Antimicrobial potential of ozonized vegetable oils against bacterial species: an integrative review
DOI:
https://doi.org/10.33448/rsd-v10i2.12451Keywords:
Ozone; Plant Oils; Bacteria; Anti-Bacterial Agents.Abstract
The increasing incidence of bacterial infections in chronic skin lesions is a worldwide problem. Research on alternative therapeutic methods, such as the use of ozonated vegetable oils, has become promising. Thus, it was aimed to evidence the antimicrobial action of ozonized vegetable oils against bacterial strains. This is an integrative review conducted through searches the following databases and libraries: Latin American and Caribbean Health Sciences Literature, Medical Literature Analysis and Retrieval System Online, National Library of Medicine, Scientific Electronic Library Online and two Elsevier databases (Science Direct e Scopus). 11 articles were selected, 73% of these works were published in the last five years, while only 27% were published in 2011 and 2013. There have been publications from China, Italy, Brazil, Cuba, France and Turquey. All studies used laboratory methods to assess the antimicrobial potential of ozonized vegetable oil. The antibacterial effect of the oils was related to the ozonation conditions that were submitted and their final composition of peroxides and carboxylic acids. It was found that these compounds promoted cellular changes and prevented bacterial growth, which could cause bacterial death. Through this review it was possible to present updated information on a promising therapeutic alternative against bacterial skin infections.
References
Almeida, N. R., Beatriz, A., Arruda, E. J., Lima, D. P., Oliveira, L. C. S., & Micheletti, A. C. (2016). Ozonized vegetable oils: Production, chemical characterization and therapeutic potential. Em B. Holt (Ed.), Vegetable Oil: Properties, Uses and Benefits (pp. 129-160). Nova Science Publishers.
Anzolin, A. P., Silveira-Kaross, N. L., & Bertol, C. D. (2020). Ozonated oil in wound healing: what has already been proven? Medical Gas Research, 10 (1), 54.
Bandeira, L. A., Santos, M. C., Duarte, E. R. M., Bandeira, A. G., Riquinho, D. L., & Vieira, L. B. (2018). Redes sociais de portadores de lesão cutânea crônica: o cuidado de enfermagem. Revista Brasileira de Enfermagem, 71 (1), 697-705.
Beltran, M. S. Jiménez, M., Amézquita-López, B. A., Martínez-Rodrigues, C., & Chaidez. (2016). Antibacterial activity of ozonized olive (olea europaea l.) And venadillo (swietenia humilis zucc.) Oils against Escherichia coli and Staphylococcus aureus. The Journal of Microbiology, Biotechnology and Food Sciences, 6 (3), 947.
Bonet, C. M., Lozano, S. A., & Gatius, J. R. (2015). Prevalencia de infección por Staphylococcus aureus resistente a meticilina en heridas crónicas en atención primaria de Lleida: estúdio retrospectivo. Gerokomos, 26 (4), 157-161.
Chaney, S. B., Ganesh, K., Mathew-Steiner, S., Stromberg, P., Roy, S., Sen, C. K., & Wozniak, D. J. (2017). Histopathological comparisons of Staphylococcus aureus and Pseudomonas aeruginosa experimental infected porcine burn wounds. Wound Repair and Regeneration, 25 (3), 541-549.
Chavaglia, S. R. R., Ohl, R. I. B., Contim, D., & Gamba, M. A. (2015). Pessoas que convivem com feridas: uma reflexão teórica. Revista Família, Ciclos de Vida e Saúde no Contexto Social, 3 (2), 88-94.
Cheng, M., Zhang, L., Zhang, H., Li, X., Yanmei, W., Xia, F., Wang, B., Cai, R., Guo, Z., Zhang, Y., Ji, Y., Sun, C., Feng, X., Lei, L., Yang, Y., Han, W., & Gu, J. (2018). An ointment consisting of the phage lysin LysGH15 and apigenin for decolonization of methicillin-resistant Staphylococcus aureus from skin wounds. Viruses, 10 (5), 244.
Dellalibera-Joviliano, R., Melo, S. A., & Ceni, H. M. R. (2020). Alternativas terapêuticas e aplicação de bacteriófagos como estratégia no uso de antibióticos no tratamento de doenças bacterianas. Revista de Medicina, 99 (1), 88-95.
