Scientometric approach to bryophytes bioactivity: the anti-insects potential and the perspectives for the XXI century

Authors

DOI:

https://doi.org/10.33448/rsd-v9i12.11241

Keywords:

Antifeedant activity; Bioprospecting of bryophytes; Phytochemistry of bryophytes; Botanical insecticides; Insect-bryophyte relationship.

Abstract

This study carried out a scientometric approach on the bioactivity of bryophytes against insects and generated panoramas regarding the promising biotechnological techniques for this line of research, in world. Academic-scientific productions related to the theme, from 2000 to 2020, and on the news and perspectives in briotechnology for the control of insects were searched in virtual databases. Quantitative data were tabulated and analyzed in frequencies, using the Excel 2018 software, being represented in the form of tables and graphs, and the qualitative information in tables. Nineteen works (16 articles, two scientific notes and a chapter in e-book) were mapped, dispersed between the continents (except Antarctica) and between the years, with greater Asian production in 2012-2013. Sixteen hepatic species (10 botanical families) and 38 moss species (23 families) were identified, whose bioactivity was evaluated using extracts or plants in natura against lepidopterans, dipterans or coleopterans, with satisfactory results for antifeedant and/or insecticide and/or development inhibitor. The listed manuscripts were published in 15 journals of different impact factors, when there was, and one was in an e-book, usually with restricted access. The total number of citations these works was 255, especially in research not related to the subject in question. Techniques of genetic engineering, in vitro cultivation and cryopreservation of bryophytes are cited as current technologies that can support the bioprospecting of avascular plants on a commercial and sustainable scale. In the world there is few research on the relation of the insect-bryophyte that currently can serve for the development of natural agricultural pesticides. Therefore, it is necessary to expand the bioprospecting of bryoflora due to its biotechnological potential in pest control combined with biotechnology techniques that can boost commercial and sustainable production of pesticides bryophyte base or contribute to the improvement of agricultural plants.

References

Abay, G., Karakoç, Ö. C., Tüfekçi, A. R., Koldaş, S. & Demirtas, I. (2012). Insecticidal activity of Hypnum cupressiforme (Bryophyta) against Sitophilus granarius (Coleoptera: Curculionidae). Journal of Stored Products Research, 51, 6-10.

Abay, G., Altun, M., Karakoc, O. C., Gul, F. & Demirtas, I. (2013). Insecticidal activity of fatty acid-rich Turkish bryophyte extracts against Sitophilus granarius (Coleoptera: Curculionidae). Combinatorial Chemistry & High Throughput Screening, 16(10), 806-816.

Ainge, G. D., Gerard, P. J., Hinkley, S. F., Lorimer, S. D. & Weavers, R. T. (2001). Hodgsonox, a new class of sesquiterpene from the liverwort Lepidolaena hodgsoniae. isolation directed by insecticidal activity. The Journal of Organic Chemistry, 66(8), 2818-2821.

Ande, A. T., Wahedi, J. A. & Fatoba, P. O. (2010). Biocidal activities of some tropical moss extracts against maize stem borers. Ethnobotanical Leaflets, 14, 479-490.

Andersson, R. A., Akita, M., Pirhonen, M., Gammelgård, E. & Valkonen, J. P. (2005). Moss-Erwinia pathosystem reveals possible similarities in pathogenesis and pathogen defense in vascular and nonvascular plants. Journal of General Plant Pathology, 71(1), 23-28.

Anterola, A., Göbel, C., Hornung, E., Sellhorn, G., Feussner, I. & Grimes, H. (2009). Physcomitrella patens has lipoxygenases for both eicosanoid and octadecanoid pathways. Phytochemistry, 70, 40-52.

Arroyo-Rodríguez, V., Puyana-Eraso, J., Bernecker-Lücking, A. & Hanson, P. (2007). Observations of Geranomyia recondita (Diptera: Tipuloidea: Limoniidae) larvae feeding on epiphyllous liverworts in Costa Rica. Entomologica Americana, 114(3), 170-175.

Asakawa, Y. (1982). Terpenoids and aromatic compounds as chemosystematic indicators in Hepaticae and Anthocerotae. The Journal of the Hattori Botanical Laboratory, 53, 283-293.

