Evaluation of the influence of incorporation of coconut oil in Bacterial Cellulose Membranes

Authors

DOI:

https://doi.org/10.33448/rsd-v10i1.12002

Keywords:

Bacterial cellulose; Coconut oil; Crystallinity; Thermal stability.

Abstract

Bacterial cellulose is an extracellular nanofibrillar polysaccharide that can be produced by acetic bacteria. This biopolymer has excellent characteristics, including high crystallinity, atoxity, high purity, high tensile strength, high water retention capacity, biocompatibility and biodegradability. The addition of vegetable oil in the matrix of this biopolymer appears as a possibility to promote a decrease in crystallinity and expand its applications in the most diverse areas, mainly food and medical-hospital. In this work, the influence of the incorporation of percentages of 0, 5 and 10% of coconut oil in Bacterial Cellulose (CB) membranes was evaluated. The membranes were characterized by the technique of Infrared Spectroscopy (FTIR), X-Ray Diffractometry (DRX) and Thermogravimetric Analysis (TGA). Through the FTIR technique, coconut oil was incorporated into the structure of CB membranes. Through XRD analysis it was noticed that the membranes added with coconut oil showed a reduction in the degree of crystallinity when compared to pure cellulose. Through the TGA technique it was found that the addition of coconut oil increased the thermal stability of the membranes, referring to the beginning of degradation of the biopolymer. Finally, it is understood that the membranes produced are a promising material in the packaging area due to the characteristics added by coconut oil to pure CB.

References

Abllah, Z., & Shahdan, I. (2018). Virgin Coconut Oil and Its Antimicrobial Properties against Pathogenic Microorganisms: A Review. Advances in Health Science Research, 8, 191-199.

Atalla, R. H., & Vanderhart, D. L. (1984). Native Cellulose: A Composite of Two Distinct Crystalline Forms. Science, 223(4633), 283–285.

Barud, H. S., Souza, J.L., Santos, D. B., Crespi, M. S., Ribeiro, C. A., Messaddeq, Y., Ribeiro, S. J. L. (2011). Bacterial cellulose/poly(3-hydroxybutyrate) composite membranes. Carbohydrate Polymers, 83, 1279-1284.

Beekmann, U.; Schmölz, L.; Lorkowski, S.; Werz, O.; Thamm, J.; Fischer, D.; Kralisch, D. (2020). Process control and scale-up of modified bacterial cellulose production for tailor-made anti-inflammatory drug delivery systems. Carbohydrate Polymers, 236(116062), 1-10.

Carvalho, F. M.; Martins, J. T. A.; Lima, E. M. F.; Santos, H. V.; Pereira, P. A. P.; Pinto, U. M.; Cunha, L. R. (2020) Pitanga and grumixama extracts: antioxidant and antimicrobial activities and incorporation into cellulosic films against Staphylococcus aureus. Research, Society and Development, 9(11), 1-24.

Castellões, F. R. L. (2016). Estudo das condições de processamento e caracterização da matéria prima para a produção de um biocompósito de matriz de poli(succinato de butileno) com reforço de celulose branqueada. Trabalho de Conclusão de Curso. Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, MG, Brasil.

Costa, A. L. R.; Oliveira, A. C. S.; Azevedo, V. M.; Medeiros, E. A. E.; Soares, N. F. F.; Borges, S. V. (2020) Essentials oils of garlic and orégano incorporated in cellulose acetate films: antimicrobial activity and physical properties. Research, Society and Development, 9(10).

Das Chagas, B. S. (2018). Produção de celulose bacteriana em meio à base de melaço de soja em cultivo estático. Dissertação de Mestrado. Universidade Federal do Ceará, Fortaleza, CE, Brasil.

De Amorim, J. D. P., Da Silva Júnior, C. J. G., Costa, A. F. S., De Melo, J. F. H., & Sarubbo, L. A. (2019). Avaliação do potencial da celulose bacteriana para aplicação em cosméticos. Brazilian Journal of Development, 5(10), 18457–18462.

