Oxidative stress and neuroinflammation in neurodegenerative diseases: possible neuroprotective effect of agathisflavone

Authors

DOI:

https://doi.org/10.33448/rsd-v9i12.11061

Keywords:

Agathisflavone; Antioxidant; Neuroprotector; Neuroinflammation; Oxidative stress.

Abstract

Oxidative stress and neuroinflammation are gaining prominence as essential contributing factors in neurodegenerative diseases. In this context, the flavonoids have powerful anti-inflammatory and antioxidant properties that can serve as therapy in these diseases. A representative of this group is the biflavonoid, agathisflavone, which in several studies has demonstrated biological actions that deserve attention for the pharmaceutical industry in the therapy of neurodegenerative diseases. Through a systematic review of the literature, we analyzed the scientific/experimental publications published between 2011 and 2020 in the databases of PubMed and ScienceDirect, with the aim of systematizing the important findings on agathisflavone that may contribute to its therapeutic approach. Data were extracted from 11 studies that documented important therapeutic actions that can help in the treatment of neurodegenerative diseases, such as anti-inflammatory activity, immunomodulator, neurogenesis induction, free radical neutralization, neuroprotection and neuronal death reduction. From the data obtained, it was observed that agathisflavone has promising characteristics to act as an adjuvant neuroprotector for the treatment of neurodegenerative diseases; however, it is necessary more in-depth and specific studies, so that its therapeutic value is evidenced.

References

Amorim, V. C. M., Oliveira Junior, M. S., Bastos, E. M. S., Silva, V. D. A., & Costa, S. L. (2018). Research on the Scientific Evolution of the Flavonoid Agathisflavone. Journal of Pharmacy e Pharmaceutical Sciences, 21(1), 376-385.

Andrade, A. W. L., Figueiredo, D. D. R., Torequllslam, M., Nunes, A. M. V., Machado, K. C., Machado, K. C., Uddin, S. J., Shipi, J. A., Rouf, R., Melo-Cavalcante, A. A. C., David, J. M., Mubarak, M. S., & Costa, J. P. (2019). Toxicological evaluation of the biflavonoid, agathisflavone in albino Swiss mice. Biomedicine & Pharmacology, 110, 68–73

Andrade, A. W. L., Machado, K. C., Machado, K. C., Figueiredo, D. D. R., David, J. M., Islam, M. T., Uddin, S. J., Shilpi, J. A., & Costa, J. P. (2018). In vitro antioxidant properties of the biflavonoid agathisflavone. Chemistry Central Journal, 12(75), 1-9.

Anusha, C., Sumathi, T., & Leena, D. J. (2017). Protective role of apigenin on rotenone induced rat model of Parkinson's disease: Suppression of neuroinflammation and oxidative stress mediated apoptosis. Chemico-Biological Interactions, 269, 67-79.

Belkhelfa, M., Rafa, H., Medjeber, O., Arroul-Lammali, A., Behairi, N., Abada-Bendib, M., Makrelouf, M., Belarbi, S., Masmoudi, A. N., Tazir, M., & Touil-Boukoffa, C. (2014). IFN-γ and TNF-α Are Involved During Alzheimer Disease Progression and Correlate with Nitric Oxide Production: A Study in Algerian Patients. Journal of Interferon & Cytokine Research, 34(11), 839-847.

Bhat, A. H., Dar K. B., Anees, S., Zargar, M. A., Masood, A., Sofi, M. A., & Ganie, S. A. (2015). Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomedicine & Pharmacotherapy, 74, 101-110.

Butterfield, D. A., & Halliwell, B. (2019). Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nature Reviews Neuroscience, 20(3), 148-160.