________. (1995). Chemical constituents of the bryophytes. In: Progress in the Chemistry of Organic Natural Products, Springer-Verlag/Wien. 562p.

________. (1998). Biologically active compounds from bryophytes. The Journal of the Hattori Botanical Laboratory, 84, 91-104.

________. (2001). Recent advances in phytochemistry of bryophytes - acetogenins, terpenoids and bis(bibenzyl)s from selected Japanese, Taiwanese, New Zealand, Argentian and European liverworts. Phytochemistry, 56, 297-312.

________. (2004). Chemosystematics of the Hepaticae. Phytochemistry, 65(6), 623-669.

________. (2008). Liverworts-potential source of medicinal compounds. Current Pharmaceutical Design, 14, 3067-3088.

________. (2011). Bryophytes: chemical diversity, synthesis and biotechnology. A Review. Flavour and Fragrance Journal, 26(5), 318-320.

Asakawa, Y., Ludwiczuk, A. & Nagashima, F. (2012). Chemical constituents of bryophytes: bio-and chemical diversity, biological activity, and chemosystematics. Springer Science & Business Media, 95, 773p.

________. (2013). Phytochemical and biological studies of bryophytes. Phytochemistry, 91, 52-80.

Asakawa, Y., Toyota, M., Takemoto, T., Kubo, I. & Nakanishi, K. (1980). Insect antifeedant secoaromadendrane-type sesquiterpenes from Plagiochila species. Phytochemistry, 9, 2147-2154.

Ashton, N. W., Champagne, C. E. M., Weiler, T. & Verkoczy, L. K. (2000). The bryophyte Physcomitrella patens replicates extrachromosomal transgenic elements. New Phytologist, 146(3), 391-402.

Athanassiou, C. G., Steenberg, T. & Kavallieratos, N. G. (2007). Insecticidal effect of diatomaceous earth applied alone or in combination with Beauveria bassiana and beta cyfluthrin against Sitophilus granarius on stored wheat. IOBC/WPRS Bulletin, 30(2), 25-36.

Bailly, N., Kirk, P. M., Bourgoin, T., Walt, R. E., Decock, W., Wever, A., ... & Penev, L. (2019). Species 2000 & ITIS Catalogue of Life. Leiden, Naturalis. Disponível em: https://www.catalogueoflife.org/col/. Acesso em: 10 jul. 2020.

Barbosa, F. S. & Carvalho, M. A. S. (2016). Análise cienciométrica da utilização de briófitas como bioindicadores. Caderno de Pesquisa, 28(1), 34-47.

Baur, A., Reski, R. & Gorr, G. (2005). Enhanced recovery of a secreted recombinant human growth factor using stabilizing additives and by co‐expression of human serum albumin in the moss Physcomitrella patens. Plant Biotechnology Journal, 3(3), 331-340.

Beike, A. K., Decker, E. L., Frank, W., Lang, D., Vervliet-Scheebaum, M., Zimmer, A. D. & Reski, R. (2010). Applied bryology-bryotechnology. Tropical Bryology, 31, 22-32.

Bijelović, A. & Sabovljevic, M. S. (2003). Callus induction and plant regeneration in the moss Aloina aloides (Schultz) Kindb. (Pottiaceae, Bryopsida). Archives of Biological Sciences, 55(3-4), 77-80.

Buck, W. R. & Goffinet, B. (2000). Morphology and classification of mosses. In: Shaw, A. J., & Goffinet, B. (Eds.). Bryophyte Biology. Cambridge: Cambridge University Press. 71-123.

Carter, J. B. (1976). A survey of microbial, insect and nematode parasites of Tipulidae (Diptera) larvae in north-east England. Journal of Applied Ecology, 13(1), 103-122.

Chandra, S., Chandra, D., Barh, A., Pandey, R. K. & Sharma, I. P. (2017). Bryophytes: Hoard of remedies, an ethno-medicinal review. Journal of Traditional and Complementary Medicine, 7(1), 94-98.

