho, A. B., Tribst, J. P. M., Ramos, N. C., Luz, J. N., Jardini, M. A. N.,
Borges, A. L. S., Santamaria, M.P., & Melo, R.M. (2019). Failure Probability, Stress Distribution and Fracture Analysis of Experimental Screw for Micro Conical Abutment. Brazilian Dental Journal, 30(2):157-163. doi: 10.1590/0103-6440201902401.
Mitteramskogler, G., Gmeiner, R., Felzmann, R., Gruber, S., Hofstetter, C., Stampfl, J., … Laubersheimer, J. (2014). Light curing strategies for lithography-based additive manufacturing of customized ceramics. Additive Manufacturing, 1, 110–118. https://doi.org/10.1016/j.addma.2014.08.003
Örtorp, A., Jönsson, D., Mouhsen, A., & Vult Von Steyern, P. (2011). The fit of cobalt-chromium three-unit fixed dental prostheses fabricated with four different techniques: A comparative in vitro study. Dental Materials, 27(4), 356–363. https://doi.org/10.1016/j.dental.2010.11.015
Osman, R., Alharbi, N., & Wismeijer, D. (2017). Build Angle: Does It Influence the Accuracy of 3D-Printed Dental Restorations Using Digital Light-Processing Technology? The International Journal of Prosthodontics, 30(2), 182–188. https://doi.org/10.11607/ijp.5117
Park, M. E., & Shin, S. Y. (2018). Three-dimensional comparative study on the accuracy and reproducibility of dental casts fabricated by 3D printers. Journal of Prosthetic Dentistry, 119(5), 861.e1-861.e7. https://doi.org/10.1016/j.prosdent.2017.08.020
Pereira, S. P., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. Santa Maria, RS: UFSM, NTE. Rtrived from https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1
Pereyra, N. M., Marano, J., Subramanian, G., Quek, S., Leff, D. (2015). Comparison of Patient Satisfaction in the Fabrication of Conventional Dentures vs. DENTCA (CAD/CAM) Dentures: A Case Report. J. N. J. Dent. Assoc., (86), 26–33. Retrieved from https://scholar.google.com/scholar?hl=es&as_sdt=0%2C5&q=Comparison+of+Patient+Satisfaction+in+the+Fabrication+of+Conventional+Dentures+vs.+DENTCA+%28CAD%2FCAM%29+Dentures%3A+A+Case+Repor&btnG=
Pompa, G., Di Carlo, S., De Angelis, F., Cristalli, M. P., & Annibali, S. (2015). Comparison of Conventional Methods and Laser-Assisted Rapid Prototyping for Manufacturing Fixed Dental Prostheses: An in Vitro Study. BioMed Research International, 2015. https://doi.org/10.1155/2015/318097
Puebla, K., Arcaute, K., Quintana, R., & Wicker, R. B. (2012). Effects of environmental conditions, aging, and build orientations on the mechanical properties of ASTM type i specimens manufactured via stereolithography. Rapid Prototyping Journal, 18(5), 374–388. https://doi.org/10.1108/13552541211250373
Quante, K., Ludwig, K., & Kern, M. (2008). Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology. Dental Materials, 24(10), 1311–1315. https://doi.org/10.1016/j.dental.2008.02.011
Revilla-León, M., Gonzalez-Martín, Ó., Pérez López, J., Sánchez-Rubio, J. L., & Özcan, M. (2018). Position Accuracy of Implant Analogs on 3D Printed Polymer versus Conventional Dental Stone Casts Measured Using a Coordinate Measuring Machine. Journal of Prosthodontics, 27(6), 560–567. https://doi.org/10.1111/jopr.12708
Revilla-León, M., & Özcan, M. (2019). Additive Manufacturing Technologies Used for Processing Polymers: Current Status and Potential Application in Prosthetic Dentistry. Journal of Prosthodontics, 28(2), 146–158. https://doi.org/10.1111/jopr.12801
Revilla-León, Marta, and Mutlu Özcan. "Additive manufacturing technologies used for 3D metal printing in dentistry." Current Oral Health Reports 4.3 (2017): 201-208.
Revilla-León, Marta, Mehrad Sadeghpour, and Mutlu Özcan. "An update on applications of 3D printing technologies used for processing polymers used in implant dentistry." Odontology 108.3 (2020): 331-338.
