COVID-19 neurological manifestations: a narrative review on the mechanisms, pathogenesis, and clinical management

Authors

DOI:

https://doi.org/10.33448/rsd-v9i12.10724

Keywords:

Central nervous system viral diseases; Encephalitis; SARS virus; Viral tropism.

Abstract

Coronaviruses are a large viral family, whose infections are recognized since 1960, varying from the common cold to more critical respiratory conditions. Regarding coronavirus 2019 (COVID-19), a wide spectrum of neurological manifestations among infected patients were reported, raising concerns whether Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) had tropism for the central nervous system. To clarify these questions, this bibliographic review was carried out by searching for articles based on national and international data during the period from December 2019 to June 2020. Thus, this review summarizes the current evidence on the transmission routes, focusing on the olfactory bulb and the hematogenic pathways, as well as the direct and indirect pathological mechanisms through which SARS-CoV-2 causes neurological damage. Moreover, clinical, laboratorial, and therapeutic aspects to manage patients with COVID-19 related neurological symptoms are outlined. Finally, development of treatments tackling specific structures and pathways related to viral entry and cardiovascular regulation on the brain are expected, in addition to monitoring of patients affected by the COVID-19 to assess long-term consequences on the nervous system.

References

Aggarwal, G., Lippi, G., & Michael Henry, B. (2020). Cerebrovascular disease is associated with an increased disease severity in patients with Coronavirus Disease 2019 (COVID-19): A pooled analysis of published literature. International Journal of Stroke, 15(4), 385–389. https://doi.org/10.1177/1747493020921664

Alenina, N., & Bader, M. (2019). ACE2 in Brain Physiology and Pathophysiology: Evidence from Transgenic Animal Models. Neurochemical Research, 44(6), 1323–1329. https://doi.org/10.1007/s11064-018-2679-4

Atallah, B., Mallah, S. I., & AlMahmeed, W. (2020). Anticoagulation in COVID-19. European Heart Journal. Cardiovascular Pharmacotherapy, 1–2. https://doi.org/10.1093/ehjcvp/pvaa036

Biancardi, V. C., Stranahan, A. M., Krause, E. G., de Kloet, A. D., & Stern, J. E. (2016). Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus. American Journal of Physiology. Heart and Circulatory Physiology, 310(3), H404–H415. https://doi.org/10.1152/ajpheart.00247.2015

Bohmwald, K., Gálvez, N. M. S., Ríos, M., & Kalergis, A. M. (2018). Neurologic alterations due to respiratory virus infections. Frontiers in Cellular Neuroscience, 12(October), 1–15. https://doi.org/10.3389/fncel.2018.00386

Das, G., Mukherjee, N., & Ghosh, S. (2020). Neurological Insights of COVID-19 Pandemic. ACS Chemical Neuroscience, 11(9), 1206–1209. https://doi.org/10.1021/acschemneuro.0c00201

De Felice, F. G., Tovar-Moll, F., Moll, J., Munoz, D. P., & Ferreira, S. T. (2020). Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and the Central Nervous System. Trends in Neurosciences, 43(6), 355–357. https://doi.org/10.1016/j.tins.2020.04.004

Ding, Y., He, L., Zhang, Q., Huang, Z., Che, X., Hou, J., Wang, H., Shen, H., Qiu, L., Li, Z., Geng, J., Cai, J., Han, H., Li, X., Kang, W., Weng, D., Liang, P., & Jiang, S. (2004). Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis virus transmission pathways. Journal of Pathology, 203(2), 622–630. https://doi.org/10.1002/path.1560

Dolhnikoff, M., Duarte-Neto, A. N., de Almeida Monteiro, R. A., da Silva, L. F. F., de Oliveira, E. P., Saldiva, P. H. N., Mauad, T., & Negri, E. M. (2020). Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19. Journal of Thrombosis and Haemostasis, 18(6), 1517–1519. https://doi.org/10.1111/jth.14844

Doobay, M. F., Talman, L. S., Obr, T. D., Tian, X., Davisson, R. L., & Lazartigues, E. (2007). Differential expression of neuronal ACE2 in transgenic mice with overexpression of the brain renin-angiotensin system. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 292(1). https://doi.org/10.1152/ajpregu.00292.2006