Chen, F., Ludwiczuk, A., Wei, G., Chen, X., Crandall-Stotler, B. & Bowman, J. L. (2018). Terpenoid secondary metabolites in bryophytes: chemical diversity, biosynthesis and biological functions. Critical Reviews in Plant Sciences, 37(2-3), 210-231.

Corzo, F. L., Gilabert, M., Alcaide, M. F. & Bardón, A. (2012). Toxicity of Porella chilensis sesqui-and diterpenoids against larvae of the corn pest Spodoptera frugiperda (JE Smith) (Lepidotera: Noctuidae). Neotropical Entomology, 41(5), 414-419.

Cvetić, T., Sabovljevic, M. S., Sabovljevic, A. & Grubišić, D. (2005). In vitro culture and apogamy: alternative pathway in the life cycle of the moss Amblystegium serpens (Amblystegiaceae). Archives of Biological Sciences, 57(4), 267-272.

Davidson, A. J., Harborne, J. B. & Longton, R. E. (1989). Identification of hydroxycinnamic acid and phenolic acids in Mnium hornum and Brachythecium rutablum and their possible role in protection against herbivory. The Journal of the Hattori Botanical Laboratory, 67, 415-422.

Dittrich, A. C. N. & Devarenne, T. P. (2012). Characterization of a PDK1 homologue from the moss Physcomitrella patens. Plant Physiology, 158(2), 1018-1033.

Eisemann, C. H., Donaldson, R. A., Pearson, R. D., Cadogan, L. C., Vuocolo, T. & Tellam, R. L. (1994). Larvicidal activity of lectins on Lucilia cuprina: mechanism of action. Entomologia Experimentalis et Applicata, 72(1), 1-10.

Fang, Y. & Zhu, R. L. (2012). Haplocladium microphyllum (Hedw.) Broth. capsules as food for Agrotis sp. (Lepidoptera) larvae. Journal of Bryology, 34(2), 108-113.

Fitzpatrick, R. B. (2003). ISI's journal citation reports on the web. Medical Reference Services Quarterly, 22(4), 45-56.

Flora do Brasil (2020). Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. Disponível em: http://floradobrasil.jbrj.gov.br/. Acesso em: 15 jun. 2020.

Floyd, S. K. & Bowman, J. L. (2007). The ancestral developmental tool kit of land plants. International journal of plant sciences, 168(1), 1-35.

Frahm, J. P. (2004). Recent developments of commercial products from bryophytes. The Bryologist, 107(3), 277-283.

Frahm, J. P. & Kirchhoff, K. (2002). Antifeeding effects of bryophyte extracts from Neckera crispa and Porella obtusata against the slug Arion lusitanicus. Cryptogamie. Bryologie, 23(3), 271-275.

Gallo, D., Nakano, O., Silveira Neto, S., Carvalho, R. P., Baptista, G. C. D., Berti Filho, E.,... & Marchini, L. C. (2002). Entomologia agrícola. Piracicapa: FEALQ, 920p.

Ganesh, P. S., Salunke, R. J. & Narayan, S. D. (2019). Phytochemical study of Pterobryopsis species & Bryum coronatum and study antioxidant activity of Pterobryopsis species. Review of Research, 8(6), 1-7.

Garfield, E. (2000). Use of journal citation reports and journal performance indicators in measuring short and long term journal impact. Croatian Medical Journal, 41(4), 368-374.

Gerard, P. J., Perry, N. B., Ruf, L. D. & Foster, L. M. (1993). Antifeedant and insecticidal activity of compounds from Pseudowintera colorata (Winteraceae) on the webbing clothes moth, Tineola bisselliella (Lepidoptera: Tineidae) and the Australian carpet. Bulletin of Entomological Research, 83(4), 547-552.

Glime, J. M. Economic and ethnic uses of bryophytes (2007). In: Flora of North America Editorial Committee. (eds.), Oxford University Press, New York, 27, 14-41.

Glime, J. M. (2017a). Household and personal uses. Chapt. 1-1. In: Glime, J. M. (2017) Bryophyte Ecology. Volume 5. Uses. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Disponível em: http://digitalcommons.mtu.edu/bryophyte-ecology/. Acesso em 02 jun. 2020.

