Drying kinetics of jackfruit residues (Artocarpus heterophyllus Lam.)

Authors

DOI:

https://doi.org/10.33448/rsd-v10i2.12610

Keywords:

Processing technology; Mathematical modeling; Agricultural reuse; Food products.

Abstract

The jackfruit is consumed in natura or processed form, contributing to the generation of waste. Processing technologies, such as drying, are applied aiming at high quality products meeting market demands. Thus, the aim was to study the drying kinetics of jackfruit residues in an oven at 40, 50 and 60° C and in a microwave oven, and to adjust mathematical models to experimental data. The drying kinetics were determined by weighing the samples at regular intervals, until they reached equilibrium, and then the dry masses were determined. The Wang & Singh model represented oven drying at all temperatures studied, presenting the best values of coefficient of determination and the lowest mean square and chi-square deviations. Bark, central axis, mesocarp and seed dried at 60 ° C had a water content of 5.65, 4.94, 6.42 and 6.36% after 240, 300, 360, 300 min, respectively. The Page model represented the drying in a microwave oven and the heating ramp of the farinaceous was 3 cycles of 5 min at 100% power. Bark, central axis, mesocarp and seed had final water content of 9.57, 7.48, 7.47 and 6.24% after microwave drying. Therefore, the use of jackfruit residues becomes relevant, since they can be processed to generate new food products.

References

Araujo, W. D., Goneli, A. L. D., Corrêa, P. C., Hartmann Filho, C. P., & Martins, E. A. S. (2017). Mathematical modelling of thin-layer drying in peanut fruit. Revista Ciência Agronômica, 48(3), 448-457. doi: 10.5935/1806-6690.20170052

Arruda, E. B., Lobato, F. S., Assis, A. J., & Barrozo, M. A. S. (2009). Modeling of fertilizer drying in roto-aerated and conventional rotary dryers. Drying Technology, 27(11), 1192-1198. doi: 10.1080/07373930903263129

Babalis, S. J., & Belessiotis, V. G. (2004). Influence of the drying conditions on the drying constants and moisture diffusivity during the thin-layer drying of figs. Journal of food Engineering, 65(3), 449-458. doi: 10.1016/j.jfoodeng.2004.02.005

Baliga, M. S., Shivashankara, A. R., Haniadka, R., Dsouza, J., & Bhat, H. P. (2011). Phytochemistry, nutritional and pharmacological properties of Artocarpus heterophyllus Lam (jackfruit): A review. Food Research International, 44(7), 1800-1811. doi: 10.1016/j.foodres.2011.02.035

Barbosa, T. A., & Lobato, F. S. (2016). Determinação da cinética de secagem de produtos alimentícios usando algoritmos genéticos. Journal of Neotropical Agriculture, 3(3), 28-37. doi: 10.32404/rean.v3i3.1205

Correia, A. F. K., Loro, A. C., Zanatta, S., Spoto, M. H. F., & Vieira, T. M. F. S. (2015). Effect of temperature, time, and material thickness on the dehydration process of tomato. International Journal of Food Science, 2015. doi: 10.1155/2015/970724

Costa, L. M., Resende, O., Goncalves, D. N., & de Oliveira, D. E. C. (2015). Mathematical modeling of crambe fruits in thin layer drying. Bioscience Journal, 31(2), 392-403. doi: 10.14393/BJ-v31n2a2015-22340

Dórea, J. R. R., Pereira, L. G. R., Ferreira, A. L., da Silva, T. C., Azevêdo, J. A. G., de Gouvêa, V. N., & Franco, A. L. C. (2013). Chemical composition and fermentation dynamics of jackfruit silage. Semina: Ciências Agrárias, 34(4), 1967-1976. doi: 10.5433/1679-0359.2013v34n4p1967

