Wind direction dodeling in Patos in Paraiba using von Mises probability distribution

Authors

DOI:

https://doi.org/10.33448/rsd-v9i12.11261

Keywords:

Energy source; Circular; Winds; Circular statistics.

Abstract

Objective: we used the distribution of circular probabilities of von Mises to determine the predominant wind direction in Patos, Paraíba. Method: we used hourly data of circular wind direction, obtained by the National Institute of Meteorology - INMET, from July 21, 2007 to September 30, 2018. Circular statistics were applied to the data, more precisely, the von Mises distribution. Results: The results of the analyses showed that the von Mises distribution adjusted well to the wind direction data, verifying that the wind direction in this municipality is with a high variation in the Southeast direction. Conclusion: The analysis allowed to be a useful tool for a possible installation of a wind farm, obtaining a greater use of the wind direction in the locality.

Author Biography

Fábio Sandro dos Santos, Universidade Federal Rural de Pernambuco

Departamento de Biometria e Estatística Aplicada

References

ABEEOLICA. Brasil avança em ranking de energia eólica com ventos entre os melhores do mundo (Reuters). (2018a). Recuperado de: hhttp://abeeolica.org.br/noticias/.

ABEEOLICA. Energia eólica no Nordeste cresce e tem ápice na época de secas. (2019b). Recuperado de: hhttp://abeeolica.org.br/noticias/energia-eolica-no-nordeste-cresce-e-tem-apice-na-epoca-de-secas-jornal-metro/i.

ABEEOLICA. Espanhola Iberdrola investe 1 bilhão de euros em complexo eólico no Brasil (Exame). (2018c). Recuperado de: hhttp://abeeolica.org.br/noticias/espanhola-iberdrola-investe-1-bilhao-de-euros-emi h-complexo-eólico-no-brasil-exame/i.

Blain, G. C. (2011). Modelagem de séries de temperatura mínima extrema sob condições de alterações climáticas. Ciência Rural, 41(11), 1877-1883.

Basile, S., Burlon, R., & Morales, F. (2015). Joint probability distributions for wind speed and direction. A case study in Sicily. In 2015 International Conference on Renewable Energy Research and Applications (ICRERA) (pp. 1591-1596). IEEE. Doi: https://doi.org/10.1109/ICRERA.2015.7418675

do Nascimento Camelo, H., Teixeira, W. F., Lucio, P. S., & Junior, J. B. V. L. (2015). Previsão de Velocidade Média do Vento através da utilização de modelagem Auto-Regressiva de Médias Móveis (ARMA) em Região Serrana no Estado do Ceará-Brasil. Revista Brasileira de Energias Renováveis, 4(3).

Gugliani, G. K., Sarkar, A., Ley, C., & Mandal, S. (2018). New methods to assess wind resources in terms of wind speed, load, power and direction. Renewable Energy, 129, 168-182. Doi: https://doi.org/10.1016/j.renene.2018.05.088

Guignard, F., Lovallo, M., Laib, M., Golay, J., Kanevski, M., Helbig, N., & Telesca, L. (2019). Investigating the time dynamics of wind speed in complex terrains by using the Fisher–Shannon method. Physica A: Statistical Mechanics and its Applications, 523, 611-621. Doi: https://doi.org/10.1016/j.physa.2019.02.048

Gumbel, E. J., Greenwood, J. A., & Durand, D. (1953). The circular normal distribution: Theory and tables. Journal of the American Statistical Association, 48(261), 131-152.

Hagen, B., Simonsen, I., Hofmann, M., & Muskulus, M. (2013). A multivariate Markov weather model for O&M simulation of offshore wind parks. Energy Procedia, 35, 137-147. Doi: https://doi.org/10.1016/j.egypro.2013.07.167.

Heckenbergerova, J., Musilek, P., Krömer, P. (2015). Optimization of wind direction distribution parameters using particle swarm optimization. In Afro-European Conference for Industrial Advancement (pp. 15-26). Springer, Cham. Doi: https://doi.org/10.1007/978-3-319-13572-4_2

Horák, J., & Orlíková, L. (2019, May). Circular Statistics for Directional and Temporal Data: Case Studies of Lineaments and Noise Violations Offence. In 2019 International Conference on Military Technologies (ICMT) (pp. 1-6). IEEE. Doi: 10.1109/MILTECHS.2019.8870075.

Hussin, A. G., Jalaludin, J. F., & Mohamed, I. (2006). Analysis of Malaysian wind direction data using AXIS. Journal of Applied Science Research, 2(11), 1019-1021.