Gandhi, S., Srivastava, A. K., Ray, U., & Tripathi, P. P. (2020). Is the Collapse of the Respiratory Center in the Brain Responsible for Respiratory Breakdown in COVID-19 Patients? ACS Chemical Neuroscience, 11(10), 1379–1381. https://doi.org/10.1021/acschemneuro.0c00217

Gheblawi, M., Wang, K., Viveiros, A., Nguyen, Q., Zhong, J. C., Turner, A. J., Raizada, M. K., Grant, M. B., & Oudit, G. Y. (2020). Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circulation Research, 1456–1474. https://doi.org/10.1161/CIRCRESAHA.120.317015

Gooz, M. (2010). ADAM-17: the enzyme that does it all. Critical Reviews in Biochemistry and Molecular Biology, 45(2), 146–169. https://doi.org/10.3109/10409231003628015

Graham, R. L., Donaldson, E. F., & Baric, R. S. (2013). A decade after SARS: Strategies for controlling emerging coronaviruses. Nature Reviews Microbiology, 11(12), 836–848. https://doi.org/10.1038/nrmicro3143

Gu, J., Gong, E., Zhang, B., Zheng, J., Gao, Z., Zhong, Y., Zou, W., Zhan, J., Wang, S., Xie, Z., Zhuang, H., Wu, B., Zhong, H., Shao, H., Fang, W., Gao, D., Pei, F., Li, X., He, Z., … Leong, A. S. Y. (2005). Multiple organ infection and the pathogenesis of SARS. Journal of Experimental Medicine, 202(3), 415–424. https://doi.org/10.1084/jem.20050828

Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., Liu, L., Shan, H., Lei, C. L., Hui, D. S. C., Du, B., Li, L. J., Zeng, G., Yuen, K. Y., Chen, R. C., Tang, C. L., Wang, T., Chen, P. Y., Xiang, J., … Zhong, N. S. (2020). Clinical Characteristics of Coronavirus Disease 2019 in China. The New England Journal of Medicine, 1–13. https://doi.org/10.1056/NEJMoa2002032

Harmer, D., Gilbert, M., Borman, R., & Clark, K. L. (2002). Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Letters, 532(1–2), 107–110. https://doi.org/10.1016/S0014-5793(02)03640-2

Haspula, D., & Clark, M. A. (2018). Molecular basis of the brain renin angiotensin system in cardiovascular and neurologic disorders: Uncovering a key role for the astroglial angiotensin type 1 receptor AT1R. Journal of Pharmacology and Experimental Therapeutics, 366(2), 251–264. https://doi.org/10.1124/jpet.118.248831

Helms, J., Kremer, S., Merdji, H., Clere-Jehl, R., Schenck, M., Kummerlen, C., Collange, O., Boulay, C., Fafi-Kremer, S., Ohana, M., Anheim, M., & Meziani, F. (2020). Neurologic Features in Severe SARS-CoV-2 Infection. The New England Journal of Medicine, 382(23), 2268–2270. https://doi.org/10.1056/NEJMc2008597

Hoch, D. H., Akiyama, S., Suyama, K., & Takano, T. (2020). Guillain–Barré Syndrome Associated with SARS-CoV-2. In New England Journal of Medicine. https://doi.org/10.56/NEJMc1509759

Kim, J. M., Chung, Y. S., Jo, H. J., Lee, N. J., Kim, M. S., Woo, S. H., Park, S., Kim, J. W., Kim, H. M., & Han, M. G. (2020). Identification of coronavirus isolated from a patient in Korea with covid-19. Osong Public Health and Research Perspectives, 11(1), 3–7. https://doi.org/10.24171/j.phrp.2020.11.1.02

Kreuziger, L. B., Lee, A., Garcia, D., Cuker, A., Cushman, M., DeSancho, M., & Connors, J. M. (2020). COVID-19 and VTE/Anticoagulation: Frequently Asked Questions. American Society of Hematology. https://www.hematology.org/covid-19/covid-19-and-vte-anticoagulation

Law, H. K. W., Cheung, C. Y., Ng, H. Y., Sia, S. F., Chan, Y. O., Luk, W., Nicholls, J. M., Peiris, J. S. M., & Lau, Y. L. (2005). Chemokine up-regulation in SARS-coronavirus – infected , monocyte-derived human dendritic cells. Blood, 106(7), 2366–2374. https://doi.org/https://doi.org/10.1182/blood-2004-10-4166