Cersosimo, M. G., & Benarroch, E. E. (2015). Estrogen actions in the nervous system. Neurology, 85(3), 263–273.

de Almeida, M., Pieropan, F., de Mattos Oliveira, L., Dos Santos Junior, M. C., David, J. M., David, J. P., da Silva, V., Dos Santos Souza, C., Costa, S. L., & Butt, A. M. (2020b). The flavonoid agathisflavone modulates the microglial neuroinflammatory response and enhances remyelination. Pharmacological research, 159(104997), 1-33.

de Almeida, M., Souza, C., Dourado, N. S., da Silva, A. B., Ferreira, R. S., David, J. M., David, J. P., Costa, M., da Silva, V., Butt, A. M., & Costa, S. L. (2020a). Phytoestrogen Agathisflavone Ameliorates Neuroinflammation-Induced by LPS and IL-1β and Protects Neurons in Cocultures of Glia/Neurons. Biomolecules, 10(4), 562.

de Amorim, V. C. M., Júnior, M. S. O., da Silva, A. B., David, J. M., David, J. P. L, Costa, M. F. D., Butt, A. M., da Silva, V. D. A., & Costa, S. L. (2020). Agathisflavone modulates astrocytic responses and increases the population of neurons in an in vitro model of traumatic brain injury. Naunyn-Schmiedeberg's Archives of Pharmacology, 393, 1921–1930.

dos Santos, S. C., Grangeiro, M. S., Pereira, E. P. L., Santos, C. C., Silva, A. B., Sampaio, G.P., Figueiredo, D. D. R., David, J. M., David, J. P., Silva, V. D. A., Butt, A. M., & Costa, S. L. (2018). Agathisflavone, a flavonoid derived from Poincianella pyramidalis (Tul.), enhances neuronal population and protects against glutamate excitotoxicity. Neurotoxicology, 65, 85-97.

Dumitru, G., El-Nasharb, H. A. S., Mostafab, N. M., Eldahshanb, O. A., Boiangiua, R. S., Todirascu-Ciorneaa, E., Hritcua, L., & Singabb, A. N. B. (2019). Agathisflavone isolated from Schinus polygamus (Cav.) Cabrera leaves prevents scopolamine-induced memory impairment and brain oxidative stress in zebrafish (Danio rerio). Phytomedicine, 58, 1-8.

Engler-Chiurazzi, E. B., Brown, C. M., Povroznik, J. M., & Simpkins, J. W. (2017). Estrogens as neuroprotectants: estrogenic actions in the context of cognitive aging and brain injury. Progress in Neurobiology, 157,188–211.

Firuzi, O., Miri, R., Tavkkoli, M., & Saso, L. (2011). Antioxidant therapy: current status and future prospects. Current Medicinal Chemistry, 18(25), 3871-3888.

Gelders, G., Baekelandt, V., & Van der Perren, A. (2018). Linking Neuroinflammation and Neurodegeneration in Parkinson's Disease. Journal of immunology research, 2018(4784268) 1-12

Gomes-Copeland, J. K. P., Lédob, A. S., Almeida, F. T. C., Moreira, B. O., Santos, D. C., Santos, R. A. F., David, J. M., & David, J. P. (2018). Effect of elicitors in Poincianella pyramidalis callus culture in the biflavonoid biosynthesis. Industrial Crops & Products, 126, 421-425.

Kim, G. H., Kim, J. E., Rhie, S. J., & Yoon, S. (2015). The Role of Oxidative Stress in Neurodegenerative Diseases. Experimental Neurobiology, 24(4), 325–340.

Matias, I., Buosi, A. S., & Gomes, F. C. A. (2016). Functions of flavonoids in the central nervous system: astrocytes as targets for natural compounds. Neurochemistry International, 95, 85-91.

Niranjan, R., 2013. Molecular Basis of Etiological Implications in Alzheimer’s disease: Focus on Neuroinflammation. Molecular Neurobiology, 48(3), 412–428.

Niranjan, R., 2018. Recent advances in the mechanisms of neuroinflammation and their roles in neurodegeneration. Neurochemistry International, 120, 13–20.

