Evaluation of the flexural strength and surface roughness of dental material after immersion in coffee
DOI:
https://doi.org/10.33448/rsd-v10i3.12486Keywords:
Flexural strength; Dental materials; Surface roughness.Abstract
This study was done in order to evaluate the changes in flexural strength and surface roughness in dental material restorations after immersion in coffee. Bars specimens (2mm x 2mm x 25 mm) of Z100 3M/ESPE were made according to ISO 4049 using aluminum molds. After curing, the specimens were then randomly divided into five groups and conditioned at 37°C in physiological serum. In all groups, except control, samples were immersed in coffee for ten minutes daily. In group A, the samples were immersed in coffee. For group B, after to be immersed in coffee, samples were immersed in distilled water for one minute. For group C, samples were immersed in mouthwash for one minute. For group D, samples were brushing for ten minutes, with load of 250g and 4250 cycles after all treatments the samples were stored in physiological serum again. In control group, samples were only stored in physiological serum. The five groups were then divided into 2 subgroups according storage time, six and nine weeks, respectively. Flexural strength was determined using three point bending test in a universal testing machine. All the tests were carried out at a room temperature and samples were maintained in physiological serum during the test. Surface roughness measurements were made using a surface roughness tester. All data were analyzed using one-way analysis of variance (ANOVA) followed by Dunnet tests. The ANOVA indicated no difference in the means of surface roughness and significant was observed for flexural strength between control group and one group (coffee).
References
Alvanforoush, N., Palamara, J., Wong, R., & Burrow, M. (2017a). Comparison between published clinical success of direct resin composite restorations in vital posterior teeth in 1995-2005 and 2006-2016 periods. Australian Dental Journal, 62(2), 132–145. https://doi.org/10.1111/adj.12487
Alvanforoush, N., Palamara, J., Wong, R. H., & Burrow, M. F. (2017b). Comparison between published clinical success of direct resin composite restorations in vital posterior teeth in 1995–2005 and 2006–2016 periods. In Australian Dental Journal (Vol. 62, Issue 2, pp. 132–145). Blackwell Publishing. https://doi.org/10.1111/adj.12487
Badra, V. V., Faraoni, J. J., Ramos, R. P., & Palma-Dibb, R. G. (2005). Influence of different beverages on the microhardness and surface roughness of resin composites. Operative Dentistry, 30(2), 213–219.
Camilotti, V., Mendonça, M. J., Dobrovolski, M., Detogni, A. C., Ambrosano, G. M. B., & De Goes, M. F. (2021a). Impact of dietary acids on the surface roughness and morphology of composite resins. Journal of Oral Science, 63(1), 18–21. https://doi.org/10.2334/josnusd.19-0518
Camilotti, V., Mendonça, M. J., Dobrovolski, M., Detogni, A. C., Ambrosano, G. M. B., & De Goes, M. F. (2021b). Impact of dietary acids on the surface roughness and morphology of composite resins. Journal of Oral Science, 63(1), 18–21. https://doi.org/10.2334/josnusd.19-0518
Donmez, M. B., Olcay, E. O., & Demirel, M. (2021). Influence of coloring liquid immersion on flexural strength, Vickers hardness, and color of zirconia. Journal of Prosthetic Dentistry. https://doi.org/10.1016/j.prosdent.2020.11.020
Hwang, S., Chung, S., Lee, J.-T., Kim, Y.-T., Kim, Y., Oh, S., & Yeo, I.-S. (2018). Influence of Acid, Ethanol, and Anthocyanin Pigment on the Optical and Mechanical Properties of a Nanohybrid Dental Composite Resin. Materials, 11(7), 1234. https://doi.org/10.3390/ma11071234
Lai, G., Zhao, L., Wang, J., & Kunzelmann, K. H. (2018). Surface properties and color stability of dental flowable composites influenced by simulated toothbrushing. Dental Materials Journal, 37(5), 717–724. https://doi.org/10.4012/dmj.2017-233
Leite, V. M. F., Pisani, M. X., Paranhos, H. F. O., Souza, R. F., & Silva-Lovato, C. H. (2010). Effect of ageing and immersion in different beverages on properties of denture lining materials. Journal of Applied Oral Science, 18(4), 372–378. https://doi.org/10.1590/S1678-77572010000400009
Lin, J., Ozan, S., Munir, K., Wang, K., Tong, X., Li, Y., Li, G., & Wen, C. (2017). Effects of solution treatment and aging on the microstructure, mechanical properties, and corrosion resistance of a β type Ti-Ta-Hf-Zr alloy. RSC Advances, 7(20), 12309–12317. https://doi.org/10.1039/c6ra28464g
Lorenzetti, M., Kulkarni, C. V., Iglič, A., Patil-Sen, Y., Junkar, I., & Kulkarni, M. (2015). Wettability studies of topologically distinct titanium surfaces. Colloids and Surfaces B: Biointerfaces, 129, 47–53. https://doi.org/10.1016/j.colsurfb.2015.03.024
Oksman, K., Wallström, L., Berglund, L. A., & Toledo Filho, R. D. (2002). Morphology and mechanical properties of unidirectional sisal-epoxy composites. Journal of Applied Polymer Science, 84(13), 2358–2365. https://doi.org/10.1002/app.10475
Phanestu, T. H., & Syafiar, L. (2018). Surface Roughness of Nanofiller Composite Resin after Immersion in Black Tea. 225–229. https://doi.org/10.2991/idsm-17.2018.30
Rodrigues, M. M., Fontoura, C. P., Dotta Maddalozzo, A. E., Leidens, L. M., Quevedo, H. G., Souza, K. dos S., da Silva Crespo, J., Michels, A. F., Figueroa, C. A., & Aguzzoli, C. (2020). Ti, Zr and Ta coated UHMWPE aiming surface improvement for biomedical purposes. Composites Part B: Engineering, 189, 107909. https://doi.org/10.1016/j.compositesb.2020.107909
Ruivo, M. A., Pacheco, R. R., Sebold, M., & Giannini, M. (2019). Surface roughness and filler particles characterization of resin‐based composites. Microscopy Research and Technique, 82(10), 1756–1767. https://doi.org/10.1002/jemt.23342
Somacal, D. C., Manfroi, F. B., Monteiro, M. S. G., De Oliveira, S. D., Bittencourt, H. R., Borges, G. A., & Spohr, A. M. (2020). Effect of pH cycling followed by simulated toothbrushing on the surface roughness and bacterial adhesion of bulk-fill composite resins. Operative Dentistry, 45(2), 209–218. https://doi.org/10.2341/19-012-L
Tsujimoto, A., Barkmeier, W. W., Fischer, N. G., Nojiri, K., Nagura, Y., Takamizawa, T., Latta, M. A., & Miazaki, M. (2018). Wear of resin composites: Current insights into underlying mechanisms, evaluation methods and influential factors. In Japanese Dental Science Review (Vol. 54, Issue 2, pp. 76–87). Elsevier Ltd. https://doi.org/10.1016/j.jdsr.2017.11.002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Patrícia Capellato; Ana Paula Rosifini Alves Claro
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.