Li, X., Geng, M., Peng, Y., Meng, L., & Lu, S. (2020). Molecular immune pathogenesis and diagnosis of COVID-19. Journal of Pharmaceutical Analysis, 10(2), 102–108. https://doi.org/10.1016/j.jpha.2020.03.001

Li, Y. C., Bai, W. Z., & Hashikawa, T. (2020). The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. Journal of Medical Virology, 92(6), 552–555. https://doi.org/10.1002/jmv.25728

Li, Y. C., Bai, W. Z., Hirano, N., Hayashida, T., & Hashikawa, T. (2012). Coronavirus infection of rat dorsal root ganglia: Ultrastructural characterization of viral replication, transfer, and the early response of satellite cells. Virus Research, 163(2), 628–635. https://doi.org/10.1016/j.virusres.2011.12.021

Lippi, A., Domingues, R., Setz, C., Outeiro, T. F., & Krisko, A. (2020). SARS-CoV-2: At the Crossroad Between Aging and Neurodegeneration. Movement Disorders, 35(5), 716–720. https://doi.org/10.1002/mds.28084

Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 395(10224), 565–574.

Mao, L., Jin, H., Wang, M., Hu, Y., Chen, S., He, Q., Chang, J., Hong, C., Zhou, Y., Wang, D., Miao, X., Li, Y., & Hu, B. (2020). Neurologic Manifestations of Hospitalized Patients with Coronavirus Disease 2019 in Wuhan, China. JAMA Neurology, 1–8. https://doi.org/10.1001/jamaneurol.2020.1127

Matsuda, K., Park, C. H., Sunden, Y., Kimura, T., Ochiai, K., Kida, H., & Umemura, T. (2004). The vagus nerve is one route of transneural invasion for intranasally inoculated influenza A virus in mice. Veterinary Pathology, 41(2), 101–107. https://doi.org/10.1354/vp.41-2-101

Mattos, R. De, Rafael, R., Ii, M. N., Maria, M., Carvalho, B. De, Maria, H., Leal, S., Iv, D., V, S. A., Guimarães, M., & Faria, D. A. (2020). Epidemiology, public policies and Covid-19 pandemics in Brazil: what can we expect ? Rev Enfrem UERJ, Rio de Janeiro, 28, e49570. https://doi.org/10.12957/reuerj.2020.49570

McCray, P. B., Pewe, L., Wohlford-Lenane, C., Hickey, M., Manzel, L., Shi, L., Netland, J., Jia, H. P., Halabi, C., Sigmund, C. D., Meyerholz, D. K., Kirby, P., Look, D. C., & Perlman, S. (2007). Lethal Infection of K18-hACE2 Mice Infected with Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 81(2), 813–821. https://doi.org/10.1128/jvi.02012-06

Moriguchi, T., Harii, N., Goto, J., Harada, D., Sugawara, H., Takamino, J., Ueno, M., Sakata, H., Kondo, K., Myose, N., Nakao, A., Takeda, M., Haro, H., Inoue, O., Suzuki-Inoue, K., Kubokawa, K., Ogihara, S., Sasaki, T., Kinouchi, H., … Shimada, S. (2020). A first case of meningitis/encephalitis associated with SARS-Coronavirus-2. International Journal of Infectious Diseases, 94(May), 55–58. https://doi.org/10.1016/j.ijid.2020.03.062

Nadeem, M. S., Zamzami, M. A., Choudhry, H., Murtaza, B. N., Kazmi, I., Ahmad, H., & Shakoori, A. R. (2020). Origin, Potential Therapeutic Targets and Treatment for Coronavirus Disease (COVID-19). Pathogens 2020, Vol. 9, Page 307, 9(4), 307. https://doi.org/10.3390/PATHOGENS9040307

Nakagawa, P., & Sigmund, C. D. (2017). How Is the Brain Renin-Angiotensin System Regulated? Hypertension, 70(1), 10–18. https://doi.org/10.1161/HYPERTENSIONAHA.117.08550

Natoli, S., Oliveira, V., Calabresi, P., Maia, L. F., & Pisani, A. (2020). Does SARS‐Cov‐2 invade the brain? Translational lessons from animal models. European Journal of Neurology, 0–2. https://doi.org/10.1111/ene.14277

