Influence of genetic suscetibility on the incidence and mortality of COVID-19 (SARS-COV-2)
DOI:
https://doi.org/10.33448/rsd-v10i1.11812Keywords:
Genetic susceptibility; COVID-19; Severe acute respiratory syndrome coronavirus 2 (Sars-cov-2).Abstract
This study aimed to carry out a literature review on the influence of genetic susceptibility on the incidence and mortality of COVID-19. It is a descriptive review of the literature carried out in the PUBMED and Science direct databases using the following descriptors: genetic susceptibility “AND “COVID-19”. The inclusion criteria were scientific articles available for free, in English, Spanish and Portuguese, which were published in 2020. Duplicate articles between databases were excluded. At the end, 58 studies followed the established criteria. The ACE2 and TMPRSS2 genes have the potential for prophylactic and therapeutic intervention in the early stages of SARS-CoV-2 infection, playing a crucial role in the entry of the virus into host cells. In addition, the locus of Human Leukocyte Antigen (HLA) appears to be crucial to influence the susceptibility and severity of COVID-19. Male individuals have a higher mortality and severity rate for COVID-19, being related to a more significant expression of ACE2 and differences in the epigenetic regulation of ACE2. Genetic susceptibility can contribute to the interindividual clinical variability associated with COVID-19, allowing for an evidence-based risk assessment leading to personalized preventive measures and therapeutic options.
References
Agrawal, H., Das, N., Nathani, S., Saha, S., Saini, S., Kakar, S. S., & Roy, P. (2020). An assessment on impact of COVID-19 infection in a gender specific manner. Stem cell reviews and reports, 1-19.
Al‐Eitan, L. N., & Alahmad, S. Z. (2020). Pharmacogenomics of genetic polymorphism within the genes responsible for SARS‐CoV‐2 susceptibility and the drug‐metabolising genes used in treatment. Reviews in medical virology, e2194.
Alshahawey, M., Raslan, M., & Sabri, N. (2020). Sex-mediated effects of ACE2 and TMPRSS2 on the incidence and severity of COVID-19; The need for genetic implementation. Current Research in Translational Medicine.
Anastassopoulou, C., Gkizarioti, Z., Patrinos, G. P., & Tsakris, A. (2020). Human genetic factors associated with susceptibility to SARS-CoV-2 infection and COVID-19 disease severity. Human genomics, 14(1), 1-8.
Abdelzaher, H., Saleh, B. M., Ismail, H. A., Hafiz, M., Abou Gabal, M., Mahmoud, M., & Abdelnaser, A. (2020). COVID-19 genetic and environmental risk factors: a look at the evidence. Frontiers in pharmacology, 11.
Barash, A., Machluf, Y., Ariel, I., & Dekel, Y. (2020). The pursuit of COVID-19 biomarkers: putting the spotlight on ACE2 and TMPRSS2 regulatory sequences. Frontiers in medicine, 7.
Benetti, E., Tita, R., Spiga, O., Ciolfi, A., Birolo, G., & Bruselles, A. ACE2 gene variants may underlie interindividual variability and susceptibility to COVID-19 in the Italian population. medRxiv. 2020: 2020.04. 03.20047977.
Bienvenu, L. A., Noonan, J., Wang, X., & Peter, K. (2020). Higher mortality of COVID-19 in males: sex differences in immune response and cardiovascular comorbidities. Cardiovascular Research, 116(14), 2197-2206.
Chakravarty, S. (2020). COVID-19: The Effect of Host Genetic Variations on Host–Virus Interactions. Journal of Proteome Research.
Cammarata-Scalisi, F., Tadich, A. C., & Callea, M. (2020). Genetic variability in the case of COVID-19 infection. Archivos Argentinos de Pediatria, 118(5).
Chiappelli, F. (2020). CoViD-19 Susceptibility. Bioinformation, 16(7), 501.
Carter-Timofte, M. E., Jørgensen, S. E., Freytag, M. R., Thomsen, M. M., Andersen, N. S. B., Al-Mousawi, A., & Mogensen, T. H. (2020). Deciphering the role of host genetics in susceptibility to severe COVID-19. Frontiers in Immunology, 11.
COVID-19 Host Genetics Initiative. (2020). The COVID-19 Host Genetics Initiative, a global initiative to elucidate the role of host genetic factors in susceptibility and severity of the SARS-CoV-2 virus pandemic. European Journal of Human Genetics, 1.
