A study on the evolution of breast cancer deaths in Brazil using time series models

Authors

DOI:

https://doi.org/10.33448/rsd-v9i12.11449

Keywords:

Deaths; SARIMA model; Box-Jenkins; Forecast.

Abstract

Breast cancer is the most common type of cancer among women and is the leading cause of death worldwide. It is among the five most incident cancers in Brazil. Given this, it is understood that it is important to assess the number of deaths in Brazil since knowing the behavior of the disease is essential for public agencies focused on the health and well-being of the population. Thus, this study aims to use time series techniques to analyze the number of observations regarding the number of deaths from breast cancer (group ICD-10: Malignant neoplasms in the breast) in Brazil, covering the period from January 1996 to December 2018. For this analysis, the variability of the series was verified and the presence of the trend and seasonality components. The Box-Jenkins methodology was used to model the data, and the series under study was well adjusted using models of the SARIMA class. The comparison between the models considered suitable for the series was performed using the AIC and EQMP. The adjusted model was used to make predictions about future observations in this series. According to this forecast, it was possible to observe that for the following months, the series will maintain the pattern it has been maintaining since the beginning of its observation period: a growing increase in the number of deaths from such disease.

References

Barbosa, I. R., Costa, I. do C. C., Bernal Pérez, M. M., & Souza, D. L. B. de. (2015). MORTALIDADE POR CÂNCER DE MAMA NOS ESTADOS DO NORDESTE DO BRASIL: TENDÊNCIAS ATUAIS E PROJEÇÕES ATÉ 2030. Revista Ciência Plural, 1(1), 04-14. Recuperado de https://periodicos.ufrn.br/rcp/article/view/7318

Batiston, A., Tamaki, E., dos Santos, M., & Cazola, L. (2009). MÉTODO DE DETECÇÃO DO CÂNCER DE MAMA E SUAS IMPLICAÇÕES. Cogitare Enfermagem, 14(1). doi:http://dx.doi.org/10.5380/ce.v14i1.14103

Box, G. E. P., & Jenkins, G. M (1976). Time Series Analysis: Forecasting and Control (Revised). Oakland: Holden-Day

Box, G., & Pierce, D. (1970). Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. Journal of the American Statistical Association, 65(332), 1509-1526. doi:10.2307/2284333

Cox, D., & Stuart, A. (1955). Some Quick Sign Tests for Trend in Location and Dispersion. Biometrika, 42(1/2), 80-95. doi:10.2307/2333424

Morettin, P. A., & Toloi, C. (2006). Análise de séries temporais (2a ed.). São Paulo: Edgard Blucher

Padilha, P. C., & Pinheiro, R. L (2004). O papel dos alimentos funcionais na prevenção e controle do câncer de mama. Revista brasileira de cancerologia, 50(3), 251–260

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Recuperado de: em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1

R Core Team (2020). R: A Language and Environment for Statistical Computing. Vienna: Austria. Recuperado de http://www.R-project.org

Ross, S. M (1996). Stochastic Processes (2a ed.). New York: John Wiley & Sons

Silva, Lucia Cecília da. (2005). Vozes que contam a experiência de viver com câncer. Psicologia Hospitalar, 3(1), 1-17. Recuperado de http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S1677-74092005000100002&lng=pt&tlng=pt

Tomazelli, Jeane Glaucia, & Silva, Gulnar Azevedo e. (2017). Rastreamento do câncer de mama no Brasil: uma avaliação da oferta e utilização da rede assistencial do Sistema Único de Saúde no período 2010-2012. Epidemiologia e Serviços de Saúde, 26(4), 713-724. https://doi.org/10.5123/s1679-49742017000400004

Published

30/12/2020

How to Cite

FERREIRA, R. A. .; MIRANDA, V. de F. L. de .; SANTOS, P. M. dos .; ALVES, H. J. de P. .; SÁFADI, T. A study on the evolution of breast cancer deaths in Brazil using time series models. Research, Society and Development, [S. l.], v. 9, n. 12, p. e47191211449, 2020. DOI: 10.33448/rsd-v9i12.11449. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11449. Acesso em: 4 nov. 2024.

Issue

Section

Exact and Earth Sciences