Ogier, M., Andéol, G., Sagui, E., & Bo, G. D. (2020). How To Detect and Track Chronic Neurologic Sequelae of Covid-19? Use of Auditory Brainstem Responses and Neuroimaging for Long-Term Patient Follow-Up. Brain, Behavior, & Immunity - Health, 100081. https://doi.org/10.1016/j.bbih.2020.100081

Patel, V. B., Clarke, N., Wang, Z., Fan, D., Parajuli, N., Basu, R., Putko, B., Kassiri, Z., Turner, A. J., & Oudit, G. Y. (2014). Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: A positive feedback mechanism in the RAS. Journal of Molecular and Cellular Cardiology, 66, 167–176. https://doi.org/10.1016/j.yjmcc.2013.11.017

Romero-Sánchez, C. M., Díaz-Maroto, I., Fernández-Díaz, E., Sánchez-Larsen, Á., Layos-Romero, A., García-García, J., González, E., Redondo-Peñas, I., Perona-Moratalla, A. B., Del Valle-Pérez, J. A., Gracia-Gil, J., Rojas-Bartolomé, L., Feria-Vilar, I., Monteagudo, M., Palao, M., Palazón-García, E., Alcahut-Rodríguez, C., Sopelana-Garay, D., Moreno, Y., … Segura, T. (2020). Neurologic manifestations in hospitalized patients with COVID-19: The ALBACOVID registry. Neurology, 10.1212/WNL.0000000000009937. https://doi.org/10.1212/wnl.0000000000009937

Rother, E. T. (2007). Systematic literature review X narrative review. ACTA Paulista de Enfermagem, 20(2), 7–8. https://doi.org/10.1590/s0103-21002007000200001

Ruan, Q., Yang, K., Wang, W., Jiang, L., & Song, J. (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine, 46(5), 846–848. https://doi.org/10.1007/s00134-020-05991-x

Shanmugaraj, B., Malla, A., & Phoolcharoen, W. (2020). Emergence of novel coronavirus 2019-nCoV: Need for rapid vaccine and biologics development. Pathogens, 9(2), 1–10. https://doi.org/10.3390/pathogens9020148

Školoudík, D., Bar, M., Šaňák, D., Bardoň, P., Roubec, M., Langová, K., Herzig, R., & Kaňovský, P. (2010). D-dimers increase in acute ischemic stroke patients with the large artery occlusion, but do not depend on the time of artery recanalization. Journal of Thrombosis and Thrombolysis, 29(4), 477–482. https://doi.org/10.1007/s11239-009-0372-9

Spiegel, M., Schneider, K., Weber, F., Weidmann, M., & Hufert, F. T. (2006). Interaction of severe acute respiratory syndrome-associated coronavirus with dendritic cells. Journal of General Virology, 87(7), 1953–1960. https://doi.org/10.1099/vir.0.81624-0

Steardo, L., Steardo, L., Zorec, R., & Verkhratsky, A. (2020). Neuroinfection may potentially contribute to pathophysiology and clinical manifestations of COVID-19. Acta Physiologica (Oxford, England), March, e13473. https://doi.org/10.1111/apha.13473

Tang, N., Bai, H., Chen, X., Gong, J., Li, D., & Sun, Z. (2020). Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. Journal of Thrombosis and Haemostasis, March, 1094–1099. https://doi.org/10.1111/jth.14817

Tay, M. Z., Poh, C. M., Rénia, L., MacAry, P. A., & Ng, L. F. P. (2020). The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews Immunology, 1–12. https://doi.org/10.1038/s41577-020-0311-8

The WHO MERS-CoV Research Group. (2013). State of Knowledge and Data Gaps of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in Humans. PLoS Currents, 5(October), 1–31. https://doi.org/10.1371/currents.outbreaks.0bf719e352e7478f8ad85fa30127ddb8

Tortoric, M. A., & Veesler, D. (2020). Structural insights into coronavirus entry. Advances in Virus Research, 105(January), 93–116. https://doi.org/https://doi.org/10.1016/bs.aivir.2019.08.002 #

