Laminar fluid flow in concentric annular ducts of non-conventional cross-section applying GBI method

Authors

DOI:

https://doi.org/10.33448/rsd-v10i1.11547

Keywords:

Circular; Fully developed flow; Non-circular duct; Galerkin-based integral Method; Elliptical.

Abstract

Fluid flow in concentric or eccentric annular ducts have been studied for decades due to large application in medical sciences and engineering areas. This paper aims to study fully developed fluid flow in straight ducts of concentric annular geometries (circular with circular core, elliptical with circular core, elliptical with elliptical core, and circular with elliptical core) using the Galerkin-based Integral method (GBI method). The choice of method was due to the fact that in the literature it is not applied in ducts of cross-sections of the annular shape with variations between circular and elliptical. Results of different hydrodynamics parameters such as velocity distribution, Hagenbach factor, Poiseuille number, and hydrodynamic entrance length, are presented and analyzed. In different cases, the predicted hydrodynamic parameters are compared with results reported in the literature and a good concordance was obtained.

Author Biographies

Valdecir Alves dos Santos Júnior, Universidade Estadual da Paraíba

Graduated in mathematics from the Federal University of Maranhão - UFMA (2009), master's degree in Mathematics from the Federal University of Paraíba - UFPB (2011) and Doctor in Process Engineering from the Federal University of Campina Grande - UFCG (2018), working with transportation of fluid with an emphasis on the Integral Method based on Galerkin; numerical modeling; porous medium. He is currently a professor at the State University of Paraíba at the Science, Technology, and Health Center - Campus VIII, Araruna-PB.

Severino Rodrigues de Farias Neto, Universidade Federal de Campina Grande

Graduated in Chemical Engineering from the Federal University of Paraíba (1988), master's degree in Chemical Engineering from the Federal University of Paraíba (1992), and a doctorate in Process Engineering from the University of Nantes (1997). He is currently a Professor of Higher Education in Class E - Titular at the Federal University of Campina Grande. Has experience in the area of Chemical Engineering, with emphasis on Separation and Mixing Operations, acting mainly on the following topics: computational fluid dynamics, multiphase flows (water / oil-gas / solid separation; gas/oil and water/oil transport; flow in porous media - ceramic membranes and oil reservoirs, among others).

References

Alegria, L., Franco, A. T., Negrao, C., Morales, R., Martins, A. L., & Waldmann, A. T. A. (2012, January). Friction factor correlation for viscoplastic fluid flows through eccentric elliptical annular pipe. In IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition. Society of Petroleum Engineers.

Alves, T. A., Ramos, R. A. V., & Maia, C. R. M. (2014). Escoamento laminar de fluidos Newtonianos em dutos anulares concêntricos. RECEN-Revista Ciências Exatas e Naturais, 16(2), 285-306.

Cade, M. A., Lima, W. C. P. B., Neto, S. F., & Lima, A. G. B. (2010). Natural gas laminar flow in elliptic cylindrical pipes: A numerical study. Brazilian Journal of petroleum and gas, 4(1).

Colmanetti, A. R. A. (2016). Estudo experimental de escoamento multifásico em duto anular de grande diâmetro (Doctoral dissertation, Universidade de São Paulo).

Das, S. K., & Tahmouresi, F. (2016). Analytical solution of fully developed gaseous slip flow in elliptic microchannel. Int. J. Adv. Appl. Math. Mech, 3(3), 1-15.

de Lima, A. B., Delgado, J. M. P. Q., Santos, I. B., Santos, J. S., Barbosa, E. S., & e Silva, C. J. (2014). GBI Method: a powerful technique to study drying of complex shape solids. In Transport Phenomena and Drying of Solids and Particulate Materials (pp. 25-43). Springer, Cham.

de Oliveira Pinto, Y. L. (2016). Simuladores para o cálculo do fator de atrito para fluidos lei de potência em dutos circulares e anulares (Doctoral dissertation, Universidade Federal do Rio de Janeiro).

dos Santos, I. B., de Lucena Silva, L. P., & de Lima, A. G. B. (2012). Mass transfer in irregularly-shaped solid: an exact solution using the galerkin-based integral method. In Defect and Diffusion Forum (Vol. 326, pp. 199-204). Trans Tech Publications Ltd.

