Inhibition of nitric oxide synthesis promotes increased mortality despite the reduction of parasitemia in Plasmodium berghei-infected mice




Nitric oxide; Malaria; Nitric oxide synthase; Oxidative stress.


Nitric oxide (NO) is an important mediator molecule in inflammatory processes, but its role in the pathophysiology of malaria is still uncertain. To investigate the NO synthesis inhibition on the oxidative changes induced by Plasmodium berghei infection in mice, malaria was induced in 150 animals, of which 75 animals were treated with the NO inhibitor L-NAME; the remaining animals were sham controls. All animals underwent euthanasia 1, 5, 10, 15, or 20 days after infection for the collection of lungs, brain, and blood. Parasitemia was determined, and the survival of the animals was evaluated. Tissue samples were assayed for nitrites and nitrates (NN), thiobarbituric acid reactive substances (TBARS), and total Trolox equivalent antioxidant capacity (TEAC). A histopathological study was performed. Mortality rates in the L-NAME group were always higher than those in the controls. In the brain, NN was lower in the L-NAME group. Parasitemia and its progression rate were greater in the control group. By the 5th day of infection, mice treated with L-NAME showed cerebral edema and interstitial pneumonia of greater intensity than controls. In conclusion, the anti-inflammatory and hemodynamic effects of NO surpass its pro-oxidant role in murine malaria.

Author Biographies

Aline da Silva Barbosa, Federal University of Pará

PhD student, Oxidative Stress Research Lab, Institute of Biological Sciences

Mayani Costa Ribeiro Temple, Federal University of Pará

MD, Oxidative Stress Research Lab, Institute of Biological Sciences


Everton Luiz Pompeu Varela, Federal University of Pará

PhD student, Oxidative Stress Research Lab, Institute of Biological Sciences


Antonio Rafael Quadros Gomes, Federal University of Pará

PhD student, Oxidative Stress Research Lab, Institute of Biological Sciences

Edvaldo Lima Silveira, Federal University of Pará

Professor, Oxidative Stress Research Lab, Institute of Biological Sciences

Eliete Pereira de Carvalho, Federal University of Pará

PhD student, Oxidative Stress Research Lab, Institute of Biological Sciences

Maria Fani Dolabela, Federal University of Pará

Professor, Institute of Health Sciences



Anstey, N. M., Granger, D. L., Hassanali, M. Y., Mwaikambo, E. D., Duffy, P. E., & Weinberg, J. B. (1999). Nitric oxide, malaria, and anemia: inverse relationship between nitric oxide production and hemoglobin concentration in asymptomatic, malaria-exposed children. The American journal of tropical medicine and hygiene, 61(2), 249-252.

Anstey, N. M., Weinberg, J. B., Hassanali, M. Y., Mwaikambo, E. D., Manyenga, D., Misukonis, M. A., Arnelle, D. R., Hollis, D., McDonald, M. I., & Granger, D. L. (1996). Nitric oxide in Tanzanian children with malaria: inverse relationship between malaria severity and nitric oxide production/nitric oxide synthase type 2 expression. Journal of Experimental Medicine, 184(2), 557-567.

Aviado, D. M., & Cambar, P. J. (1969). Pathologic physiology and chemotherapy of Plasmodium berghei: X. Pulmonary edema and naphthoquinones. Experimental Parasitology, 26(3), 354-368.

Balmer, P., Phillips, H. M., Maestre, A. E., McMonagle, F. A., & Phillips, R. S. (2000). The effect of nitric oxide on the growth of Plasmodium falciparum, P. chabaudi and P. berghei in vitro. Parasite Immunology, 22(2), 97-106.

Barreto, R. L., Correia, C. R. D., & Muscará, M. N. (2005). Óxido nítrico: propriedades e potenciais usos terapêuticos. Química Nova, 28(6), 1046-1054.

Becker, K., Tilley, L., Vennerstrom, J. L., Roberts, D., Rogerson, S., & Ginsburg, H. (2004). Oxidative stress in malaria parasite-infected erythrocytes: host-parasite interactions. International Journal for Parasitology, 34(2), 163-189.

Beleslin-Čokić, B. B., Čokić, V. P., Wang, L., Piknova, B., Teng, R., Schechter, A. N., & Noguchi, C. T. (2011) Erythropoietin and hypoxia increase erythropoietin receptor and nitric oxide levels in lung microvascular endothelial cells. Cytokine, 54(2), 129-135.

Cabrales, P., Zanini, G. M., Meays, D., Frangos, J. A., & Carvalho, L. J. M. (2011). Nitric Oxide protection against murine cerebral malaria is associated with improved cerebral microcirculatory physiology. The Journal of Infectious Diseases, 203(10), 1454-1463.

Dusse, L. M. S., Vieira, L. M., & Carvalho, M. G. (2003). Revisão sobre óxido nítrico. Jornal Brasileiro de Patologia e Medicina Laboratorial, 39(4), 343-350.