Paulsen, B. S., Souza, C. S., Chicaybam, L., Bonamino, M. H., Bahia, M., Costa, S. L. C., Borges, H. L., & Rehen, S. K., 2011. Agathisflavone Enhances Retinoic Acid-Induced Neurogenesis and Its Receptors α and β in Pluripotent Stem Cells. Stem Cells and Development, 20(10), 1711-1721.

Poewe, W., Seppi, K., Tanner, C. M., Halliday, G. M., Brundin, P., Volkmann, J., Schrag, A. E., & Lang, A. E., 2017. Parkinson disease. Nature Reviews Disease Primers, 3(17013), 1-21.

Pubchem. Pub Chem – Open Chemistry (2020). Compound Summary for CID 5281599– Agathisflavone. Recuperado de https://pubchem.ncbi.nlm.nih.gov/compound/528 1599#section=Names-and-Identifiers

Puspita, L., Chung, S. Y., & Shim, J. (2017). Oxidative stress and cellular pathologies in Parkinson’s disease. Molecular Brain, 10(53), 1-12

Regen, F., Hellman-Regen, J., Constantini, E., & Reale, M. (2017). Neuroinflammation and Alzheimer's Disease: Implications for Microglial Activation. Current Alzheimer Research, 14(11), 1140-1148.

Rocha, N. P., Miranda, A. S., & Teixeira, A. L. (2015). Insights into Neuroinflammation in Parkinson’s disease: From Biomarkers to Anti-Inflammatory Based Therapies. BioMed Research International, 2015(628192), 1-12.

Santos, C. M. C., Pimenta, C. A. M., & Nobre, M. R. C. (2007). The PICO strategy for research question construction and evidence search. Revista Latino-americana de Enfermagem, 15(3), 1-4.

Santos, C. C., Muñoz, P., Almeida, Á. M. A. N., de Lima David, J. P., David, J. M., Costa, S. L., Segura-Aguilar J., & Silva, V. D. A. (2020). The Flavonoid Agathisflavone from Poincianella pyramidalis Prevents Aminochrome Neurotoxicity. Neurotoxicity Research, 38, 579–584.

Sarrafchi, A., Bahmani, M., Shirzad, H., & Rafieian-Kpoaei, M. (2016). Oxidative Stress and Parkinson’s Disease: New Hopes in Treatment with Herbal Antioxidants. Current Pharmaceutical Design, 22(0), 238-246.

Sawikr, Y., Yarla, N. S., Peluso, I., Kamal, M. A., Aliev, G., & Bishayee, A. (2017). Neuroinflammation in Alzheimer’s disease: The Preventive and Therapeutic Potential of Polyphenolic Nutraceuticals. Advances in Protein Chemistry and Structural Biology, 108, 33–57.

Shrestha, S., Lee, D. Y., Park, J. H., Cho, J. G., Lee, D. S., Li, B., Kim, Y. C., Jeon, Y. J., Yeon, S. W., & Baek, N. I. (2013). Flavonoids from the Fruits of Nepalese Sumac (Rhus parviflora) Attenuate Glutamate-induced Neurotoxicity in HT22 Cells. Food Science and Biotechnology, 22, 895-902.

Solanki, I., Parihar, P., & Parihar, M. S. (2016). Neurodegenerative diseases: From available treatments to prospective herbal therapy. Neurochemistry International, 95, 100-108.

Spagnuolo, C., Moccia, S., & Russo, G. L. (2018). Anti-inflammatory effects of flavonoids in neurodegenerative disorders. European Journal of Medicinal Chemistry, 153, 105-115.

Su, B. Y., Tung, T., & Chien, W. (2018). Effects of phytoestrogens on depressive symptoms in climacteric women: a meta-analysis of randomized controlled trials. The Journal of Alternative and Complementary Medicine, 24(8), 850-851.

