Influence of dietary fatty acid composition on enzymatic activity and digestive histology in silver catfish (Rhamdia quelen)

Authors

DOI:

https://doi.org/10.33448/rsd-v10i3.12530

Keywords:

Fish meal; Growth; Larviculture; Soybean protein concentrate.

Abstract

Dietary fatty acids may influence the development of the digestive tract and initial activation of digestive enzymes in fish. The objective of this study was to evaluate the effect of the diet lipid profile on ontogeny and activity of digestive enzymes in silver catfish post larvae fed practical diets. Five diets were tested, replacing broiler liver by soybean protein concentrate (SPC) or fish meal (FM): Standard, 15SPC, 30SPC, 15FM and 30FM. The enzymatic activity of fish was analyzed from 32 Hours after fertilization (Haf). Were analysed acid protease, trypsin, chymotrypsin, lipase, amylase and maltase. The development of the digestive system was analyzed from first feeding up to 28 days by histological techniques. The enzymatic activity presented peaks for the post-larvae fed with the 15SPC diet and fish fed with diet 15FM showed best growth. The development of the digestive system did not suffer damage from the diets offered. Post-larvae fed the 30SPC diet showed reduced development of the digestive tract. The diet 15FM provide good lipid profile for silver catfish post larvae.

References

Albro, P. W., Hall, R. D., Corbett. J. T., & Schroeder, J. (1985). Activation of nonspecific lipase (EC3.1.1.) by bile salts. Biochimica et Biophysica Acta, 835, 477-490. https://doi.org/10.1016/0005-2760(85)90117-1

Alveal, K., Silva, A., Lohrmann, K. B., & Viana, M. T. (2019). Morphofunctional characterization of the digestive system in the palm ruff larvae, Seriolella violacea under culture conditions. Aquaculture, 501, 51-61. https://doi.org/10.1016/j.aqua culture.2018.10.020

Asil, S. M., Kenari, A. A., Miyanji, G. R., & Van Der Kraak, G. (2017). The influence of dietary arachidonic acid on growth, reproductive performance, and fatty acid composition of ovary, egg and larvae in an anabantid model fish, Blue gourami (Trichopodus trichopterus; Pallas, 1770). Aquaculture, 476, 8-18. https://doi.org/10.1016/j.aquaculture.2017.03.048

American Veterinary Medical Association (AVMA) (2007). Guidelines on Euthanasia (Formerly Report of the AVMA Panel on Euthanasia), American Veterinary Medical Association (AVMA), United States of America.

Babaei, S. S., Abedian Kenari, A., Nazari, R., & Gisbert, E. (2011). Developmental changes of digestive enzymes in Persian sturgeon Acipenser persicus during larval ontogeny. Aquaculture, 318, 138-144. https://doi.org/10.1016/j.aquaculture.2011.04.032

Bernfeld, P. (1955). Amylases α e β: colorimetric assay methods. In: Colowick, S.P.; Kaplan, N.O. Methods in Enzymology, Academic Press

Bradford, M. M. A. (1976). A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Cargnin-Ferreira, E., & Sarasquete Reiriz, C. (2008). Histofisiología de moluscos bivalvos marinos. CSIC, 94p.

Coldebella, I. J., Radünz Neto, J., Mallmann, C. A., Veiverberg, C. A., Bergamin, G. T., Pedron, F. A., Ferreira, D., & Barcellos, L. J. G. (2011). The effects of different protein levels in the diet on reproductive indexes of Rhamdia quelen females. Aquaculture, 312, 137-144. https://doi.org/10.1016/j.aquaculture.2010.12.021

Conceição, L., Aragão, C., & Rønnestad, I. Proteins. (2011). In: Holt, G .J. Larval Fish Nutrition, 3, 88-120

Corrêa, C. F., Aguiar, L. H., Lundstedt, L. M., & Moraes, G. (2007). Responses of digestive enzymes of tambaqui Colossoma macropomum to dietary cornstarch changes and metabolic inferences. Comparative Biochemistry and Physiology, 147, 857-862. https://doi.org/10.1016/j.cbpa.2006.12.045

Cui, K., Cheng, D., Ma, Z., Qin, J.G., Jiang, S., Sun, D., & Ma, S. (2017). Ontogenetic development of digestive enzymes in larval and juvenile crimson snapper Lutjanus erythopterus (Bloch 1790). Aquaculture Research, 48, 4533-4544. https://doi.org/10.1111/are.13278

Drew, M. D., Borgeson, T. L., & Thiessen, D. L. (2007). A review of processing of feed ingredients to enhance diet digestibility in finfish. Animal Feed Science and Technology, 138, 118-136. https://doi.org/10.1016/j.anifeedsci.2007.06.019