Choudhary, S., Sreenivasulu, K., Mitra, P., Misra, S., & Sharma, P. Role of genetic variants and gene expression in the susceptibility and severity of COVID-19. Ann Lab Med, 2021(41), 129-38.
Chen, L., & Zheng, S. (2020). Understand variability of COVID-19 through population and tissue variations in expression of SARS-CoV-2 host genes. Informatics in medicine unlocked, 21, 100443.
das Mercês, D. M., da Silva Abdias, G., Moreira, T. A., Lima, F. L. O., & de Vasconcellos Neto, J. R. T. (2020). Doença de coronavírus 2019 (covid-19): mecanismos, diagnóstico diferencial e influência das medidas de intervenção. Research, Society and Development, 9(8), e921986075-e921986075.
Debnath, M., Banerjee, M., & Berk, M. (2020). Genetic gateways to COVID‐19 infection: Implications for risk, severity, and outcomes. The FASEB Journal.
de Figueiredo, M. C. F., do Nascimento, J. M. F., Araújo, D. S., Silva, T. R., Barros, F. D. D., de Moura, F. V. P., & Pereira-Freire, J. A. (2020). O impacto do excesso de peso nas complicações clínicas causadas pela COVID-19: Uma revisão sistemática. Research, Society and Development, 9(7), e693974791-e693974791.
Dobrindt, K., Hoagland, D. A., Seah, C., Kassim, B., O'Shea, C. P., Iskhakova, M., & Murphy, A. (2020). Common genetic variation in humans impacts in vitro susceptibility to SARS-CoV-2 infection. bioRxiv.
Devaux, C. A., Rolain, J. M., & Raoult, D. (2020). ACE2 receptor polymorphism: Susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome. Journal of Microbiology, Immunology and Infection.
Elhabyan, A., El Yaacoub, S., Sanad, E., Mohamed, A., Elhabyan, A., & Dinu, V. (2020). The role of host genetics in susceptibility to severe viral infections in humans and insights into host genetics of severe COVID-19: A systematic review. Virus Research, 198163.
Fujikura, K., & Uesaka, K. (2020). Genetic variations in the human severe acute respiratory syndrome coronavirus receptor ACE2 and serine protease TMPRSS2. Journal of Clinical Pathology.
Foresta, C., Rocca, M. S., & Di Nisio, A. (2020). Gender susceptibility to COVID-19: a review of the putative role of sex hormones and X chromosome. Journal of Endocrinological Investigation, 1-6.
Godri Pollitt, K. J., Peccia, J., Ko, A. I., Kaminski, N., Dela Cruz, C. S., Nebert, D. W., & Vasiliou, V. (2020). COVID-19 vulnerability: the potential impact of genetic susceptibility and airborne transmission. Human Genomics, 14, 1-7.
Gemmati, D., Bramanti, B., Serino, M. L., Secchiero, P., Zauli, G., & Tisato, V. (2020). COVID-19 and Individual Genetic Susceptibility/Receptivity: Role of ACE1/ACE2 Genes, Immunity, Inflammation and Coagulation. Might the Double X-Chromosome in Females Be Protective against SARS-CoV-2 Compared to the Single X-Chromosome in Males?. International Journal of Molecular Sciences, 21(10), 3474.
Gómez, J., Albaiceta, G. M., García-Clemente, M., López-Larrea, C., Amado-Rodríguez, L., Lopez-Alonso, I., & Alvarez-Argüelles, M. E. (2020). Angiotensin-converting enzymes (ACE, ACE2) gene variants and COVID-19 outcome. Gene, 762, 145102.
Guan, W. J., Ni, Z. Y., Hu, Y., Liang, W. H., Ou, C. Q., He, J. X., & Du, B. (2020). Clinical characteristics of coronavirus disease 2019 in China. New England journal of medicine, 382(18), 1708-1720.
Gutierrez, L., Beckford, J., & Alachkar, H. (2020). Deciphering the TCR repertoire to solve the COVID-19 mystery. Trends in Pharmacological Sciences.
Haitao, T., Vermunt, J., Abeykoon, J., Ghamrawi, R., Gunaratne, M., Jayachandran, M., & Garovic, V. (2020, August). COVID-19 and sex differences: mechanisms and biomarkers. In Mayo Clinic Proceedings. Elsevier.
Hou, Y., Zhao, J., Martin, W., Kallianpur, A., Chung, M. K., Jehi, L., & Cheng, F. (2020). New insights into genetic susceptibility of COVID-19: an ACE2 and TMPRSS2 polymorphism analysis. BMC medicine, 18(1), 1-8.