Talaat, A. N., Ebada, S. S., Labib, R. M., Esmat, A., Youssef, F. S., & Singab, A. N. B. (2018). Verification of the anti-inflammatory activity of the polyphenolic-rich fraction of Araucaria bidwillii Hook. using phytohaemagglutinin-stimulated human peripheral blood mononuclear cells and virtual screening. Journal of Ethnopharmacology, 226, 44-47.

de Andrade Teles, R. B., Diniz, T. C., Costa Pinto, T. C., de Oliveira Júnior, R. G., Gama E Silva, M., de Lavor, É. M., Fernandes, A., de Oliveira, A. P., de Almeida Ribeiro, F., da Silva, A., Cavalcante, T., Quintans Júnior, L. J., & da Silva Almeida, J. (2018). Flavonoids as Therapeutic Agents in Alzheimer's and Parkinson's Diseases: A Systematic Review of Preclinical Evidences. Oxidative medicine and cellular longevity, 2018(7043213), 1-21.

Tönnies, E., & Trushina, E. (2017). Oxidative Stress, Synaptic Dysfunction, and Alzheimer's Disease. Journal of Alzheimer's disease, 57(4), 1105–1121.

Velagapudi, R., Ajileye, O. O., Okoriji, U., Jain, P., Aderogba, M. A., & Olajide, O. A. (2018). Agathisflavone isolated from Anacardium occidentale suppresses SIRT1‐mediated neuroinflammation in BV2 microglia and neurotoxicity in APPSwe‐transfected SH‐SY5Y cells. Phytotherapy Research, 32(10), 1957-1966.

Vivekanantham, S., Shah, S., Dewji, R., Dewji, A., Khatri, C., & Ologunde, R. (2015). Neuroinflammation in Parkinson's disease: role in neurodegeneration and tissue repair. The International Journal of Neuroscience, 125(10), 717-725.

Wang, Q., Liu, Y., & Zhou, J. (2015). Neuroinflammation in Parkinson's disease and its potential as therapeutic target. Translational Neurodegeneration, 4(19), 1-9.

Wang, T. Y., Li, Q., & Bi, K. S. (2017). Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian Journal of Pharmaceutical Science, 13(1), 12-23.

Wang, X., & Michaelis, E.K. (2010). Selective neuronal vulnerability to oxidative stress in the brain. Frontiers in Aging Neuroscience, 2(12), 1-13.

Wang, X., Wang, W., Li L., Perry, G., Lee, H. G., & Zhu, X. (2014). Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochimica et Biophysica Acta, 1842(8), 1240-1247.

Wei, Z., Li, X., Li, X., Liu, Q., & Cheng, Y. (2018). Oxidative Stress in Parkinson’s disease: A Systematic Review and Meta-Analysis. Frontiers in Molecular Neuroscience, 11(236), 236-243.

Yan, J. Q., Sun, J. C., Zhai, M. M., Cheng, L. N., Bai, X. L., & Feng, C. L. (2015). Lovastatin induces neuroprotection by inhibiting inflammatory cytokines in 6-hydroxydopamine treated microglia cells. International Journal of Clinical and Experimental Medicine, 8(6), 9030-9037.

Ye, J., Jiang, Z., Chen, X., Liu, M., Li, J., & Liu, N. (2016). Electron transport chain inhibitors induce microglia activation through enhancing mitochondrial reactive oxygen species production. Experimental Cell Research, 340(2), 315-326.

Published

24/12/2020

How to Cite

OLIVEIRA JÚNIOR, G. P. B. de .; PIMENTA, R. M. C. .; OLIVEIRA, W. N. F. . Oxidative stress and neuroinflammation in neurodegenerative diseases: possible neuroprotective effect of agathisflavone. Research, Society and Development, [S. l.], v. 9, n. 12, p. e28291211061, 2020. DOI: 10.33448/rsd-v9i12.11061. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11061. Acesso em: 6 jan. 2025.

Issue

Section

Review Article