__________. (2017b). Medical uses: biologically active substances. Chapt. 2-2. In: Glime, J. M. (2017). Bryophyte Ecology. Volume 5. Uses. 2-2-1. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Disponível em: http://digitalcommons.mtu.edu/bryophyte-ecology/. Acesso em 02 jun. 2020.

__________. (2017c). Technological and commercial. chapt. 6-1. In: Glime, J. M. (2017). Bryophyte Ecology. Volume 5. Uses. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Disponível em: http://digitalcommons.mtu.edu/bryophyte-ecology/. Acesso em 03 jun. 2020.

__________. (2017d). Nutrients. In: Glime, J. M. (2017). Bryophyte Ecology. Volume 1. 8-1-1. Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Disponível em: https://digitalcommons.mtu.edu/bryophyte-ecology1/7. Acesso em: 05 jun. 2020.

Haines, W. P. & Renwick, J. A. A. (2009). Bryophytes as food: comparative consumption and utilization of mosses by a generalist insect herbivore. Entomologia Experimentalis et Applicata, 133, 296-306.

Hill, D. S. (1983). Agricultural insect pests of the tropics and their control. 2 ed. Cambridge: Cambridge University Press, 760p.

Hohemberger, R., Schwanke, C., de Góes Bilar, J. & Coutinho, R. X. (2019). A paleontologia na perspectiva do ensino. Terrae Didatica, 15, e019025-e019025, 1-9.

Ikram, N. K. B. K., Zhan, X., Pan, X. W., King, B. C. & Simonsen, H. T. (2015). Stable heterologous expression of biologically active terpenoids in green plant cells. Frontiers in Plant Science, 6, 129.

Krishnan, R. & Murugan, K. (2013). Evaluation of bryophyte protein-based defense against selected phytophagous insects. In: Sabu, A. & Augustine, A. (eds.). Prospects in Bioscience: Addressing the Issues, Springer, Índia, 19-32.

Krishnan, R. & Murugan, K. (2015). Insecticidal potentiality of flavonoids from cell suspension culture of Marchantia linearis Lehm. & Lindenb against Spodoptera litura F. International Journal of Applied Biology and Pharmaceutical Technology, 6(2), 23-32.

Kruijt, R. C. H., Niemann, G. J., Koster, G. & Heerma, W. (1986). Flavonoids and aromatic hydroxy acids in Lejeuneaceae Subfamily Ptychanthoideae. Cryptogamie, Bryologie, Lichenologie, 7(2), 165-171.

Kutschera, U. & Wang, Z. Y. (2012). Brassinosteroid action in flowering plants: a Darwinian Perspective. Journal of Experimental Botany, 63(10), 3511-3522.

Labbé, C., Faini, F., Villagrn, C., Coll, J. & Rycroft, D. S. (2005). Antifungal and insect antifeedant 2-Phenylethanol esters from the liverwort Balantiopsis cancellata from Chile. Journal of Agricultural and Food Chemistry, 53, 247-249.

Labbé, C., Faini, F., Villagrán, C., Coll, J. & Rycroft, D. S. (2007). Bioactive polychlorinated bibenzyls from the liverwort Riccardia polyclada. Journal of natural products, 70(12), 2019-2021.

Lang, D., Ullrich, K. K., Murat, F., Fuchs, J., Jenkins, J., Haas, F. B., … & Vives, C. (2018). The Physcomitrella patens chromosome-scale assembly reveals moss genome structure and evolution. The Plant Journal, 93, 515-533.

Lehtonen, T. M., Akita, M., Kalkkinen, N., Ahola-Iivarinen, E., Rönnholm, G., Somervuo, P., Thelander, M. & Valkonen, J. P. T. (2009). Peroxidase de musgo de liberação rápida em defesa contra invasores fúngicos. New Phytologist, 183(2), 432-443.

León, I. P., Oliver, J. P., Castro, A., Gaggero, C., Bentancor, M. & Vidal, S. (2007). Erwinia carotovora elicitors and Botrytis cinerea activate defense responses in Physcomitrella patens. BMC Plant Biology, 7(1), 1-11.

Liao, C. (1993). Chemical defenee in bryophytes with high apparency. Ecology, 75, 1-4.