Mohd Faudzi, N., Yong, A. S. K., Shapawi, R., Senoo, S., Biswas, A., & Takii, K. (2018). Soy protein concentrate as an alternative in replacement of fish meal in the feeds of hybrid grouper, brown‐marbled grouper (Epinephelus fuscoguttatus) × giant grouper (Epinephelus lanceolatus) juvenile. Aquaculture Research, 49, 431-441. https://doi.org/10.1111/are.13474

Fontinelli, E., & Radünz Neto, J. (2007). Efeito do concentrado proteico de soja em rações, com e sem suplementação em aminoácidos, para pós-larvas de jundiá (Rhamdia quelen). Revista Brasileira de Agrociência, 13, 225-229.

Gao, X. Q., Liu, Z. F., Guan, C. T., Huang, B., Lei, J. L., Li, J., Guo, Z., Wang, Y., & Hong, L. (2016). Developmental changes in digestive enzyme activity in American shad, Alosa sapidissima, during early ontogeny. Fish Physiology and Biochemistry, 43, 397-409. https://doi.org/10.1007/s10695-016-0295-2

Gisbert, E., Giménez, G., Fernández, I., Kotzamanis, Y., & Estévez, A. (2008). Development of digestive enzymes in common dentex Dentex dentex during early ontogeny. Aquaculture, 287, 381-387. https://doi.org/10.1016/j.aquaculture.2008.10.039

Hartman, L., & Lago, B. C. (1973). A rapid preparation of fatty methyl esters from lipids. Laboratory Practice, 22, 475-477.

Hidalgo, M. C., Urea, E., & Sanz, A. (1999). Comparative study of digestive enzymes in fish with different nutritional habits: Proteolytic and amylase activities. Aquaculture, 170, 267-283. https://doi.org/10.1016/S0044-8486(98)00413-X

Hien, T. T. T., Phu, T. M., Tu, T. L. C., Tien, N. V., Duc, P. M., & Bengtson, D. A. (2017). Effects of replacing fish meal with soya protein concentrate on growth, feed efficiency and digestibility in diets for snakehead, Channa striata. Aquaculture Research, 48, 3174-3181. https://doi.org/10.1111/are.13147

Hummel, B. C. W. (1959). A modified spectrophotometric determination of chymotrypsin, trypsin and thrombin. Canadian Journal of Biochemistry and Physiology, 37, 1393-1399. https://doi.org/10.1139/o59-157

Izquierdo, M., & Koven, W. (2011). Lipids. In: Holt, I. Larval Fish Nutrition. Wiley Online Library. 448 p.

Ji, H., Li, J., & Liu, P. (2011). Regulation of growth performance and lipid metabolism by dietary n-3 highly unsaturated fatty acids in juvenile grass carp, Ctenopharyngodon idellus. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 159, 49-56. https://doi.org/10.1016/j.cbpb.2011.01.009

Krogdahl, A., Penn, M., Torsen, J., Refstie, S. & Bakke, A. M. (2010). Important antinutrients in plant feedstufs for aquaculture: an update on recent fndings regarding responses in salmonids. Aquaculture Research, 41, 333–344. https://doi.org/10.1111/j.1365-2109.2009.02426.x

Kumar, V., Sinha, A. K., Makkar, H. P. S., Boeck, G. D., & Becker, K. (2011). Phytate and phytase in fish nutrition. Journal of Animal Physiology and Animal Nutrition, 96, 335–364. https://doi.org/10.1111/j.1439-0396.2011.01169.x

Kumar, S., Sándor Zs, J., Nagy, Z., Fazekas, G., Havasi, M., Sinha, A. K., Boeck, G., & Gál, D. (2017). Potential of processed animal protein versus soybean meal to replace fish meal in practical diets for European catfish (Silurus glanis): growth response and liver gene expression. Aquaculture Nutrition, 23, 1179-1189. https://doi.org/10.1111/anu.12487

Lazo, J. P., Darias, M. J., & Gisbert, E. (2011). Ontogeny of the digestive tract. In: Holt, I. Larval Fish Nutrition. Wiley Online Library. 448 p.