Elshinawy, M. I., Al-Madboly, L., Ghoneim, W. M., & El-Deeb, N. M. (2018). Synergistic effect of newly introduced root canal medicaments; ozonated olive oil and chitosan nanoparticles, against persistent endodontic pathogens. Frontiers in Microbiology, 9, e1371.
Giuliani, G., Ricevutti, G., Galoforo, A., & Franzini, M. (2018). Microbiological aspects of ozone: bactericidal activity and antibiotic/antimicrobial resistance in bacterial strains treated with ozone. Ozone Therapy, 3 (3), 48-51.
Guinesi, A. S., Andolfatto, C., Bonetti, I., Filho, Cardoso, A. A., Passaretti, J., Filho, & Farac, R. V. (2011). Ozonized oils: a qualitative and quantitative analysis. Brazilian Dental Journal, 22 (1), 37-40.
Heitkamp, R. A., Li, P., Mende, K., Demons, T. S., Trible, R. D., & Tyner, D. S. (2018). Association of Enterococcus spp. with severe combat extremity injury, intensive care, and polymicrobial wound infection. Surgical Infections, 19 (1), 95-103.
Kogawa, N. R. A., Arruda, E. J., Micheletti, A. C., Matos, M. F. C., Oliveira, L. C. S., Lima, D. P., Carvalho, N. C. P., Oliveira, P. D., Cunha, M. C., Ojeda, M., & Beatriz, A. (2015). Synthesis, characterization, thermal behavior, and biological activity of ozonides from vegetable oils. RSC Advances, 5 (80), 65427-65436.
Lacey, K. A., Geoghegan, J. A., & McLoughlin, R. M. (2016). The role of Staphylococcus aureus virulence factors in skin infection and their potential as vaccine antigens. Pathogens, 5 (1), 22.
Li, L., Dai, J., Xu, L., Chen, Z., Li, X., Liu, M., Wen, Y., & Chen, X. (2018). Antimicrobial resistance and pathogen distribution in hospitalized burn patients: a multicenter study in Southeast China. Medicine, 97 (34), e11977.
Logan, K. L. (2018). Extended-Spectrum Beta-lactamases (ESBL-EC) producing Escherichia coli Urinary Tract Infection treated with Ozone Therapy. Ozone Therapy Global Journal, 8 (1), 145-152.
Lozano-Ledea, O. E., Fernández-García, L. A., Gil-Ibarra, D., Tena, N., Garcés, M. R., Martínez-Force, E., & Salas, J. J. (2019). Characterization of different ozonized sunflower oils I. Chemical changes during ozonization. Grasas y aceites, 70 (4), 7.
Lu, J., Li, M., Huang, J., Gao, L., Pan, Y., Fu, Z., Dou, J., Huang, J., & Xiang, Y. (2018). Effect of ozone on Staphylococcus aureus colonization in patients with atopic dermatites. Journal of Central South University. Medical Sciences, 43 (2), 157-162.
Macêdo, M. M. L., Souza, D. A. S., Santos, J. C., Rodrigues, R. N., Afonso, G. S., Cortez, A. O. H., & Cortez, D. N. (2016). Úlcera venosa: seis años de existencia por 92 días de cicatrización. Gerokomos, 27 (3), 131-133.
Moureu, S., Violleau, F., Haimoud-Lekhal, D. A., & Calmon, A. (2016). Influence of storage temperature on the composition and the antibacterial activity of ozonized sunflower oil. Ozone: Science & Engineering, 38 (2), 143-149.
Moureu, S., Violleau, F., Haimoud-Lekhal, D., & Calmon, A. (2015). Ozonation of sunflower oils: Impact of experimental conditions on the composition and the antibacterial activity of ozonized oils. Chemistry and Physics of Lipids, 186, 79-85.
Néri, J. S. V., Lomba, E., Karam, A. M., Reis, S. R. A., Marchionni, A. M. T., & Medrado, A. R. A. P. (2017). Ozone therapy influence in the tissue repair process: A literature review. Journal of Oral Diagnosis, 2 (1), 1-6.
Oli, A. N., Eze, D. E., Gugu, T. H., Ezeobi, I., Maduagwu, U. N., & Ihekwereme, C. P. (2017). Multi-antibiotic resistant extended-spectrum beta-lactamase producing bacteria pose a challenge to the effective treatment of wound and skin infections. The Pan African Medical Journal, 27 (66).