Ferreira, J. P. D. L., Castro, D. S. D., Moreira, I. D. S., Silva, W. P. D., de Figueirêdo, R. M., & Queiroz, A. J. D. M. (2020). Convective drying kinetics of osmotically pretreated papaya cubes. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(3), 200-208. doi: 10.1590/1807-1929/agriambi.v24n3p200-208

Fiorentin, L. D., Menon, B. T., Alves, J. A., de Barros, S. T. D., Pereira, N. C., & Módenes, A. N. (2010). Determinação da cinética e das isotermas de secagem do bagaço da laranja. Acta Scientiarum. Technology, 32(2), 147-152. doi: 10.4025/actascitechnol.v32i2.8242

Godoi, A. S., dos Santos, B. M. M., Holsbach, F. M. S., da Silva, W. C., de Lima, T., Werle, L. O., & Galante, R. M. (2020). Determination of the drying kinetics of yellow kiwi (Actinidia chinensis) and green kiwi (Actinidia delicious). Brazilian Journal of Development, 6(7), 51941-51950. doi: 10.34117/bjdv6n7-733

Gonçalves, L. T., Pereira, N. R., Almeida, S. B., Freitas, S. D. J., & Waldman, W. R. (2017). Microwave–hot air drying applied to selected cassava cultivars: drying kinetics and sensory acceptance. International Journal of Food Science & Technology, 52(2), 389-397. doi: 10.1111/ijfs.13293

Govindaraj, D., Rajan, M., Hatamleh, A. A., & Munusamy, M. A. (2018) From waste to high-value product: Jackfruit peel derived pectin/apatite bionanocomposites for bone healing applications. International journal of biological macromolecules, 106, 293-301. doi: 10.1016/j.ijbiomac.2017.08.017

Günhan, T., Demir, V., Hancioglu, E., & Hepbasli, A. (2005). Mathematical modelling of drying of bay leaves. Energy Conversion and Management, 46, 1667-1679. doi: 10.1016/j.enconman.2004.10.001

Haque, M. A., Begum, R., Shibly, A. Z., Sultana, M. M., & Khatun, A. (2015). Influence of jackfruit pulp on the quality and shelf life of jackfruit cake. Journal Environmental Science and Natural Resources, 8(1), 59–64. doi: 10.3329/jesnr.v8i1.24672

Henderson, S. M. (1974). Progress in developing the thin-layer drying equation. Transactions of the American Society of Agricultural. 17(6), 1167-1168. doi: 10.13031/2013.37052

Henderson, S. M., & Pabis, S. (1962). Grain drying theory I: temperature effect on drying coefficient. Journal of Agricultural Research Engineering, 12, 732-736.

Hossain, M. T. (2014). Development and quality evaluation of bread supplemented with jackfruit seed flour. International Journal of Nutrition and Food Sciences, 3(5), 484. doi: 10.11648/j.ijnfs.20140305.28

Instituto Adolfo Lutz (São Paulo). (2008). Métodos físico-químicos para análise de alimentos. 4.ed. São Paulo: Instituto Adolfo Lutz, 1020p.

Jorge, A. P. P., Ferreira Junior, W. N., Silva, L. C. M., Oliveira, D. E. C., & Resende, O. (2021). Drying kinetics of ‘gueroba’ (Syagrus oleracea) fruit pulp. Brazilian Journal of Agricultural and Environmental Engineering, 25(1), 23-29. doi: 10.1590/1807-1929/agriambi.v25n1p23-29

Khodja, Y. K., Dahmoune, F., Bachir bey, M., Madani, K., & Khetta, B. (2020). Conventional method and microwave drying kinetics of Laurus nobilis leaves: effects on phenolic compounds and antioxidant activity. Brazilian Journal of Food Technology, 23, e2019214. doi: 10.1590/1981-6723.21419

Keey, R. B. (2013). Drying: Principles and practice. Elsevier.