Liu, X., Ye, J., Wang, K., Kong, J., Yang, W., & Zhou, L. (2012). Partial replacement of fish meal with peanut meal in practical diets for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture Research, 43, 745-755. https://doi.org/10.1111/j.1365-2109.2011.02883.x

Mente, E., Solovyev, M. M., Vlahos, N., Rotllant, G., & Gisbert, E. (2017). Digestive Enzyme Activity during Initial Ontogeny and after Feeding Diets with Different Protein Sources in Zebra Cichlid, Archocentrus nigrofasciatus. Journal of the World Aquaculture Society, 48, 831-848. https://doi.org/10.1111/jwas.12381

Mitra, A., Mukhopadhyay, P. K., & Homechaudhuri, S. (2017). Profile of Digestive Enzymes Activity During Early Development of Featherback Chitala chitala (Hamilton, 1822). Proceedings of the Zoological Society, 70,141-149. https://doi 10.1007/s12595-016-0169-8

Mo, W. Y., Man, Y. B., & Wong, M. H. (2018). Use of food waste, fish waste and food processing waste for China's aquaculture industry: Needs and challenge. Science of the Total Environment, 613, 635-643. https://doi.org/10.1016/j.scitotenv.2017.08.321

Mommsen, T., & Korsgaard, B. (2008). Vitellogenesis. In: Rocha, M. J., Arukwe, A., Kapoor, B. G. Fish Reproduction. Science Publishers, Enfield, N.H., 113-169.

Moura, G. S., Oliveira, M. G. A., & Lanna, E. A. T. (2012). Desempenho e atividade de lipase em tilápias do Nilo. Archivos de Zootecnia, 61, 367-374. http://dx.doi.org/10.4321/S0004-05922012000300005

Mousavi-Sabet, H., Ghasemnezhad, H., & Petrescu-Ma, I. V. (2013). Effects of diet containing enriched Artemia with unsaturated fatty acids and vitamin C on growth, survival and stress resistance of swordtail Xiphophorus hellerii fry. Poeciliid Research, 3, 14-21.

NRC - National Research Council. (2011). Nutrient requirements of fish and shrimp. National Academies Press, 376 p.

El Kertaoui, N., Lund, I., Assogba, H., Domínguez, D., Izquierdo, M. S., Baekelandt, S., Cornet, V., Mandiki, S.N.M., Montero, D., & Kestemont, P. (2019). Key nutritional factors and interactions during larval development of pikeperch (Sander lucioperca). Scientific Reports, 9, 7074. https://doi.org/10.1038/s41598-019-43491-1

Park, H. G., Puvanendran, V., Kellett, A., Parrish, C. C., & Brown, J. A. (2006). Effect of enriched rotifers on growth, survival, and composition of larval Atlantic cod (Gadus morhua). Journal of Marine Science, 63, 285-295. https://doi.org/10.1016/j.icesjms.2005.10.011

Piaia, R., & Radünz Neto, J. (1997). Avaliação de diferentes fontes protéicas sobre o desempenho inicial de larvas do jundiá Rhamdia quelen. Ciência Rural, 27, 319-323. http://dx.doi.org/10.1590/S0103-84781997000200025.

Portella, M. C., Leitão, N. J., Takata, R., & Lopes, T. S. (2012). Alimentação e nutrição de larvas. In: NUTRIAQUA: nutrição e alimentação de espécies de interesse para a aquicultura brasileira, 9, 185-216.

Portella, M. C., Jomori, R. K., Leitão, N. J., Menossi, O. C. C., Freitas, T. M., Kojima, J. T., Lopes, T. S., Clavijo-Ayala, J. A., & Carneiro, D. J. (2014). Larval development of indigenous South American freshwater fish species, with particular reference to pacu (Piaractus mesopotamicus). Aquaculture, 432, 402-417. https://doi.org/10.1016/j.aquaculture.2014.04.032

Rossato, S., Maschio, D., Martinelli, S. G., Nunes, L. M. D. C., Radünz Neto, J., & Lazzari, R. (2018). Fish meal obtained from the processing of Rhamdia quelen: An alternative protein source. Boletim do Instituto de Pesca, 44, 1361-1372. https://doi.org/10.20950/16782305.2018.44.4.350

Sá, M. V. C., Sabry-Neto, H., & Nunes, A. J. P. (2013). Dietary concentration of marine oil affects replacement of fish meal by soy protein concentrate in practical diets for te white shrimp, Litopenaeus vannamei. Aquaculture Nutrition, 19, 199-210. https://doi.org/10.1111/j.1365-2095.2012.00954.x

Sargent, J., McEvoy, L., Estevez, A., Bell, G., Bell, M., Henderson, J., & Tocher, D. (1999). Lipid nutrition of marine fish during early development: current status and future directions. Aquaculture, 179, 217-229. https://doi.org/10.1016/S0044-8486(99)00191-X

Segura, J. G., Campanharo, J. C., Oliveira, K. R. B., Natori, M. M., Medeiros, A. C. L., & Viegas, E. M. M. (2017). Relação 18:3n3/18:2n6 sobre a digestibilidade de ácidos graxos em pacu. Boletim do Instituto de Pesca, 43, 222-230. https://doi.org/10.20950/1678-2305.2017v43n2p222