Erel, O., Kocyigit, A., Avci, S., Aktepe, N., & Bulut, V. (1997). Oxidative stress and antioxidative status of plasma and erythrocytes in patients with vivax malaria. Clinical Biochemistry, 30(8), 631-639.

Favre, N., Ryffel, B., & Rudin, W. (1999). Parasite killing in murine malaria does not require nitric oxide production. Parasitology, 118(2), 139-143.

Förstermann, U., & Sessa, W. C. (2012). Nitric oxide synthases: regulation and function. European Heart Journal, 33(7), 829-837.

Fritsche, G., Larcher, C., Schennach, H., & Weiss, G. (2001). Regulatory interactions between iron and nitric oxide metabolism for immune defense against Plasmodium falciparum infection. The Journal of Infectious Diseases, 183(9), 1388-1394.

Gaston, B., Drazen, J. M., Loscalzo, J., & Stamler, J. S. (1994). The biology of nitrogen oxides in the airways. American Journal of Respiratory and Critical Care Medicine, 149(2), 538-551.

Gomes, B. A. Q., Silva, L. F. D., Gomes, A. R. Q., Moreira, D. R., Dolabela, M. F., Santos, R. S., Green, M. D., Carvalho, E. P., & Percário, S. (2015). N-acetyl cysteine and mushroom Agaricus sylvaticus supplementation decreased parasitemia and pulmonary oxidative stress in a mice model of malaria. Malaria Journal, 14(202), 1-12.

Green, S. J., Scheller, L. F., Marletta, M. A., Seguin, M. C., Klotz, F. W., Slayter, M., Nelson, B. J., & Nacy, C. A. (1994). Nitric oxide: cytokine-regulation of nitric oxide in host resistance to intracellular pathogens. Immunology Letters, 43(1-2), 87-94.

Halliwell, B. & Gutteridge, J. M. C. (2007). Free Radicals in Biology and Medicine. (4th ed.) Oxford University Press.

Hawkes, M., Opoka, R. O., Namasopo, S., Miller, C., Conroy, A. L., Serghides, L., Kim, H., Thampi, N., Liles, W. C., John, C. C., & Kain, K. C. (2011). Nitric oxide for the adjunctive treatment of severe malaria: Hypothesis and rationale. Medical Hypotheses, 77(3), 437-444.

Lacerda, M. V. G., Mourão, M. P. G., Santos, P. J. T., & Alecrim, M. G. C. (2009). Malária álgida: um diagnóstico sindrômico. Revista da Sociedade Brasileira de Medicina Tropical, 42(1), 79-81.

Lovegrove, F. E., Gharib, S. A., Peña-Castillo, L., Patel, S. N., Ruzinski, J. T., Hughes, T. R., Liles, W. C., & Kain, K. C. (2008). Parasite burden and CD36-mediated sequestration are determinants of acute lung injury in an experimental malaria model. PLoS Pathogens, 4(5), e1000068.

Martins, Y. C., Smith, M. J., Pelajo-Machado, M., Werneck, G. L., Lenzi, H. L., Daniel-Ribeiro, C. T., & Carvalho, L. J. M. (2009). Characterization of cerebral malaria in the outbred Swiss Webster mouse infected by Plasmodium berghei ANKA. International Journal of Experimental Pathology, 90(2), 119-130.

Martins, Y. C., Zanini, G. M., Frangos, J. A., & Carvalho, L. J. M. (2012). Efficacy of different nitric oxide-based strategies in preventing experimental cerebral malaria by Plasmodium berghei ANKA. PLoS ONE, 7(2), e32048.

Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., & Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Sciense, 84(4), 407-12.

Moore, B. R., Jago, J. D., & Batty, K. T. (2008). Plasmodium berghei: Parasite clearance after treatment with dihydroartemisinin in an asplenic murine malaria model. Experimental Parasitology ,118(4), 458-467.

Moreira, D. R, Uberti, A. C. M. G., Gomes, A. R. Q., Ferreira. M. E. S., Ferrari, C. K. B., Santos, R. S., et al. Inhibition of nitric oxide synthesis by dexamethasone increases survival rate in Plasmodium berghei-infected mice. In press.

Nussler, A. K., Eling, W., & Kremsher, P. G. (1994). Patients with Plasmodium falciparum malaria and Plasmodium vivax malaria show increased nitrite and nitrate plasma levels. The Journal of Infectious Diseases, 169(6), 1418-1419.

Pablón, A., Carmona, J., Burgos, L. C., & Blair, S. (2002). Oxidative stress in patients with non-complicated malaria. Clinical Biochemistry, 36(1), 71-78.

Percário, S., Moreira, D. R., Gomes, B. A. Q., Ferreira, M. E. S., Gonçalves, A. C. M., Laurindo, P. S. O. C., Vilhena, T. C., Dolabela, M. F., & Green, M. D. (2012). Oxidative stress in malaria. International Journal of Molecular Sciences, 13(12), 16346-16372.