Hussain, M., Jabeen, N., Raza, F., Shabbir, S., Baig, A. A., Amanullah, A., & Aziz, B. (2020). Structural variations in human ACE2 may influence its binding with SARS‐CoV‐2 spike protein. Journal of medical virology.
Korber, B., Fischer, W. M., Gnanakaran, S., Yoon, H., Theiler, J., Abfalterer, W., & Hastie, K. M. (2020). Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell, 182(4), 812-827.
Kuo, C. L., Pilling, L. C., Atkins, J. L., Masoli, J. A., Delgado, J., Kuchel, G. A., & Melzer, D. (2020). APOE e4 genotype predicts severe COVID-19 in the UK Biobank community cohort. medRxiv.
Kachuri, L., Francis, S. S., Morrison, M., Bossé, Y., Cavazos, T. B., Rashkin, S. R., & Witte, J. S. (2020). The landscape of host genetic factors involved in infection to common viruses and SARS-CoV-2. medRxiv.
Klaassen, K., Stankovic, B., Zukic, B., Kotur, N., Gasic, V., Pavlovic, S., & Stojiljkovic, M. (2020). Functional prediction and comparative population analysis of variants in genes for proteases and innate immunity related to SARS-CoV-2 infection. bioRxiv.
Latini, A., Agolini, E., Novelli, A., Borgiani, P., Giannini, R., Gravina, P., & Novelli, G. (2020). COVID-19 and genetic variants of protein involved in the SARS-CoV-2 entry into the host cells. Genes, 11(9), 1010.
Lorente, L., Martín, M. M., Franco, A., Barrios, Y., Cáceres, J. J., Solé-Violán, J., & Jiménez, A. (2020). HLA genetic polymorphisms and prognosis of patients with COVID-19. Medicina intensiva.
LoPresti, M., Beck, D. B., Duggal, P., Cummings, D. A., & Solomon, B. D. (2020). The Role of Host Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic Review of Human Literature. medRxiv.
Lacoma, A., Mateo, L., Blanco, I., Méndez, M. J., Rodrigo, C., Latorre, I., ... & Prat, C. (2019). Impact of host genetics and biological response modifiers on respiratory tract infections. Frontiers in immunology, 10, 1013.
Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., & Xing, X. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New England Journal of Medicine.
Lingeswaran, M., Goyal, T., Ghosh, R., Suri, S., Mitra, P., Misra, S., & Sharma, P. (2020). Inflammation, Immunity and Immunogenetics in COVID-19: A Narrative Review. Indian Journal of Clinical Biochemistry, 1.
Liu, D., Yang, J., Feng, B., Lu, W., Zhao, C., & Li, L. (2020). Mendelian randomization analysis identified genes pleiotropically associated with the risk and prognosis of COVID-19. Journal of Infection.
Mitra, P., Suri, S., Goyal, T., Misra, R., Singh, K., Garg, M. K., & Sharma, P. (2020). Association of comorbidities with Coronavirus disease 2019: A review. Annals of the National Academy of Medical Sciences (India).
Murray, M. F., Kenny, E. E., Ritchie, M. D., Rader, D. J., Bale, A. E., Giovanni, M. A., & Abul-Husn, N. S. (2020). COVID-19 outcomes and the human genome. Genetics in Medicine, 1-3.
Mohammadpour, S., Torshizi Esfahani, A., Halaji, M., Lak, M., & Ranjbar, R. (2020). An updated review of the association of host genetic factors with susceptibility and resistance to COVID‐19. Journal of Cellular Physiology, 236(1), 49-54.
Maiti, A. K. (2020). The African-American population with a low allele frequency of SNP rs1990760 (T allele) in IFIH1 predicts less IFN-beta expression and potential vulnerability to COVID-19 infection. Immunogenetics, 72(6), 387-391.
Moradi, F., Enjezab, B., & Ghadiri-Anari, A. (2020). The role of androgens in COVID-19. Diabetes & Metabolic Syndrome: Clinical Research & Reviews.
Novelli, A., Andreani, M., Biancolella, M., Liberatoscioli, L., Passarelli, C., Colona, V. L., & Andreoni, M. (2020). HLA allele frequencies and susceptibility to COVID‐19 in a group of 99 Italian patients. Hla, 96(5), 610-614.
Nguyen, A., David, J. K., Maden, S. K., Wood, M. A., Weeder, B. R., Nellore, A., & Thompson, R. F. (2020). Human leukocyte antigen susceptibility map for SARS-CoV-2. Journal of virology.