Leite, D. D. D. F., Queiroz, A. J. D. M., Figueirêdo, R. M. F. D., & Lima, L. S. L. (2019). Mathematical drying kinetics modeling of jackfruit seeds (Artocarpus heterophyllus Lam.). Revista Ciência Agronômica, 50(3), 361-369. doi: 10.5935/1806-6690.20190043

Madruga, M., Samara, M. A. F., Rafaela, A. S. I., Silva, A. D., Magnani, M., & Queiroga Neto, V. (2014). Chemical, morphological and functional properties of Brazilian jackfruit (Artocarpus heterophyllus Lam) seeds starch. Food Chemistry, 143, 440-445. doi:10.1016/j.foodchem.2013.08.003

Martinazzo, A. P., Corrêa, P. C., Resende, O., & Melo, E. C. (2007). Analysis and mathematical description of drying kinetic of lemon grass leaves. Revista Brasileira de Engenharia Agrícola e Ambiental, 11(3), 301–306. doi: 10.1590/S1415-43662007000300009

Mendonça, A. P., Sampaio, P. D. T., Almeida, F. D. A., Ferreira, R. F., & Novais, J. M. (2015). Determination of drying curves of crabwood in solar dryer. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(4), 382-387. doi: 10.1590/1807-1929/agriambi.v19n4p382-387

O’Callaghan, J. R., Menzies, D. J., & Bailey, P. H. (1971). Digital simulation of agricultural dryer performance. Journal of Agricultural Engineering Research, 16(3), 223-244. doi: 10.1016/S0021-8634(71)80016-1

Oliveira, G. H. H. D., Aragão, D. M. S., Oliveira, A. P. L. R. D., Silva, M. G., & Gusmão, A. C. A. (2015a). Modelling and thermodynamic properties of the drying of strawberries. Brazilian Journal of Food Technology, 18(4), 314-321. doi: 10.1590/1981-6723.5315

Oliveira, J. A. M., Macedo, A. D. B., Raulino, J. L. C., Raulino, A. D. M. D., Santana, R. A. C., & Campos, A. R. N. (2015b). Determinação do teor de água de cactáceas pelos métodos padrão em estufa e micro-ondas. Blucher Chemistry Proceedings, 3(1), 1027-1037.

Oliveira, P. M., Oliveira, D. E. C., Resende, O., & Silva, D. V. (2018). Study of the drying of mesocarp of baru (Dipteryx alata Vogel) fruits. Revista Brasileira de Engenharia Agrícola e Ambiental, 22(12), 872-877. doi: 10.1590/1807-1929/agriambi.v22n12p872-877

Overhults, D. G., White, G. M., Hamilton, H. E., & Ross, I. J. (1973). Drying soybeans with heated air. Transactions of the of the American Society of Agricultural, 16(1), 112. doi: 10.13031/2013.37459

Pereira, N. R., Marsaioli Júnior, A., & Ahrné, L. M. (2007). Effect of microwave power, air velocity and temperature on the final drying of osmotically dehydrated bananas. Journal of Food Engineering, 81(1), 79-87. doi: 10.1016/j.jfoodeng.2006.09.025

Pinheiro, G. K. I., Oliveira, D. E. C., Ferreira Junior, W. N., & Resende, O. (2020). Drying kinetics of yellow mombin (Spondias mombin L.) epicarp. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(2), 121-127. doi: 10.1590/1807-1929/agriambi.v24n2p121-127

Santos, N. C., Almeida, R. L. J., Pereira, T. S., Queiroga, A. P. R., Silva, V. M. de A., Amaral, D. S., Almeida, R. D., Ribeiro, V. H. A., Barros, E. R., & Silva, L. R. I. (2020). Mathematical modeling applied to the drying kinetics of pitomba bark (Talisia esculenta). Research, Society and Development, 9(2), e46921986. doi: 10.33448/rsd-v9i2.1986

Sharma, G., & Prasad, S. (2004). Effective moisture diffusivity of garlic cloves undergoing microwave-convective drying. Journal of Food Engineering, 65(4), 609-617. doi: 10.1016/j.jfoodeng.2004.02.027

