Wind direction dodeling in Patos in Paraiba using von Mises probability distribution
DOI:
https://doi.org/10.33448/rsd-v9i12.11261Keywords:
Energy source; Circular; Winds; Circular statistics.Abstract
Objective: we used the distribution of circular probabilities of von Mises to determine the predominant wind direction in Patos, Paraíba. Method: we used hourly data of circular wind direction, obtained by the National Institute of Meteorology - INMET, from July 21, 2007 to September 30, 2018. Circular statistics were applied to the data, more precisely, the von Mises distribution. Results: The results of the analyses showed that the von Mises distribution adjusted well to the wind direction data, verifying that the wind direction in this municipality is with a high variation in the Southeast direction. Conclusion: The analysis allowed to be a useful tool for a possible installation of a wind farm, obtaining a greater use of the wind direction in the locality.
References
ABEEOLICA. Brasil avança em ranking de energia eólica com ventos entre os melhores do mundo (Reuters). (2018a). Recuperado de: hhttp://abeeolica.org.br/noticias/.
ABEEOLICA. Energia eólica no Nordeste cresce e tem ápice na época de secas. (2019b). Recuperado de: hhttp://abeeolica.org.br/noticias/energia-eolica-no-nordeste-cresce-e-tem-apice-na-epoca-de-secas-jornal-metro/i.
ABEEOLICA. Espanhola Iberdrola investe 1 bilhão de euros em complexo eólico no Brasil (Exame). (2018c). Recuperado de: hhttp://abeeolica.org.br/noticias/espanhola-iberdrola-investe-1-bilhao-de-euros-emi h-complexo-eólico-no-brasil-exame/i.
Blain, G. C. (2011). Modelagem de séries de temperatura mínima extrema sob condições de alterações climáticas. Ciência Rural, 41(11), 1877-1883.
Basile, S., Burlon, R., & Morales, F. (2015). Joint probability distributions for wind speed and direction. A case study in Sicily. In 2015 International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 1591-1596). IEEE. Doi: https://doi.org/10.1109/ICRERA.2015.7418675
do Nascimento Camelo, H., Teixeira, W. F., Lucio, P. S., & Junior, J. B. V. L. (2015). Previsão de Velocidade Média do Vento através da utilização de modelagem Auto-Regressiva de Médias Móveis (ARMA) em Região Serrana no Estado do Ceará-Brasil. Revista Brasileira de Energias Renováveis, 4(3).
Gugliani, G. K., Sarkar, A., Ley, C., & Mandal, S. (2018). New methods to assess wind resources in terms of wind speed, load, power and direction. Renewable Energy, 129, 168-182. Doi: https://doi.org/10.1016/j.renene.2018.05.088
Guignard, F., Lovallo, M., Laib, M., Golay, J., Kanevski, M., Helbig, N., & Telesca, L. (2019). Investigating the time dynamics of wind speed in complex terrains by using the Fisher–Shannon method. Physica A: Statistical Mechanics and its Applications, 523, 611-621. Doi: https://doi.org/10.1016/j.physa.2019.02.048
Gumbel, E. J., Greenwood, J. A., & Durand, D. (1953). The circular normal distribution: Theory and tables. Journal of the American Statistical Association, 48(261), 131-152.
Hagen, B., Simonsen, I., Hofmann, M., & Muskulus, M. (2013). A multivariate Markov weather model for O&M simulation of offshore wind parks. Energy Procedia, 35, 137-147. Doi: https://doi.org/10.1016/j.egypro.2013.07.167.
Heckenbergerova, J., Musilek, P., Krömer, P. (2015). Optimization of wind direction distribution parameters using particle swarm optimization. In Afro-European Conference for Industrial Advancement (pp. 15-26). Springer, Cham. Doi: https://doi.org/10.1007/978-3-319-13572-4_2
Horák, J., & Orlíková, L. (2019, May). Circular Statistics for Directional and Temporal Data: Case Studies of Lineaments and Noise Violations Offence. In 2019 International Conference on Military Technologies (ICMT) (pp. 1-6). IEEE. Doi: 10.1109/MILTECHS.2019.8870075.