De Morais Câmpelo, J. (2017). Produção de celulose bacteriana em meio de glicerol. Dissertação de Mestrado. Universidade Federal e Pernambuco, Recife, PE, Brasil.

De Vasconcelos, G. M. D.; De Souza, K. C.; Silva, I. D. L.; Silva, A. C. P. F., Vinhas, G. M. (2020). Production and characterization of cellulose by Glucanoacetobacter hansenii in medium containing glucose or mannitol. Revista Matéria, 25(4).

Duarte, E. B.; das Chagas, B. S.; Andrade, F. K.; Brígida, A. I. S.; Borges, M. F.; Muniz, C. R.; Filho, M. S. M. S.; Morais, J. P. S.; Feitosa, J. P. A.; Rosa, M. F. (2015). Production of hydroxyapatite–bacterial cellulose nanocomposites from agroindustrial wastes. Cellulose, 22, 3177-3187.

Hussain, Z., Sajjad, W., Khan, T., & Wahid, F. (2019). Production of bacterial cellulose from industrial wastes: a review. Cellulose, 26, 2895–2911.

Ju, S.; Zhang, F.; Duan, J.; Jiang, J. (2020). Characterization of bacterial cellulose composite films incorporated with bulk chitosan and chitosan nanoparticles: A comparative study. Carbohydrate Polymers, 237(116167), 1-8.

Monteiro, A. S., Domeneguetti, R. R., Wong Chi Man, M., Barud, H. S., Teixeira-Neto, E., & Ribeiro, S. J. L. (2018). Membranas híbridas de celulose bacteriana-SiO2 @ TiO2 orgânica-inorgânica com propriedades de autolimpeza. Journal of Sol-Gel Science and Technology.

Pinho, A. P. S., & Souza, A. F. (2018). Extração e caracterização do óleo de coco (cocos nucifera l.). Perspectivas Online: Biológicas & Saúde, 8(26), 9-18.

Segal, L., Creely, J.J., Martin Jr., A.E., & Conrad, C.M. (1959). An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer. Textile Research Journal, 29, 786-794.

Silva, J. G. M.; Pinto, F.C.; Oliveira, G. M.; Silva, A. A.; Júnior, O. C.; Silva, R. O.; Teixeira, V. W.; Melo, I. M. F.; Paumgartten, F. J. R.; Souza, T. P.; Carvalho, R. R.; Oliveira, A. C. A. X.; Aguiar, J. L. A.; Teixeira, A. A. C. (2020) Non-clinical safety study of sugarcane bacterial cellulose hydrogel. Research, Society and Development, 9 (9), 1-23.

Sriplai, N., & Pinitsoontorn, S. (2020). Bacterial Cellulose-based Magnetic Nanocomposites: A Review. Carbohydrate Polymers, 254(117228), 1-55.

Skoog, D. A., Holler, F. J., Nieman, T. A. (2002). Princípios de análise instrumental. 5. Ed. Bookman.

Tilak, J., Sanjeev, B., Marimuthu, S., & Uthandi, S. (2020). Bacterial Cellulose Nano Fiber (BCNF) as carrier support for the immobilization of probiotic, Lactobacillus acidophilus 016. Carbohydrate Polymers, 250(116965), 1-8.

Ullah, H.; Wahid, F.; Santos, H. A.; Khan, T. (2016). Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydrate Polymers, 150, 330-352.

Uzyol, H. K., & Saçan, M. T. (2016). Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose. Environmental Science and Pollution Research, 24(12), 11154–11162.

Published

30/01/2021

How to Cite

SILVA, G. S. da; TRINDADE, F. C. da S.; SOUZA, K. C. de; CAETANO, V. F.; ALMEIDA, Y. M. B. de; VINHAS, G. M. Evaluation of the influence of incorporation of coconut oil in Bacterial Cellulose Membranes. Research, Society and Development, [S. l.], v. 10, n. 1, p. e52910112002, 2021. DOI: 10.33448/rsd-v10i1.12002. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12002. Acesso em: 6 mar. 2021.

Issue

Section

Exact and Earth Sciences