Evaluation of the influence of orange essential oil on PHB/PEG films

Authors

DOI:

https://doi.org/10.33448/rsd-v10i2.12547

Keywords:

PHB; PEG; Orange essential oil.

Abstract

An alternative to reduce the use of degradable polymers is biopolymers. Among them, poly (3-hydroxybutyrate) - PHB stands out, which is a biodegradable semicrystalline thermoplastic obtained from natural renewable sources. In this context, PHB / PEG blends with 0, 5, 10 and 15% w/w of orange essential oil were developed using the solution casting technique. The films were characterized by medium infrared, Principal Component Analysis and mechanical properties. The components present in the orange essential oil were identified by mass spectrometry by gas chromatography and the disk diffusion method was used to evaluate the antimicrobial activity. The results showed that the major component in orange essential oil is d-limonene and that it has antimicrobial activity against the bacteria S. aureus and E. coli. The presence of the major component in the PHB / PEG blend was also confirmed by FTIR / PCA. The mechanical results showed that the additives of 10% and 15% w/w made the films more mechanically resistant and with greater rigidity. PHB/PEG/OEL films have shown the potential to be applied as antimicrobial food packaging.

References

Azeredo, C. M. O., & Soares, M. J. (2013). Combination of the essential oil constituents citral, eugenol and thymol enhance their inhibitory effect on Crithidia fasciculata and Trypanosoma cruzi growth. Revista Brasileira de Farmacognosia, 23(5), 762-768. 10.1590/S0102-695X2013000500007

Bento, R., Pagán, E., Berdejo, D., De Carvalho, R. J., García-Embid, S., Maggi, F., De Souza, M. M., Leite, E., García-Gonzalo, D., & Pagán, R. (2020). Chitosan nanoemulsions of cold-pressed orange essential oil to preserve fruit juices. International Journal of Food Microbiology, 331, 108786. 10.1016/j.ijfoodmicro.2020.108786

Bizzo, H. R., Hovell, A. M. C., & Rezende, C. M. (2009). Óleos essenciais no Brasil: aspectos gerais, desenvolvimento e perspectivas. Química Nova, 32(3), 588-594. 10.1590/S0100-40422009000300005

Costa, A. R. M., Ito, E. N., Cavalho, L. H., & Canedo, E. L. (2019). Impact of the natural filler babassu on the processing and properties of PBAT/PHB films. Composites Part A: Applied Science and Manufacturing, 124, 105472. 10.1016/j.compositesa.2019.105472

Da Silva, C. F., De Oliveira, F. S. M., Caetano, V. F., Vinhas, G. M., & Cardoso, S. A. (2018). Orange essential oil as antimicrobial additives in poly(vinyl chloride) films. Polímeros: Ciência e Tecnologia, 28(4), 332-338. 10.1590/0104-1428.16216

De Andrade, M. F., Silva, I. D. L., Da Silva, G. A., Cavalcante, P. V. D., Da Silva, F. T., De Almeida, Y. M. B., Vinhas, G. M., & De Carvalho, L. H. (2020). A study of poly (butylene adipate-co-terephthalate)/orange essential oil films for application in active antimicrobial packaging. LWT - Food Science and Technology, 125, 109148. 10.1016/j.lwt.2020.109148

De Souza, A. M. & Poppi, R. J. (2012). Experimento didático de quimiometria para análise exploratória de óleos vegetais comestíveis por espectroscopia no infravermelho médio e Análise de Componentes Principais: Um tutorial, parte I. Química Nova, 35(1), 223-229. 10.1590/S0100-40422012000100039.

Deshmukh, A. D., Pawar, S. V., & Rathod, V. K. (2020). Ultrasound-assisted fermentative production of Polyhydroxybutyrate (PHB) in Cupriavidus necator. Chemical Engineering and Processing - Process Intensification, 153, 107923. 10.1016/j.cep.2020.107923

Do Evangelho, J. A., Dannenberg, G. S., Biduski, B., Halal, S. L. M., Kringel, D. H., Gularte, M. A., Fiorentini, A. M., & Zavareze, E. R. (2019). Antibacterial activity, optical, mechanical, and barrier properties of corn starch films containing orange essential oil. Carbohydrate Polymers, 222, 114981, 10.1016/j.carbpol.2019.114981

Edogbanya, P. R. O., Suleiman, M. O., Olorunmola, J. B., & Oijagbe, I. J. (2019). Comparative study on the antimicrobial effects of essential oils from peels of three citrus fruits. MOJ Biology and Medicine, 4(2), 49-54. 10.15406/mojbm.2019.04.00113