Kamisan, N. A. B., Hussin, A. G., & Zubairi, Y. Z. (2010). Finding the best circular distribution for southwesterly monsoon wind direction in Malaysia. Sains Malaysiana, 39(3), 387-393.

Kato, S., & Jones, M. C. (2010). A family of distributions on the circle with links to, and applications arising from, Möbius transformation. Journal of the American Statistical Association, 105(489), 249-262. Doi: https://doi.org/10.1198/jasa.2009.tm08313.

INMET. Instituto Nacional de Meteorologia. (2020). Recuperado de: https://portal.inmet.gov.br/.

Lagona, F. (2016). Regression analysis of correlated circular data based on the multivariate von Mises distribution. Environmental and ecological statistics, 23(1), 89-113. DOI 10.1007/s10651-015-0330-y.

Lang, M. N., Schlosser, L., Hothorn, T., Mayr, G. J., Stauffer, R., & Zeileis, A. (2020). Circular Regression Trees and Forests with an Application to Probabilistic Wind Direction Forecasting. arXiv preprint arXiv:2001.00412.

Lund, U. S-plus original by Ulric Lund and R port by Claudio Agostinelli (2018). CircStats: Circular Statistics, from “Topics in Circular Statistics” (2001). R package version 0.2–6. Disponível em: https://CRAN.R-project.org/package=CircStats. Acesso em 16/062020.

Masseran, N. (2015). Markov chain model for the stochastic behaviors of wind-direction data. Energy conversion and management, 92, 266-274. Doi: https://doi.org/10.1016/j.enconman.2014.12.045

Masseran, N., Razali, A. M. (2016). Modeling the wind direction behaviors during the monsoon seasons in Peninsular Malaysia. Renewable and Sustainable Energy Reviews, 56, 1419-1430. Doi: https://doi.org/10.1016/j.rser.2015.11.040.

Masseran, N., Razali, A. M., Ibrahim, K., & Latif, M. T. (2013). Fitting a mixture of von Mises distributions in order to model data on wind direction in Peninsular Malaysia. Energy Conversion and Management, 72, 94-102. Doi: https://doi.org/10.1016/j.enconman.2012.11.025.

Miranda, Y. S. S.; Brighenti, C. R. G. Distribuição vom Misses na avaliação de dados entomológicos. 19º Simpósio Nacional de Probabilidade e Estatística - SINAPE, 2010.

do Nascimento, K. K. F., dos Santos, F. S., Gomes, D. A., da Silva Jale, J., Leite, R. S., Stosic, T., & Ferreira, T. A. E. (2019). Modelagem multifractal da velocidade horária do vento no município de Patos, Paraíba. Sigmae, 8(2), 238-247.

Pereira, AS, Shitsuka, DM, Parreira, FJ & Shitsuka, R. (2018). Metodologia da pesquisa

científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Acesso: 11 maio 2020. Disponível

em:https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_MetodologiaPesquisa-Cientifica.pdf?sequence=1.

R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria, 2019. Disponível em: http://www.R-project.org. Acesso em: 18/06/2020.

Vitti, D. M. C., Mauad, F. F., Jr, A. M., Inocêncio, L. C., & Veronez, M. R. (2017). Análise de Erros Sistemáticos em Ortofoto Gerada por Meio de Fotogrametria com RPAS. In Congresso Brasileiro de Cartografia, Rio de Janeiro, RJ, Brasil.

Zhan, X., Ma, T., Liu, S., & Shimizu, K. (2019). On circular correlation for data on the torus. Statistical Papers, 60 (6), 1827-1847. Doi: https://doi.org/10.1007/s00362-017-0897-5.

Zhu, X., Yang, X. (2016, July). Uncertainties in directional offshore wind distribution estimate from satellite remote sensing. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 4623-4626). IEEE. Doi: https://doi.org/10.1109/IGARSS.2016.7730206.

Published

27/12/2020

How to Cite

SANTOS, F. S. dos; PEREIRA, M. M. de A. .; SILVA , J. E.; SANTOS, H. C. T. .; STOSIC, T. Wind direction dodeling in Patos in Paraiba using von Mises probability distribution. Research, Society and Development, [S. l.], v. 9, n. 12, p. e38491211261, 2020. DOI: 10.33448/rsd-v9i12.11261. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11261. Acesso em: 19 nov. 2024.

Issue

Section

Exact and Earth Sciences