Percario, S., Vital, A. C. C., & Jablonka, F. (1994). Dosagem do malondialdeido. Newslab, 2(6), 46-50.

Pino, P., Vouldoukis, I., Dugas, N., Hassani-Loppion, G., Dugas, B., & Mazier, D. (2003). Redox-dependent apoptosis in human endothelial cells after adhesion of Plasmodium falciparum-infected erythrocytes. Annals of the New York Academy of Sciences, 1010 (1), 582-586.

Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237.

Reis, P. A., Comim, C. M., Hermani, F., Silva, B., Barichello. T., Portella, A. C., Gomes, F. C. A., Sab, I. M., Frutuoso, V. S., Oliveira, M. F., Bozza, P. T., Bozza, F. A., Dal-Pizzol, F., Zimmerman, G. A., Quevedo, J., & Castro-Faria-Neto, H. C. (2010). Cognitive dysfunction is sustained after rescue therapy in experimental cerebral malaria, and is reduced by additive antioxidant therapy. PLoS Pathogens, 6(6), e.1000963.

Sadavongvivad, C. & Aviado, D. (1969). Pathologic physiology and chemotherapy of Plasmodium berghei. VI. Mechanichal properties and histological features of the lung. Experimental Parasitology, 24(3), 313-326.

Serghides, L., Kim, H., Lu, Z., Kain, D. C., Miller, C., Francis, R. C., Liles, W. C., Zapol, W. M., & Kain, K. C. (2011). Inhaled Nitric Oxide reduces endothelial activation and parasite accumulation in the brain, and enhances survival in experimental cerebral malaria. PLoS ONE, 6(11), e27714.

Sobolewski, P., Gramaglia, I., Frangos, J. A., Intaglietta, M., & Van der Heyde, H. (2005). Plasmodium berghei resists killing by reactive oxygen species. Infection and Immunity, 73(10), 6704-6710.

Speyer, C. L., Neff, T. A., Warner, R. L., Guo, R-F., Sarma, J. V., Riedermann, N. C., Murphy, M. E., Murphy, H. S., & Ward, P. A. (2003). Regulatory effects of iNOS on acute lung inflammatory responses in mice. The American Journal of Pathology, 163(3), 2319-2328.

Van Der Heyde, H. C., Gu, Y., Zhang, Q., Sun, G., & Grisham, M. B. (2000). Nitric oxide is neither necessary nor sufficient for resolution of Plasmodium chabaudi malaria in mice. The Journal of Immunology, 165(6), 3317-3323.

Van Der Heyde, H. C., Nolan, J., Combes, V., Gramaglia, I., & Grau, G. E. (2006). A unified hypothesis for the genesis of cerebral malaria: sequestration, inflammation and hemostasis leading to microcirculatory dysfunction. Trends Parasitology, 22(11), 503-508.

Weiss, M. L. & Kubat, K. (1983). Plasmodium berghei: a mouse model for the “sudden death” and “malarial lung” syndromes. Experimental Parasitology, 56(1), 143-151.

WHO. World Malaria Report (2016). Geneva: World Health Organization; 2016.

Xia, Y., Dawson, V. L., Dawson, T. M., Snyder, S. H., & Zweier, J. L. (1996). Nitric oxide synthase generates superoxide and nitric oxide in arginine-depleted cells leading to peroxynitrite-mediated cellular injury. Proceedings of the National Academy of Sciences, 93(13), 6770-6774.

Xia, Y. & Zweier, J. L. (1997). Superoxide and peroxynitrite generation from inducible nitric oxide synthase in macrophages. Proceedings of the National Academy of Sciences, 94(13), 6954-6958.

Zanini, G. M., Cabrales, P., Barkho, W., Frangos, J. A., & Carvalho, L. J. M. (2011). Exogenous nitric oxide decreases brain vascular inflammation, leakage and venular resistance during Plasmodium berghei ANKA infection in mice. Journal of Neuroinflammation, 8(66), 1-9.

Zeidler, P. C, Millecchia, L. M., & Castranova, V. (2004). Role of inducible nitric oxide synthase-derived nitric oxide in lipopolysaccharide plus interferon-γ-induced pulmonary inflammation. Toxicology and Applied Pharmacology, 195(1), 45-54.




How to Cite

BARBOSA, A. da S. .; TEMPLE, M. C. R. .; VARELA, E. L. P. .; GOMES, A. R. Q. .; SILVEIRA, E. L. .; CARVALHO, E. P. de .; DOLABELA, M. F. .; PERCARIO, S. Inhibition of nitric oxide synthesis promotes increased mortality despite the reduction of parasitemia in Plasmodium berghei-infected mice. Research, Society and Development, [S. l.], v. 10, n. 1, p. e27810111805, 2021. DOI: 10.33448/rsd-v10i1.11805. Disponível em: Acesso em: 24 jan. 2021.



Health Sciences