Ma, J. K., Drake, P. M. & Christou, P. (2003). The production of recombinant pharmaceutical proteins in plants. Nature Reviews Genetics, 4(10), 794-805.

Macias-Chapula, C. A. (1998). O papel da informetria e da cienciometria e sua perspectiva nacional e internacional. Ciência da Informação, 27(2), 134-140.

Maciel-Silva, A. S. & Santos, N. D. D. (2011). Detecting herbivory in two mosses from an Atlantic Forest, Brazil. Journal of Bryology, 33(2), 140-147.

Markham, K., Chalk, T. & Stewart-Junior, C. N. (2006). Evaluation of fern and moss protein-based defenses against phytophagous insects. International Journal of Plant Sciences, 167(1), 111-117.

Ozturk, M., Gökler, İ. & Altay, V. (2018). Medicinal bryophytes distributed in Turkey. Plant and Human Health, 1, 323-348.

Perry, N. B., Burgess, E. J., Foster, L. M. & Gerard, P. J. (2003). Insect antifeedant sesquiterpene acetals from the liverwort Lepidolaena clavigera. Tetrahedron Letters, 44(8), 1651-1653.

Perry, N. B., Burgess, E. J., Foster, L. M., Gerard, P. J., Toyota, M. & Asakawa, Y. (2008). Insect antifeedant sesquiterpene acetals from the liverwort Lepidolaena clavigera. 2. Structures, artifacts, and activity. Journal of Natural Products, 71(2), 258-261.

Pinto, A. C. & Andrade, J. B. D. (1999). Fator de impacto de revistas científicas: qual o significado deste parâmetro?. Química nova, 22(3), 448-453.

Ramírez, M., Kamiya, N., Popich, S., Asakawa, Y. & Bardón, A. (2010). Insecticidal constituents from the argentine liverwort Plagiochila bursata. Chemistry & Biodiversity, 7(7), 1855-1861.

Ramírez, M., Kamiya, N., Popich, S., Asakawa, Y. & Bardón, A. (2017). Constituents of the argentine liverwort Plagiochila diversifolia and their insecticidal activities. Chemistry & Biodiversity, 14(12), 1-8.

Reski, R., Parsons, J. & Decker, E. L. (2015). Moss‐made pharmaceuticals: from bench to bedside. Plant Biotechnology Journal, 13(8), 1191-1198.

Rowntree, J. K. & Ramsay, M. M. (2009). How bryophytes came out of the cold: successful cryopreservation of threatened species. Biodiversity and Conservation, 18(5), 1413-1420.

Rowntree, J. K., Pressel, S., Ramsay, M. M., Sabovljevic, A. & Sabovljevic, M. (2011). In vitro conservation of european bryophytes. In Vitro Cellular & Developmental Biology-Plant, 47 (1), 55-64.

Ruiz-Molina, N., Villalobos-López, M. Á. & Arias-Zabala, M. (2016). Protonema suspension cultures of the medicinal moss Polytrichum juniperinum. In Vitro Cellular & Developmental Biology-Plant, 52(4), 419-426.

Sabovljevic, A., Cvetić, T. & Sabovljevic, M. (2006). Establishment and development of the Catherine’s moss Atrichum undulatum (Hedw.) P. Beauv. (Polytrichaceae) in vitro conditions. Archives of Biological Sciences, 58(2), 87-93.

Sabovljevic, A., Sabovljevic, M. & Jockovic, N. (2009). In vitro culture and secondary metabolite isolation in bryophytes. In: Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. Humana Press, Totowa, NJ. p. 117-128.

Sabovljevic, M., Bijelovic, A. & Dragicevic, I. (2003). In vitro culture of mosses: Aloina aloides (KF Schultz) Kindb., Brachythecium velutinum (Hedw.) BS & G., Ceratodon purpureus (Hedw.) Brid., Eurhynchium praelongum (Hedw.) BS & G. and Grimmia pulvinata (Hedw.) Sm. Turkish Journal of Botany, 27(6), 441-446.

Sakamoto, T. & Matsuoka, M. (2004). Generating high-yielding varieties by genetic manipulation of plant architecture. Current Opinion in Biotechnology, 15(2), 144-147.