Hussin, A. G., Jalaludin, J. F., & Mohamed, I. (2006). Analysis of Malaysian wind direction data using AXIS. Journal of Applied Science Research, 2(11), 1019-1021.
Kamisan, N. A. B., Hussin, A. G., & Zubairi, Y. Z. (2010). Finding the best circular distribution for southwesterly monsoon wind direction in Malaysia. Sains Malaysiana, 39(3), 387-393.
Kato, S., & Jones, M. C. (2010). A family of distributions on the circle with links to, and applications arising from, Möbius transformation. Journal of the American Statistical Association, 105(489), 249-262. Doi: https://doi.org/10.1198/jasa.2009.tm08313.
INMET. Instituto Nacional de Meteorologia. (2020). Recuperado de: https://portal.inmet.gov.br/.
Lagona, F. (2016). Regression analysis of correlated circular data based on the multivariate von Mises distribution. Environmental and ecological statistics, 23(1), 89-113. DOI 10.1007/s10651-015-0330-y.
Lang, M. N., Schlosser, L., Hothorn, T., Mayr, G. J., Stauffer, R., & Zeileis, A. (2020). Circular Regression Trees and Forests with an Application to Probabilistic Wind Direction Forecasting. arXiv preprint arXiv:2001.00412.
Lund, U. S-plus original by Ulric Lund and R port by Claudio Agostinelli (2018). CircStats: Circular Statistics, from “Topics in Circular Statistics” (2001). R package version 0.2–6. Disponível em: https://CRAN.R-project.org/package=CircStats. Acesso em 16/062020.
Masseran, N. (2015). Markov chain model for the stochastic behaviors of wind-direction data. Energy conversion and management, 92, 266-274. Doi: https://doi.org/10.1016/j.enconman.2014.12.045
Masseran, N., Razali, A. M. (2016). Modeling the wind direction behaviors during the monsoon seasons in Peninsular Malaysia. Renewable and Sustainable Energy Reviews, 56, 1419-1430. Doi: https://doi.org/10.1016/j.rser.2015.11.040.
Masseran, N., Razali, A. M., Ibrahim, K., & Latif, M. T. (2013). Fitting a mixture of von Mises distributions in order to model data on wind direction in Peninsular Malaysia. Energy Conversion and Management, 72, 94-102. Doi: https://doi.org/10.1016/j.enconman.2012.11.025.
Miranda, Y. S. S.; Brighenti, C. R. G. Distribuição vom Misses na avaliação de dados entomológicos. 19º Simpósio Nacional de Probabilidade e Estatística - SINAPE, 2010.
do Nascimento, K. K. F., dos Santos, F. S., Gomes, D. A., da Silva Jale, J., Leite, R. S., Stosic, T., & Ferreira, T. A. E. (2019). Modelagem multifractal da velocidade horária do vento no município de Patos, Paraíba. Sigmae, 8(2), 238-247.
Pereira, AS, Shitsuka, DM, Parreira, FJ & Shitsuka, R. (2018). Metodologia da pesquisa
científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Acesso: 11 maio 2020. Disponível
R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria, 2019. Disponível em: http://www.R-project.org. Acesso em: 18/06/2020.
Vitti, D. M. C., Mauad, F. F., Jr, A. M., Inocêncio, L. C., & Veronez, M. R. (2017). Análise de Erros Sistemáticos em Ortofoto Gerada por Meio de Fotogrametria com RPAS. In Congresso Brasileiro de Cartografia, Rio de Janeiro, RJ, Brasil.
Zhan, X., Ma, T., Liu, S., & Shimizu, K. (2019). On circular correlation for data on the torus. Statistical Papers, 60 (6), 1827-1847. Doi: https://doi.org/10.1007/s00362-017-0897-5.
Zhu, X., Yang, X. (2016, July). Uncertainties in directional offshore wind distribution estimate from satellite remote sensing. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 4623-4626). IEEE. Doi: https://doi.org/10.1109/IGARSS.2016.7730206.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Fábio Sandro dos Santos; Mickaelle Maria de Almeida Pereira; José Eduardo Silva ; Henrique Correia Torres Santos; Tatijana Stosic
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.