Serra, C. R., Almeida, E. M., Guerreiro, I., Santos, R., Merrifield, D. L., Tavares, F., Oliva-teles, A. & Enes, P. (2019). Selection of carbohydrate-active probiotics from the gut of carnivorous fish fed plant-based diets. Scientific Reports, 9, 6384. https://doi.org/10.1038/s41598-019-42716-7

Seong, T., Matsutani, H., Haga, Y., Kitagima, R., & Satoh, S. (2019). First step of non‐fish meal, non‐fish oil diet development for red seabream, (Pagrus major), with plant protein sources and microalgae Schizochytrium sp. Aquaculture Research, 50, 2460-2468. https://doi.org/10.1111/are.14199

Silveira, J., Silva, C.P., Cargnin-Ferreira, E., Alexandre, D., Elias, M.A., & Fracalossi, D. M. (2013). Freshwater catfish jundiá (Rhamdia quelen) larvae are prepared to digest inert feed at the exogenous feeding onset: physiological and histological assessments. Fish Physiology and Biochemistry, 39, 1581-1590. https://doi.org/10.1007/s10695-013-9810-x

Sinha, A. K., Kumar, V., Makkar, H. P. S., De Boeck, G. & Becker, K. (2011) Non-starch polysaccharides and their role in fsh nutrition – A review. Food Chemistry, 127, 1409–1426. https://doi.org/10.1016/j.foodchem.2011.02.042

Tacon, A. G. J., & Akiyama, D. M. (1997). Feed ingredients. In L. R. D’Abramo, D. E. Conklin, & D. M. Akiyama (Eds.), Advances in World aquaculture 6: Crustacean nutrition (pp. 411–472). Baton Rouge, LA: World Aquaculture Society.

Teles, A.O., Salas-Leiva, J., Alvarez-González, C. A., Gisbert, E., Ibarra-Castro, L., Urbiola, J. C. P., & Tovar-Ramírez, D. (2017). Histological study of the gastrointestinal tract in longfin yellowtail (Seriola rivoliana) larvae. Fish Physiology and Biochemistry, 43, 1613-1628. https://doi.org/10.1007/s10695-017-0397-5

Vega-Orellana, O. M., Fracalossi, D.M., & Sugai, J. K. (2006). Dourado (Salminus brasiliensis) larviculture: Weaning and ontogenetic development of digestive proteinases. Aquaculture, 252, 484-493. https://doi.org/10.1016/j.aquaculture.2005.07.002

Vizcaíno, A. J., López, G., Sáez, M.I., Jiménez, J.A., Barros, A., Hidalgo, L., Camacho-Rodríguez, J., Martínez, T. F., Cerón-García, M. C., & Alarcón, F. J. (2014). Effects of the microalga Scenedesmus almeriensis as fishmeal alternative in diets for gilthead sea bream, Sparus aurata, juveniles. Aquaculture, 431, 34-43. https://doi.org/10.1016/j.aquaculture.2014.05.010

Yúfera, M., & Darias, M. J. (2007). The onset of exogenous feeding in marine fish larvae. Aquaculture, 268, 53-63. https://doi.org/10.1016/j.aquaculture.2007.04.050

Zambonino Infante, J. L., Gisbert, E., Sarasquete, C., Navarro, I., Gutiérrez, J., & Cahu, C. (2008). Ontogeny and physiology of the digestive system of marine fish larvae. Feeding and digestive functions of fishes, 281-348.

Zambonino Infante, J. L., & Cahu, C. L. (2007). Dietary modulation of some digestive enzymes and metabolic processes in developing marine fish: Applications to diet formulation. Aquaculture, 268, 98-105.

Zhou, Z., Ringø, E., Olsen, R. E., & Song, S. K. (2017). Dietary effects of soybean products on gut microbiota and immunity of aquatic animals: A review. Aquaculture Nutrition, 4(1):644-665.

Downloads

Published

14/03/2021

How to Cite

ROSSATO , S. .; RADÜNZ NETO, J. .; PRETTO , A. .; FREITAS, I. L. de .; FERREIRA , E. C. .; LAZZARI, R. Influence of dietary fatty acid composition on enzymatic activity and digestive histology in silver catfish (Rhamdia quelen). Research, Society and Development, [S. l.], v. 10, n. 3, p. e26010312530, 2021. DOI: 10.33448/rsd-v10i3.12530. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12530. Acesso em: 16 nov. 2024.

Issue

Section

Agrarian and Biological Sciences