Khan, F. A. (2020). The role of selectivity of the SARS-CoV-2 virus for human genetic profiles in susceptibility and resistance to COVID-19. New Microbes and New Infections, 36.
Ovsyannikova, I. G., Haralambieva, I. H., Crooke, S. N., Poland, G. A., & Kennedy, R. B. (2020). The role of host genetics in the immune response to SARS‐CoV‐2 and COVID‐19 susceptibility and severity. Immunological reviews, 296(1), 205-219.
Pathak, G. A., Wendt, F., Goswami, A., De Angelis, F., Polimanti, R., & COVID-19 Host Genetics Initiative. (2020). ACE2 Netlas: In-silico functional characterization and drug-gene interactions of ACE2 gene network to understand its potential involvement in COVID-19 susceptibility. medRxiv.
Pisanti, S., Deelen, J., Gallina, A. M., Caputo, M., Citro, M., Abate, M., & Martinelli, R. (2020). Correlation of the two most frequent HLA haplotypes in the Italian population to the differential regional incidence of Covid-19. Journal of translational medicine, 18(1), 1-16.
Panda, A. K., Padhi, A., & Prusty, B. A. K. (2020). CCR5 Δ32 minorallele is associated with susceptibility to SARS-CoV-2 infection and death: An epidemiological investigation. Clinica Chimica Acta; International Journal of Clinical Chemistry.
Pinto, B. G., Oliveira, A. E., Singh, Y., Jimenez, L., Goncalves, A. N., Ogava, R. L., & Nakaya, H. I. ACE2 Expression is Increased in the Lungs of Patients with Comorbidities Associated with Severe COVID-19. medRxiv. 2020.
Paniri, A., Hosseini, M. M., Eslam, M. M., & Akhavan-Niaki, H. (2020). Comprehensive in silico identification of impacts of ACE2 SNPs on COVID-19 susceptibility in different populations. Gene reports, 100979.
Pereira, N. L., Ahmad, F., Cummins, N. W., Byku, M., Morris, A. A., Owens, A., & Cresci, S. (2020, December). COVID-19: Understanding Inter-Individual Variability and Implications for Precision Medicine. In Mayo Clinic Proceedings. Elsevier.
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica.
Ramos-Lopez, O., Daimiel, L., Ramírez de Molina, A., Martínez-Urbistondo, D., Vargas, J. A., & Martínez, J. A. (2020). Exploring Host Genetic Polymorphisms Involved in SARS-CoV Infection Outcomes: Implications for Personalized Medicine in COVID-19. International journal of genomics, 2020.
Ragia, G., & Manolopoulos, V. G. (2020). Assessing COVID-19 susceptibility through analysis of the genetic and epigenetic diversity of ACE2 mediated SARS-CoV-2 entry. Pharmacogenomics, (0).
Ravaioli, S., Tebaldi, M., Fonzi, E., Angeli, D., Mazza, M., Nicolini, F., & Bravaccini, S. (2020). ACE2 and TMPRSS2 Potential Involvement in Genetic Susceptibility to SARS-COV-2 in Cancer Patients. Cell transplantation, 29, 0963689720968749.
Renieri, A., Benetti, E., Tita, R., Spiga, O., Ciolfi, A., Birolo, G., & Musacchia, F. (2020). ACE2 variants underlie interindividual variability and susceptibility to COVID-19 in Italian population. medRxiv.
Sharma, P., Pandey, A. K., & Bhattacharyya, D. K. (2020). Determining crucial genes associated with COVID-19 based on COPD Findings✶,✶✶. Computers in biology and medicine, 128, 104126.
Sakuraba, A., Haider, H., & Sato, T. (2020). Population Difference in Allele Frequency of HLA-C* 05 and Its Correlation with COVID-19 Mortality. Viruses, 12(11), 1333.
Samuel, R. M., Majd, H., Richter, M. N., Ghazizadeh, Z., Zekavat, S. M., Navickas, A., & Koh, K. D. (2020). Androgen Signaling Regulates SARS-CoV-2 Receptor Levels and Is Associated with Severe COVID-19 Symptoms in Men. Cell Stem Cell, 27(6), 876-889.
Sousa, G. O., Sales, B. N., Rodrigues, A. M. X., de Moura Rocha, G. M., & de Oliveira, G. A. L. (2020). Evolução epidemiológica da COVID-19 no Brasil e no mundo. Research, Society and Development, 9(7), e630974653-e630974653.
Srivastava, A., Bandopadhyay, A., Das, D., Pandey, R. K., Singh, V., Khanam, N., & Gupta, P. (2020). Genetic association of ACE2 rs2285666 polymorphism with Covid-19 spatial distribution in India. Frontiers in genetics, 11, 1163.