Santos, P. L., Prando, M. B., Morando, R., Pereira, G. V. N. & Kronka, A. Z. (2013). Utilização de extratos vegetais em proteção de plantas. Enciclopédia Biosfera, 53(17), 2562-2576.

Santos, R. N. M. D. & Kobashi, N. Y. (2009). Bibliometria, cientometria, infometria: conceitos e aplicações. Pesquisa Brasileira em Ciência da Informação, 2(1), p.155-172.

Sarasan, V. (2010). Importance of in vitro technology to future conservation programmes worldwide. Kew Bulletin, 65(4), 549-554.

Segreto, R., Hassel, K., Bardal, R. & Stenøien, H. K. (2010). Desiccation tolerance and natural cold acclimation allow cryopreservation of bryophytes without pretreatment or use of cryoprotectants. The Bryologist, 113(4), 760-769.

Servettaz, C. (1913). Récherches expérimentales sur le développement et la nutrition des mousses en milieux stérilisés. Annales des sciences naturelles - Botanique et biologie végétale, 17, 111-223.

Silva, J. A. D. & Bianchi, M. D. L. P. (2001). Cientometria: a métrica da ciência. Paidéia, 11(21), 5-10.

Singh, S. & Srivastava, K. (2013). Bryophytes as green brain: unique and indispensable small creature. International Journal of Pharmaceutical Sciences Review and Research, 23(2), 28-35.

Smith, R. M., Young, M. R. & Marquiss, M. (2001). Bryophyte use by an insect herbivore: does the crane‐fly Tipula montana select food to maximise growth?. Ecological Entomology, 26(1), 83-90.

Todd, C. M. (1993). The feeding ecology of certain larvae in the genus Tipula (Tipulidae, Diptera), with special reference to their utilisation of bryophytes. Durham theses, Durham University. 241p.

Toyota, M., Koyama, H. & Asakawa, Y. (1997). Volatile components of the liverworts Archilejeunea olivacea, Cheilolejeunea imbricata and Leptolejeunea elliptica. Phytochemistry, 44(7), 1261-1264.

Trópicos (2020). Missouri Botanical Garden. Disponível em: http://www.tropicos.org. Acesso em: 15 jun. 2020.

Venturoso, L. R., Bacchi, L. M. A., Gavassoni, W. L., Conus, L. A., Pontim, B. C. A. & Bergamin, A. C. (2011). Atividade antifúngica de extratos vegetais sobre o desenvolvimento de fitopatógenos. Summa Phytopathologica, 37(1), 18-23.

Villalobos, M. J. P. (1996). Plaguicidas naturales de origen vegetal: estado actual de la investigacion. Ministerio de Agricultura, Pesca Y Alimentacion. Madrid: Monografias INIA. 35p.

Warthen-Júnior, J. D., Redfern, R. E., Mills-Júnior, G. D. & Uebel, E. C. (1982). Antifeedant screening of thirty‐nine local plants with fall armyworm larvae. Journal of Environmental Science & Health Part A, 17(6), 885-895.

Wood, A. J., Oliver, M. J. & Cove, D. J. (2000). Bryophytes como sistemas modelo. The Bryologist, 103(1), 128-133.

Xie, C. F. & Lou, H. X. (2009). Secondary Metabolites in Bryophytes: an Ecological Aspect. Chemistry & Biodiversity, 9, 303-312.

Zurich, E. T. H. (2009). Biotechnology: engineered moss can produce human proteins. ScienceDaily. Disponível em: http://www.sciencedaily.com /releases/2009/05/090510200001.htm. Acesso em: 10 jun. 2020.

Published

30/12/2020

How to Cite

ALVES, R. J. M.; MIRANDA, T. G.; TAVARES-MARTINS, A. C. C. Scientometric approach to bryophytes bioactivity: the anti-insects potential and the perspectives for the XXI century. Research, Society and Development, [S. l.], v. 9, n. 12, p. e47591211241, 2020. DOI: 10.33448/rsd-v9i12.11241. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11241. Acesso em: 6 jan. 2025.

Issue

Section

Review Article