Oliveira, P., Almeida, N., Conda-Sheridan, M., Apparecido, R. P., Micheletti, A. C., Carvalho, N. C., & Beatriz, A. (2017). Ozonolysis of neem oil: preparation and characterization of potent antibacterial agents against multidrug resistant bacterial strains. RSC Advances, 7 (55), 34356-34365.
Özyıldız, F., Karagönlu, S., Basal, G., Uzel, A., & Bayraktar, O. (2013). Micro‐encapsulation of ozonated red pepper seed oil with antimicrobial activity and application to nonwoven fabric. Letters in Applied Microbiology, 56 (3), 168-179.
Palacios, J. A., & Rubiano, F. M. (2016). Valoración microbiológica de un aceite ozonizado antibacterial y reparador mediante prueba de eficacia antimicrobiana. Revista Cubana de Farmacia, 50 (4), 1-9.
Pietrocola, G., Ceci, M., Preda, F., Poggio, C., & Colombo, M. (2018). Evaluation of the antibacterial activity of a new ozonized olive oil against oral and periodontal pathogens. Journal of Clinical and Experimental Dentistry, 10 (11), e1103.
Silva, D. C., Budó, M. L. D., Schimith, M. D., Ecco, L., Costa, I. K. F., & Torres, G. V. (2015). Experiências construídas no processo de viver com a úlcera venosa. Cogitare Enfermagem, 20 (1), 13-19.
Silva, V., Marcoleta, A., Silva, V., Flores, D., Aparicio, T., Aburto, I., Latrach, C., & Febré, N. (2018). Prevalencia y perfil de susceptibilidad antimicrobiana en bacterias aisladas de úlceras crónicas infectadas en adultos. Revista Chilena de Infectología, 35 (2), 155-162.
Smith, N. L., Wilson, A. L., Gandhi, J., Vatsia, S., & Khan, S. A. (2017). Ozone therapy: an overview of pharmacodynamics, current research, and clinical utility. Medical Gas Research, 7 (3), 212.
Song, M., Zeng, Q., Xiang, Y., Gao, L., Huang, Huang, J., Wu, K., & Lu, J. (2018). The antibacterial effect of topical ozone on the treatment of MRSA skin infection. Molecular Medicine Reports, 17 (2), 2449-2455.
Souza, M. T., Silva, M. D., & Carvalho, R. (2010). Integrative review: what is it? How to do it? Einstein (São Paulo), 8 (1), 102-106.
Ugazio, E., Tullio, V., Binello, A., Tagliapietra, S., & Dosio, F. (2020). Ozonated Oils as Antimicrobial Systems in Topical Applications. Their Characterization, Current Applications, and Advances in Improved Delivery Techniques. Molecules, 25 (2), 334.
Varol, K., Birdane, F. M., & Keles, I. (2018). Effect of ozonated olive oil on experimentally induced skin infection by Streptococcus pyogenes and Staphylococcus aureus in rats. Indian Journal of Experimental Biology, 56 (9), 657-664.
Whittemore, R., & Knafl, K. (2005). The integrative review: updated methodology. Journal of Advanced Nursing, 52 (5), 546-553.
Xiang, Y., Lu, J., Li, F., Huang, J., Yang, C., Fu, Z., & Gao, L. (2018). Bactericidal effect of ozonated camellia oil on Staphylococcus aureus in vitro. Journal of Central South University. Medical Sciences, 43 (2), 139-142.
Zanardi, I. Burgassi, S., Paccagnini, E., Gentile, M., Bocci, V., & Travagli, V. (2013). What is the best strategy for enhancing the effects of topically applied ozonated oils in cutaneous infections? BioMed Research International, 2013, 1-6.
Zeng, J., & Lu, J. (2018). Mechanisms of action involved in ozone-therapy in skin diseases. International Immunopharmacology, 56 (138), 235-241.
Zeng, J., Dou, J., Gao, L., Xiang, Y., Huang, J., Ding, S., Chen, J., Zeng, Q., Luo, Z., Tan, W., & Lu, J. (2020). Topical ozone therapy restores microbiome diversity in atopic dermatitis. International Immunopharmacology, 80 (138), e106191.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Irlaine da Conceição Costa Cardoso; Airton Cesar Santos; Luana da Conceição Costa Cardoso; Mônica Batista de Almeida
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.