Smatti, M. K., Al-Sarraj, Y. A., Albagha, O., & Yassine, H. M. (2020). Host genetic variants potentially associated with SARS-CoV-2: A multi-population analysis. Frontiers in genetics, 11.
Toyoshima, Y., Nemoto, K., Matsumoto, S., Nakamura, Y., & Kiyotani, K. (2020). SARS-CoV-2 genomic variations associated with mortality rate of COVID-19. Journal of human genetics, 65(12), 1075-1082.
Tomita, Y., Ikeda, T., Sato, R., & Sakagami, T. (2020). Association between HLA gene polymorphisms and mortality of COVID‐19: An in silico analysis. Immunity, inflammation and disease, 8(4), 684-694.
Thomson, B. (2020). The COVID-19 pandemic: A global natural experiment. Circulation.
Vargas-Alarcón, G., Posadas-Sánchez, R., & Ramírez-Bello, J. (2020). Variability in genes related to SARS-CoV-2 entry into host cells (ACE2, TMPRSS2, TMPRSS11A, ELANE, and CTSL) and its potential use in association studies. Life Sciences, 260, 118313.
Wang, J., Xu, X., Zhou, X., Chen, P., Liang, H., Li, X., & Hao, P. (2020). Molecular simulation of SARS-CoV-2 spike protein binding to pangolin ACE2 or human ACE2 natural variants reveals altered susceptibility to infection. The Journal of general virology, 101(9), 921.
Wei, J., Alfajaro, M. M., DeWeirdt, P. C., Hanna, R. E., Lu-Culligan, W. J., Cai, W. L., & Chen, J. S. (2020). Genome-wide CRISPR screens reveal host factors critical for SARS-CoV-2 infection. Cell.
Wang, F., Huang, S., Gao, H., Zhou, Y., Lai, C., Li, Z., & Tang, Q. (2020). Initial Whole Genome Sequencing and Analysis of the Host Genetic Contribution to COVID-19 Severity and Susceptibility. medRxiv.
WHO Statement Regarding Cluster of Pneumonia Cases in Wuhan, China. Who.int. (2020). Retrieved 9 January 2020, from https://www.who.int/china/news/detail/09-01-2020-who-statement-regarding-cluster-of-pneumonia-cases-in-wuhan-china.
Yamamoto, N., Ariumi, Y., Nishida, N., Yamamoto, R., Bauer, G., Gojobori, T., & Mizokami, M. (2020). SARS-CoV-2 infections and COVID-19 mortalities strongly correlate with ACE1 I/D genotype. Gene, 758, 144944.
Zuil, D. M., Fontoura, V. M., Santos, F. S., Neto, M. S., Pascoal, L. M., Martins, M. C. N. S. E., & Graepp-Fontoura, I. Esquemas terapêuticos para combate da Covid-19: revisão sistemática. Research, Society and Development, 10(1), e21310111533-e21310111533.
Zhang, Y. M., Wang, L., Liu, X. Z., & Zhang, H. (2020). The COVID-19 Pandemic from a Human Genetic Perspective. Journal of proteome research, 19(11), 4374-4379.
Zheng, H., & Cao, J. J. (2020). ACE gene polymorphism and severe lung injury in patients with COVID-19. The American journal of pathology.
Zhao, Y., Zhao, Z., Wang, Y., Zhou, Y., Ma, Y., & Zuo, W. (2020). Single-cell RNA expression profiling of ACE2, thereceptor of SARS-CoV-2. Biorxiv.
Zhang, W., Zhao, Y., Zhang, F., Wang, Q., Li, T., Liu, Z., & Zeng, X. (2020). The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clinical Immunology, 108393.
Zhu, Z., Hasegawa, K., Ma, B., Fujiogi, M., Camargo Jr, C. A., & Liang, L. (2020). Association of asthma and its genetic predisposition with the risk of severe COVID-19. Journal of Allergy and Clinical Immunology.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Steffany Larissa Galdino Galisa; Raysla Maria de Sousa Almeida; Adriana Raquel Araújo Pereira Soares; Radmila Raianni Alves Ribeiro; Fábio Rodrigo Araújo Pereira; Kedma Anne Lima Gomes; Milena Edite Casé de Oliveira; Waleska Fernanda Souto Nóbrega; Lorena Sofia dos Santos Andrade; Tácila Thamires de Melo Santos; Beatriz Leodelgario Silva
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.