dos Santos Júnior, V. A. (2018). Escoamento de fluido em dutos de seção arbitrária utilizando o método integral baseado em Galerkin. Estudo de caso: óleo pesado. (Tese de Doutorado em Engenharia de Processos) – Programa de Pós-Graduação em Engenharia de Processos, Centro de Ciências e Tecnologia, Universidade Federal de Campina Grande, Campina Grande, Brasil.

dos Santos Junior, V. A., de Farias Neto, S. R., de Lima, A. G. B., Gomes, I. F., Galvão, I. B., Franco, C. M. R., & do Carmo, J. E. F. (2020). Heavy Oil Laminar Flow in Corrugated Ducts: A Numerical Study Using the Galerkin-Based Integral Method. Energies, 13(6), 1363.

Escudier, M. P., Gouldson, I. W., & Jones, D. M. (1995). Flow of shear-thinning fluids in a concentric annulus. Experiments in Fluids, 18(4), 225-238.

Etaig, S., & Hashem, G. (2020). Numerical Investigation on the Laminar Flow in a Vertical Pipe with Elliptic Cross Section. International Journal of Science and Research (IJSR), 9, 1588-1592.

Ferroudji, H., Hadjadj, A., Haddad, A., & Ofei, T. N. (2019). Numerical study of parameters affecting pressure drop of power-law fluid in horizontal annulus for laminar and turbulent flows. Journal of Petroleum Exploration and Production Technology, 9(4), 3091-3101.

Franco, C. M. R., Barbosa de Lima, A. G., Silva, J. V., & Nunes, A. G. (2016). Applying liquid diffusion model for continuous drying of rough rice in fixed bed. In Defect and Diffusion Forum (Vol. 369, pp. 152-156). Trans Tech Publications Ltd.

Franco, C. M., de Lima, A. G., Farias, V. S., & da Silva, W. P. (2020). Modeling and experimentation of continuous and intermittent drying of rough rice grains. Heat and Mass Transfer, 56(3), 1003-1014.

Franco, R., Barbosa de Lima, A. G., de Oliveira Farias, V. S., & Machado, E. A. (2020). Intermittent Drying of Rice Grains with Husk: Modelling and Experimentation. In Diffusion Foundations (Vol. 25, pp. 9-36). Trans Tech Publications Ltd.

Gulraiz, S., & Gray, K. E. (2020). Investigating the effects of plug viscosity on annular pressure drop and cuttings transport in a concentric annulus. Journal of Natural Gas Science and Engineering, 76, 103210.

Haji-Sheikh, A., & Beck, J. V. (1990). Green’s function partitioning in Galerkin-based integral solution of the diffusion equation. Journal Heat Transfer (Trans. ASME), 112, 28-34

Heaton, H. S., Reynolds, W. C., & Kays, W. M. (1964). Heat transfer in annular passages. Simultaneous development of velocity and temperature fields in laminar flow. International Journal of Heat and Mass Transfer, 7(7), 763-781.

Khalil, M. F., Kassab, S. Z., Adam, I. G., & Samaha, M. (2008, March). Laminar flow in concentric annulus with a moving core. In Twelfth Int. Water Technol. Conf. Alexandria, Egypt (pp. 439-457).

Lakshminarayanan, R., & Haji-Sheikh, A. (1992). Entrance heat transfer in isosceles and right triangular ducts. Journal of thermophysics and heat transfer, 6(1), 167-171.

Lasode, O. A., Popoola, T. O., & Prasad, B. V. S. S. S. (2013). Numerical Study of Liquefied Petroleum Gas Laminar Flow in Cylindrical Elliptic Pipes. World Academy of Science–Engineering & Technology, 7(6), 390-398.

Lee, Y. M., & Kuo, Y. M. (1998). Laminar flow in annuli ducts with constant wall temperature. International communications in heat and mass transfer, 25(2), 227-236.

Lee, Y. M., & Lee, P. C. (2001). Laminar flow in elliptic ducts with and without central circular cores for constant wall temperature. International communications in heat and mass transfer, 28(8), 1115-1124.

Lekner, J. (2007). Viscous flow through pipes of various cross-sections. European journal of physics, 28(3), 521.

Lima, D. R., Farias, S. N., & Lima, A. G. B. (2004). Mass transport in spheroids using the Galerkin method. Brazilian journal of chemical engineering, 21(4), 667-680.