Silva, J. H. V., Jordão Filho, J., Ribeiro, M. L. G., & Silva, E. L. (2007). Efeitos da inclusão do farelo de sementes de jaqueira (Artocarpus heterophyllus Lam.) na ração sobre a produção, pigmentação da gema e umidade fecal em codornas. Ciência e Agrotecnologia, 31(2), 523-530. doi: 10.1590/S1413-70542007000200037

Silva, A. P. F., Sousa, A. P. M., Macedo, A. D. B., Dantas, D. L., Oliveira, J. A. M., Almeida, A. F., Santana, R. A. C., & Campos, A. R. N. (2020a). Obtaining the fuit of the flour maxixe (Cucumis anguria L.) by different drying methods. Brazilian Journal of Development, 6(7), 50983-51000. doi: 10.34117/bjdv6n7-661

Silva, A. P. F., Sousa, A. P. M., Macedo, A. D. B., Dantas, D. L., Costa, J. D., Almeida, A. F., Santana, R. A. C., & Campos, A. R. N. (2020b). Obtaining floury product from agro-industrial waste by different drying methods. Research, Society and Development, 9(9), e405997334. doi: 10.33448/rsd-v9i9.7334

Silva, J. C. C., Matias, R. S. de L., Oliveira, M. J. S., Araújo, J. de M., & Viera, V. B. (2020c). Elaboration and sensory evaluation of added cookie from jackfruit seed and vegan dulce de leche. Research, Society and Development, 9(8), e585985757. doi: 10.33448/rsd-v9i8.5757

Smaniotto, T. A. S., Resende, O., Sousa, K. A., Oliveira, D. E. C., & Campos, R. C. (2017). Drying kinetics of sunflower grains. Revista Brasileira de Engenharia Agrícola e Ambiental, 21(3), 203-208. doi: 10.1590/1807-1929/agriambi.v21n3p203-208

Sousa, H. C., Silva, N. J. P., Pereira, E. M., Silva Filho, C. R. M., & Souza, W. F. C. (2016a). Use of numerical and analytical solutions in the description of the drying of the central axis of jackfruit. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 11(3), 131-134. doi: 10.18378/rvads.v11i3.4314

Sousa, F. T., Silva, M. A. P., Oliveira, D. E. C., Plácido, G. R., Gagnin, C., Moura, L. C., Souza, D. G., Caliari, M., & Lima, M.S. (2016b). Modelagem matemática da secagem e propriedades físicas e adaptações do bagaço de malte. Global Science and Technology, 9, 51-61.

Sousa, E. P., Figueirêdo, R. M. F., Gomes, J. P., Queiroz, A. J. M., Castro, D. S., & Lemos, D. M. (2017). Mathematical modeling of pequi pulp drying and effective diffusivity determination. Revista Brasileira de Engenharia Agrícola e Ambiental, 21, (7), 493-498. doi: 10.1590/1807-1929/agriambi.v21n7p493-498

Sousa, A. P. M., Costa, J. D., Macedo, A. D. B., Dantas, D. L., Oliveira, J. A. M., Almeida, A. F., Santana, R. A. C., & Campos, A. R. N. (2020a). Physical and chemical characterization of farinaceous product the central axis and pivot of jackfruit. Research, Society and Development, 9(9), e350997333-e350997333. doi: 10.33448/rsd-v9i9.7333

Sousa, A. P. M., Campos, A. R. N., Macedo, A. D. B., Dantas, D. L., Apolinário, M. O., & Santana, R. A. C. (2020b). Quality assessment flour of jacafruit shell. Brazilian Journal of Animal and Environmental Research, 3(3), 1786-1796. doi: 10.34188/bjaerv3n3-094

Sousa, C. F., Sousa, S., Figueiredo, J. S. B., Moraes, M. R. L., Sena Carvalho, I. P. P., Chaves, F. J. F., Mata, M. E. R. M., & Almeida, G. N. (2020c). Kinetic drying in low food layout of passion fruit, using different additives. Brazilian Journal of Development, 6(9), 70821-70829. doi: 10.34117/bjdv6n9-506