Vaira, L. A., Deiana, G., Fois, A. G., Pirina, P., Madeddu, G., De Vito, A., Babudieri, S., Petrocelli, M., Serra, A., Bussu, F., Ligas, E., Salzano, G., & De Riu, G. (2020). Objective evaluation of anosmia and ageusia in COVID-19 patients: Single-center experience on 72 cases. Head and Neck, 42(6), 1252–1258. https://doi.org/10.1002/hed.26204

Williams, E., Bevers, M., & Feske, S. (2020). Stroke. BRIGHAM AND WOMEN’S HOSPITAL COVID-19 CLINICAL GUIDELINES. https://covidprotocols.org/protocols/neurology/#stroke

Wu, Y., Xu, X., Chen, Z., Duan, J., Hashimoto, K., & Yang, L. (2020). Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain, Behavior, and Immunity, March. https://doi.org/https://doi.org/10.1016/j.bbi.2020.03.031

Wu, Y., Xu, X., Chen, Z., Duan, J., Hashimoto, K., Yang, L., Liu, C., & Yang, C. (2020). Nervous system involvement after infection with COVID-19 and other coronaviruses. Brain, Behavior, and Immunity, 87(March), 18–22. https://doi.org/10.1016/j.bbi.2020.03.031

Xu, J., Zhong, S., Liu, J., Li, L., Li, Y., Wu, X., Li, Z., Deng, P., Zhang, J., Zhong, N., Ding, Y., & Jiang, Y. (2005). Detection of Severe Acute Respiratory Syndrome Coronavirus in the Brain: Potential Role of the Chemokine Mig in Pathogenesis. Clinical Infectious Diseases, 41(8), 1089–1096. https://doi.org/10.1086/444461

Xu, Jiaxi, Sriramula, S., & Lazartigues, E. (2018). Excessive Glutamate Stimulation Impairs ACE2 Activity Through ADAM17-Mediated Shedding in Cultured Cortical Neurons. Cellular and Molecular Neurobiology, 38(6), 1235–1243. https://doi.org/10.1007/s10571-018-0591-8

Yamashita, M., Yamate, M., Li, G. M., & Ikuta, K. (2005). Susceptibility of human and rat neural cell lines to infection by SARS-coronavirus. Biochemical and Biophysical Research Communications, 334(1), 79–85. https://doi.org/10.1016/j.bbrc.2005.06.061

Yan, Y., Shin, W. I., Pang, Y. X., Meng, Y., Lai, J., You, C., Zhao, H., Lester, E., Wu, T., & Pang, C. H. (2020). The first 75 days of novel coronavirus (SARS-CoV-2) outbreak: Recent advances, prevention, and treatment. International Journal of Environmental Research and Public Health, 17(7). https://doi.org/10.3390/ijerph17072323

Ye, Z. W., Yuan, S., Yuen, K. S., Fung, S. Y., Chan, C. P., & Jin, D. Y. (2020). Zoonotic origins of human coronaviruses. International Journal of Biological Sciences, 16(10), 1686–1697. https://doi.org/10.7150/ijbs.45472

Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Medicine, 46(4), 586–590. https://doi.org/10.1007/s00134-020-05985-9

Zhao, H., Shen, D., Zhou, H., Liu, J., & Chen, S. (2020). Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? The Lancet Neurology, 19(5), 383–384. https://doi.org/10.1016/S1474-4422(20)30109-5

Zhou, Y., Li, W., Wang, D., Mao, L., Jin, H., Li, Y., Hong, C., Chen, S., Chang, J., He, Q., Wang, M., & Hu, B. (2020). Clinical time course of COVID-19, its neurological manifestation and some thoughts on its management. Stroke and Vascular Neurology, svn-2020-000398. https://doi.org/10.1136/svn-2020-000398

Downloads

Published

13/12/2020

How to Cite

CAMPOS, L. N. .; COSTA, A. C. S. .; CERQUEIRA, D. D. N. .; RANGEL, G. R. .; ANDRADE, I. C. de F. .; SOUZA, S. C. B. de .; SILVA, J. C. D. de M. .; COSTA, B. M. da .; ROCHA, S. W. S. . COVID-19 neurological manifestations: a narrative review on the mechanisms, pathogenesis, and clinical management . Research, Society and Development, [S. l.], v. 9, n. 12, p. e4291210724, 2020. DOI: 10.33448/rsd-v9i12.10724. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/10724. Acesso em: 29 dec. 2024.

Issue

Section

Health Sciences