Liu, Jim Sheau-Kung. (1974). Flow of a Bingham fluid in the entrance region of an annular tube. M.S. Thesis. University of Wisconsin-Milwaukee, Milwaukee, USA.

Lundgren, T. S., Sparrow, E. M., & Starr, J. B. (1964). Pressure drop due to the entrance region in ducts of arbitrary cross section. Journal Basic Engineering, 86, 620.

McComas, S. T. (1967). Hydrodynamic entrance lengths for ducts of arbitrary cross section. Journal Basic Engineering. 89, pp. 847-856.

Moharana, M. K., & Khandekar, S. (2013). Generalized formulation for estimating pressure drop in fully-developed laminar flow in singly and doubly connected channels of non-circular cross-sections. Computer Methods in Applied Mechanics and Engineering, 259, 64-76.

Moharana, M. K., & Khandekar, S. (2013). Generalized formulation for estimating pressure drop in fully-developed laminar flow in singly and doubly connected channels of non-circular cross-sections. Computer Methods in Applied Mechanics and Engineering, 259, 64-76.

Muzychka, Y. S., & Yovanovich, M. M. (2009). Pressure drop in laminar developing flow in noncircular ducts: A scaling and modeling approach. Journal of Fluids Engineering, 131(11).

Nouar, C., Ouldrouis, M., Salem, A., & Legrand, J. (1995). Developing laminar flow in the entrance region of annuli—Review and extension of standard resolution methods for the hydrodynamic problem. International journal of engineering science, 33(10), 1517-1534.

Park, S., & Lee, D. R. (2002). Predictions of pressure drop for modified power law fluids in conduits of three different cross-sectional shapes. Chemical engineering science, 57(6), 1057-1067.

Pereira A. S., Shitsuka, D. M., Parreira, F. J., Shitsuka, R. (2018). Metodologia da pesquisa científica. Editora UAB/NTE/UFSM, Santa Maria/RS. Recuperado de https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_MetodologiaPesquisa Cientifica.pdf?sequence=1.

Pessôa, P. M., Barbosa de Lima, A. G., Swarnakar, R., Gomes, J. P., & de Lima, W. M. (2016). Cooling of Fruit with Arbitrary Shape: Simulation Using Galerkin-Based Integral Method. In Diffusion Foundations (Vol. 10, pp. 1-15). Trans Tech Publications Ltd.

Santos, J. P. S., Santos, I. B., Pereira, E. M. A., Silva, J. V., & de Lima, A. G. B. (2015). Wheat convective drying: An analytical investigation via galerkin-based integral method. In Defect and Diffusion Forum (Vol. 365, pp. 82-87). Trans Tech Publications Ltd.

Shah, R. K., & London, A. L. (2014). Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. Academic press.

Shivakumar, P. N., & Ji, C. (1993). On the Poisson's Equation for Doubly Connected Regions. Canadian Appl. Math. Quarterly, 1, 555-568.

Solanki, S. C., Saini, J. S., & Gupta, C. P. (1986). Flow-through doubly connected ducts. International journal of heat and fluid flow, 7(4), 301-306.

Sparrow, E. M., & Lin, S. H. (1964). The developing laminar flow and pressure drop in the entrance region of annular ducts.

Sugino, E. (1962). Velocity distribution and pressure drop in the laminar inlet of a pipe with annular space. Bulletin of JSME, 5(20), 651-655.

Uner, D., Ozgen, C., & Tosun, I. (1988). An approximate solution for non-Newtonian flow in eccentric annuli. Industrial & engineering chemistry research, 27(4), 698-701.

Velusamy, K., & Garg, V. K. (1993). Entrance flow in elliptical ducts. International journal for numerical methods in fluids, 17(12), 1079-1096

Downloads

Published

04/01/2021

How to Cite

SANTOS JÚNIOR, V. A. dos; LIMA, A. G. B. de; FARIAS NETO, S. R. de .; GOMES, I. F.; TEIXEIRA, J. da C. Laminar fluid flow in concentric annular ducts of non-conventional cross-section applying GBI method. Research, Society and Development, [S. l.], v. 10, n. 1, p. e10710111547, 2021. DOI: 10.33448/rsd-v10i1.11547. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/11547. Acesso em: 22 jan. 2021.

Issue

Section

Engineerings