Fiori, A. P. S. M., Camani, P. H., Dos Santos, R. D., & Carastan, D. J. (2019). Combined effects of clay minerals and polyethylene glycol in the mechanical and water barrier properties of carboxymethylcellulose films. Industrial Crops and Products, 140, 111644. 10.1016/j.indcrop.2019.111644

Hoffmann, R., Morais, D. D. S., Braz, C. J. F., Haag, K., Wellen, R. M. R., Canedo, E. L., De Carvalho, L. H., & Koschek, K. (2019). Impact of the natural filler babassu on the processing and properties of PBAT/PHB films. Composites Part A: Applied Science and Manufacturing, 124, 105472. 10.1016/j.compositesa.2019.105472

Kelly, C. A., Fitzgerald, A. V. L., & Jenkins, M. J. (2018). Control of the secondary crystallisation process in poly(hydroxybutyrate-co-hydroxyvalerate) through the incorporation of poly(ethylene glycol). Polymer Degradation and Stability, 148, 67-74. 10.1016/j.polymdegradstab.2018.01.003

Manikandan, N. A., Kannan, P., & Pugazhenthi, G. (2020). A closed-loop biorefinery approach for polyhydroxybutyrate (PHB) production using sugars from carob pods as the sole raw material and downstream processing using the co-product lignina. Bioresource Technology, 307, 123247. 10.1016/j.biortech.2020.123247.

Mano, E. B. (2019). Polímeros como materiais de engenharia. Editora Edgard Blucher Ltda.

Martelli, S. M., Sabirova, J., Fakhouri, F. M., Dyzma, A., De Meyer, B., & Soetaert, W. (2012). Obtention and characterization of poly(3-hydroxybutyricacid-co-hydroxyvaleric acid)/mcl-PHA based blends. LWT - Food Science and Technology, 47(2), 386-392. 10.1016/j.lwt.2012.01.036

Nagy, E., Justesen, U. S., Eitel, Z., & Urbán, E. (2015). Development of EUCAST disk diffusion method for susceptibility testing of the Bacteroides fragilis group isolates. Anaerobe, 31, 65-71. 10.1016/j.anaerobe.2014.10.008.

Perveen, K., Masood, F., & Hameed, A. (2020). Preparation, characterization and evaluation of antibacterial properties of epirubicin loaded PHB and PHBV nanoparticles. International Journal of Biological Macromolecules, 144, 259-266. 10.1016/j.ijbiomac.2019.12.049

Plavec, R., Hlaváčiková, S., Omaníková, L., Feranc, J., Vanovčanová, Z., Tomanová, K., Bočkaj, J., Kruželák, J., Medlenová, E., Gálisová, I., Danišová, L., Přikryl, R., Figalla, S., Melčová, V., & Alexy, P. (2020). Recycling possibilities of bioplastics based on PLA/PHB blends. Polymer Testing, 92, 106880. 10.1016/j.polymertesting.2020.106880.

Sirohi, R., Prakash, P. J., Kumar, G. V., Gnansounou, E., & Sindhu, R. (2020). Critical overview of biomass feedstocks as sustainable substrates for the production of polyhydroxybutyrate (PHB). Bioresource Technology, 311, 123536. 10.1016/j.biortech.2020.123536.

Zapata, R. B., Villa, A. L., De Correa, C. M., & Williams, C. T. (2009). In situ Fourier transform infrared spectroscopic studies of limonene epoxidation over PW-Amberlite. Applied Catalysis A: General, 365(1), 42-47. 10.1016/j.apcata.2009.05.047.

Zhong, Y., Godwin, P., Jin, Y., & Xiao, H. (2020). Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Advanced Industrial and Engineering Polymer Research, 3(1), 27-35. 10.1016/j.aiepr.2019.11.002.

Published

16/02/2021

How to Cite

ALVES, J. C. de A. .; SILVA, G. S. da .; SOUZA, K. C. de .; SILVA, I. D. de L. .; SILVA, C. F. da .; CAETANO, V. F. .; VINHAS, G. M. . Evaluation of the influence of orange essential oil on PHB/PEG films. Research, Society and Development, [S. l.], v. 10, n. 2, p. e30810212547, 2021. DOI: 10.33448/rsd-v10i2.12547. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12547. Acesso em: 18 apr. 2024.

Issue

Section

Engineerings