Sousa, A. P. M., Campos, A. R. N., Macedo, A. D. B., Dantas, D. L., Silva, A. P. F., Costa, J. D., & Santana, R. A. C. (2020d). Mathematical modeling of acerola residence in microwave. Brazilian Journal of Animal and Environmental Research, 3(3), 1797-1806. doi: 10.34188/bjaerv3n3-095

Souza, T. S. A., Chaves, M. A., Bonomo, R. C. F., Soares, R. D., Pinto, E. G., & Cota, I. R. (2009). Desidratação osmótica de frutículos de jaca (Artocarpus integrifólia L.): aplicação de modelos matemáticos. Acta Scientiarum. Technology, 31(2), 225-230. doi: 10.4025/actascitechnol.v31i2.1026

Souza, D. G., Resende, O., Moura, L. C., Ferreira Junior, W. N., & Andrade, J. W. S. (2019). Drying kinetics of the sliced pulp of biofortified sweet potato (Ipomoea batatas L.). Engenharia Agrícola, 39(2), 176-181. doi: 10.1590/1809-4430-Eng.Agric.v39n2p176-181/2019

Souza, H. M. S., Silva, E. M., Souza, T. R. L., Mendes, M. L. M., & Messias, C. M. B O. (2020a). Potential of pulp and jackfruit residues (Artocarpus heterophyllus Lam.) in the preparation of a sustainable sweet. Brazilian Journal of Development, 6(11), 87251-87269. doi: 10.34117/bjdv6n11-229

Souza, P. D., Durante, T. P. Y., Galante, R. M., & Werle, L. O. (2020b). Drying kinetics of Argentine pear (Pyrus communis L.) and Willians pear (Pyrus communis 'Williams'). Brazilian Journal of Development, 6(7), 51931-51940. doi: 10.34117/bjdv6n7-732

Sozzi, G., & Ramos, D. S. (2015). Avaliação do ágio no preço da energia convencional no mercado brasileiro de contratos de curto prazo: metodologia e aplicação. Revista Espaço Ciência, 22, 24.

Swami, S. B., & Kalse, S. B. (2018). Jackfruit (Artocarpus heterophyllus): Biodiversity, nutritional contents and health. Bioactive Molecules in Food. Reference Series in Phytochemistry. Springer, Cham. English. doi: 10.1007/978-3-319-54528-8_87-1

StatSoft, Inc. (2007). STATISTICA (data analysis software system), version 8.0. www.statsoft.com.

Tadini, C. C., Telis, V. R. N., Meirelles, A. J. A., & Pessoa-Filho, P. A. (2016). Operações unitárias na indústria de alimentos. v. 2 São Paulo-SP: Editora LTC, 652 p.

Wang, C. Y., & Singh, R. P. (1978). Use of variable equilibrium moisture content in modeling rice drying. Transactions of the of the American Society of Agricultural, 11(78), 3001.

Yagcioglu, A., Degirmencioglu, A., & Cagatay, F. (1999). Drying characteristics of laurel leaves under different conditions. In: International Congress on Agricultural Mechanization and Energy, 7, Adana. Proceedings… Adana: Faculty of Agriculture, Cukurova University, 1999, p.565-569.

Published

17/02/2021

How to Cite

SOUSA, A. P. M. de .; CAMPOS, A. R. N.; GOMES, J. P. .; COSTA, J. D. .; MACEDO, A. D. B. de .; SANTANA, R. A. C. de . Drying kinetics of jackfruit residues (Artocarpus heterophyllus Lam.). Research, Society and Development, [S. l.], v. 10, n. 2, p. e31510212610, 2021. DOI: 10.33448/rsd-v10i2.12610. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12610. Acesso em: 18 apr. 2024.

Issue

Section

Agrarian and Biological Sciences