Thermal analysis in an air conditioning duct: An experimental design approach
DOI:
https://doi.org/10.33448/rsd-v9i12.11140Keywords:
Air conditioning; Condensation; Duct-work; Thermal insulation.Abstract
The main purpose of this work is to perform a thermal analysis in an air conditioning duct to verify the influence of the thermal properties of the insulating material on the minimum thermal insulation thickness necessary to avoid the condensation of water vapor present in the air. The mathematical formulation is based on Fourier’s law and the first law of thermodynamics. A response surface, a contour plot and a mathematical model for the analyzed response variable, were obtained from an experimental design. Results indicate that the reduction of thermal conductivity and increase of emissivity of the insulating material contribute to the reduction of the minimum thermal insulation thickness.
References
Cengel, Y. (2014). Heat and mass transfer: fundamentals and applications. McGraw-Hill Higher Education.
Churchill, S. W., & Chu, H. H. S. (1975). Correlating equations for laminar and turbulent free convection from a vertical plate. International Journal of Heat and Mass Transfer, 18(11), 1323–1329. https://doi.org/10.1016/0017-9310(75)90243-4
Fisk, W. J., & Rosenfeld, A. H. (1997). Estimates of improved productivity and health from better indoor environments. Indoor Air, 7(3), 158–172. https://doi.org/10.1111/j.1600-0668.1997.t01-1-00002.x
Gomez, R. S., Porto, T. R. N., Magalhães, H. L. F., & de Lima, A. G. B. (2020). Análise térmica de dutos de conducionamento de ar: O efeito da espessura do isolamento térmico na condensação de água. In III Simpósio de Pós-Graduação em Engenharia Mecânica da Universidade Federal de Campina Grande: coletânea de artigos (pp. 96–102). https://doi.org/10.36229/978-85-7042-207-1.CAP.13
Huizenga, C., Abbaszadeh, S., Zagreus, L., & Arens, E. A. (2006). Air quality and thermal comfort in office buildings: results of a large indoor environmental quality survey. Proceedings of Healthy Buildings. Retrieved from http://escholarship.org/uc/item/7897g2f8
Lan, L., Wargocki, P., & Lian, Z. (2011). Quantitative measurement of productivity loss due to thermal discomfort. Energy and Buildings, 43(5), 1057–1062. https://doi.org/10.1016/j.enbuild.2010.09.001
Li, A., Liu, Z., Zhu, X., Liu, Y., & Wang, Q. (2010). The effect of air-conditioning parameters and deposition dust on microbial growth in supply air ducts. Energy and Buildings, 42(4), 449–454. https://doi.org/10.1016/j.enbuild.2009.10.013
Morey, P. R., & Williams, C. M. (1991). Is porous insulation inside an HVAC system compatible with a healthy building. Proceedings of IAQ’91, Healthy Buildings, 128–135.
Pasanen, P., Pasanen, A., & Jantunen, M. (1993). Water condensation promotes fungal growth in ventilation ducts. Indoor Air, 3(2), 106–112. https://doi.org/10.1111/j.1600-0668.1993.t01-2-00005.x
Pereira A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da pesquisa científica. Editora UAB/NTE/UFSM, Santa Maria/RS. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_MetodologiaPesquisaCientifica.pdf?sequence=1.
Rodrigues, M. I., & Iemma, A. F. (2009). Planejamento de experimentos e otimização de processos–2a edição–. Campinas: Cárita Editora Espírita.
Tsilingiris, P. T. (2008). Thermophysical and transport properties of humid air at temperature range between 0 and 100 C. Energy Conversion and Management, 49(5), 1098–1110. https://doi.org/10.1016/j.enconman.2007.09.015
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Ricardo Soares Gomez; Túlio Rafael Nascimento Porto; Kelly Cristiane Gomes; João Alves de Lima; José Maurício Alves de Matos Gurgel; Hortência Luma Fernandes Magalhães; Elisiane Santana de Lima; Wanderson Magno Paiva Barbosa de Lima; Antonio Gilson Barbosa de Lima
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.