Sancho-Puchades, M., Fehmer, V., Hämmerle, C., Dent, M., & Sailer, I. (2015). Advanced smile diagnostics using CAD/CAM mock-ups. The European Journal of Esthetic Dentistry, 10, 374–391. Retrieved from http://www.quintpub.com/userhome/ejed/ejed_10 _3_sanchopuchades_p374.pdf
S
him, J. S., Kim, J. E., Jeong, S. H., Choi, Y. J., & Ryu, J. J. (2020). Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations. Journal of Prosthetic Dentistry, 124(4), 468–475. https://doi.org/10.1016/j.prosdent.2019.05.034
Silva, N. R. F. A., Witek, L., Coelho, P. G., Thompson, V. P., Rekow, E. D., & Smay, J. (2011). Additive CAD/CAM process for dental prostheses. Journal of Prosthodontics, 20(2), 93–96. https://doi.org/10.1111/j.1532-849X.2010.00623.x
Stansbury, J. W., & Idacavage, M. J. (2016). 3D printing with polymers: Challenges among expanding options and opportunities. Dental Materials, 32(1), 54–64. https://doi.org/10.1016/j.dental.2015.09.018
Strub, J. R., Rekow, E. D., & Witkowski, S. (2006). Computer-aided design and fabrication of dental restorations: Current systems and future possibilities. Journal of the American Dental Association, 137(9), 1289–1296. https://doi.org/10.14219/jada.archive.2006.0389
Sun, Y., Lü, P., & Wang, Y. (2009). Study on CAD&RP for removable complete denture. Computer Methods and Programs in Biomedicine, 93(3), 266–272. https://doi.org/10.1016/j.cmpb.2008.10.003
Tahayeri, A., Morgan, M. C., Fugolin, A. P., Bompolaki, D., Athirasala, A., Pfeifer, C. S., … Bertassoni, L. E. (2018). 3D printed versus conventionally cured provisional crown and bridge dental materials. Dental Materials, 34(2), 192–200. https://doi.org/10.1016/j.dental.2017.10.003
Tamay, D. G., Usal, T. D., Alagoz, A. S., Yucel, D., Hasirci, N., & Hasirci, V. (2019). 3D and 4D printing of polymers for tissue engineering applications. Frontiers in Bioengineering and Biotechnology, 7(JUL). https://doi.org/10.3389/fbioe.2019.00164
Tymrak, B. M., Kreiger, M., & Pearce, J. M. (2014). Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials and Design, 58, 242–246. https://doi.org/10.1016/j.matdes.2014.02.038
Ucar, Y., Akova, T., Akyil, M. S., & Brantley, W. A. (2009). Internal fit evaluation of crowns prepared using a new dental crown fabrication technique: Laser-sintered Co-Cr crowns. Journal of Prosthetic Dentistry, 102(4), 253–259. https://doi.org/10.1016/S0022-3913(09)60165-7
Urrios, A., Parra-Cabrera, C., Bhattacharjee, N., Gonzalez-Suarez, A. M., Rigat-Brugarolas, L. G., Nallapatti, U., & Folch, A. (2016). 3D-printing of transparent bio-microfluidic devices in PEG-DA. Lab on a Chip, 16(12), 2287–2294. https://doi.org/10.1039/c6lc00153j
Van Noort, R. (2012). The future of dental devices is digital. Dental Materials, 28(1), 3–12. https://doi.org/10.1016/j.dental.2011.10.014
Vandenbroucke, B., & Kruth, J.-P. (2007). Selective Laser Melting of Biocompatible Metals for Rapid. Rapid Prototyping Journal, 13(4), 148–159.
Vasques, M. T., Mori, M., & Laganá, D. C. (2020). Three-dimensional printing of occlusal devices for temporomandibular disorders by using a free CAD software program: A technical report. Journal of Prosthetic Dentistry, 123(2), 232–235. https://doi.org/10.1016/j.prosdent.2018.12.017
Villefort, R. F., Tribst, J., Dal Piva, A., Borges, A. L., Binda, N. C., Ferreira, C., Bottino, M. A., & von Zeidler, S. (2020). Stress distribution on different bar materials in implant-retained palatal obturator. PloS one, 15(10), e0241589. https://doi.org/10.1371/journal.pone.0241589
Wang, J., Shaw, L. L., & Cameron, T. B. (2006). Solid freeform fabrication of permanent dental restorations via slurry micro-extrusion. Journal of the American Ceramic Society, 89(1), 346–349. https://doi.org/10.1111/j.1551-2916.2005.00672.x
Williams, R. J., Bibb, R., Eggbeer, D., & Collis, J. (2006). Use of CAD/CAM technology to fabricate a removable partial denture framework. Journal of Prosthetic Dentistry, 96(2), 96–99. https://doi.org/10.1016/j.prosdent.2006.05.029
Wu, J., Wang, X., Zhao, X., Zhang, C., & Gao, B. (2012). A study on the fabrication method of removable partial denture framework by computer-aided design and rapid prototyping. Rapid Prototyping Journal, 18(4), 318–323. https://doi.org/10.1108/13552541211231743
Yao, H., Wang, J., & Mi, S. (2017). Photo processing for biomedical hydrogels design and functionality: A review. Polymers, 10(1), 1–27. https://doi.org/10.3390/polym10010011
Yeung, M., Abdulmajeed, A., Carrico, C. K., Deeb, G. R., & Bencharit, S. (2020). Accuracy and precision of 3D-printed implant surgical guides with different implant systems: An in vitro study. Journal of Prosthetic Dentistry, 123(6), 821–828. https://doi.org/10.1016/j.prosdent.2019.05.027
Zhang, Y. De, Jiang, J. G., Liang, T., & Hu, W. P. (2011). Kinematics modeling and experimentation of the multi-manipulator tooth-arrangement robot for full denture manufacturing. Journal of Medical Systems, 35(6), 1421–1429. https://doi.org/10.1007/s10916-009-9419-x
Zhang, Z. chen, Li, P. lun, Chu, F. ting, & Shen, G. (2019). Influence of the three-dimensional printing technique and printing layer thickness on model accuracy. Journal of Orofacial Orthopedics, 80(4), 194–204. https://doi.org/10.1007/s00056-019-00180-y
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Laura Viviana Calvache Arcila; Nathália de Carvalho Ramos; Marco Antonio Bottino; João Paulo Mendes Tribst
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.