Quality of breast meat from broiler chickens raised in Brazil affected by white striping myopathy
DOI:
https://doi.org/10.33448/rsd-v10i2.12637Keywords:
Chemical composition; Muscle abnormalities; Pectoralis major; Softness.Abstract
The aim of this study was to characterize the breast meat from broilers affected by the white striping myopathy and examine its influence on meat quality. 180 breast samples from male broilers, slaughtered at 42-d-old, were used. Samples were classified according to the severity degree of apparent white stripes on the Pectoralis major muscle surface (“normal” [n=60], “moderate” [n=60], or “severe” [n=60]). Birds affected by the myopathy produced breast meat with higher L*, a* and b* values on the outer surface. Cooking loss decreased as the severity degree increased (30.94% [normal] to 21.65% [severe]). Toughness increased in the samples classified as moderately and severely affected. There was also an increase in the concentrations of lipids (1.60% [normal] to 2.57% [affected samples], on average), cholesterol (84.60 mg/100 g [normal] to 91.73 mg/100 g [severe degree]) and collagen as the severity degree increased. Although there are statistical differences for some evaluated parameters and, even so, these results are considered numerically normal based on previously published literature, we emphasize that the white striping abnormality alters chicken breast meat quality, especially regarding to the protein and fat concentrations, which can offer consumers products with nutritional quality different from the average specified on the packaging.
References
ABPA - Brazilian Association of Animal Protein. 2020. “Annual report 2020.” <http://abpa-br.org/mercados/#relatorios>.
Aguirre, M. E., Owens, C. M., Miller, R. K., & Alvarado, C. Z. (2018). Descriptive sensory and instrumental texture profile analysis of woody breast in marinated chicken. Poultry Science, 97, 1456-1461.
Alnahhas, N., Berri, C., Chabault, M., Chartrin, P., Boulay, M., Bourin, M.C. & LE Bihan-Duval, E. (2016). Genetic parameters of white striping in relation to body weight, carcass composition, and meat quality traits in two broiler lines divergently selected for the ultimate pH of the pectoralis major muscle. BMC Genetics, 17, 61-70.
AOAC, 2011. Official Methods of Analysis of AOAC International (18th ed.) (Washington, DC: Association of Analytical Chemists).
Baldi, G., Soglia, F., Mazzoni, M., Sirri, F., Canonico, L., Babini, E., Laghi, L., Cavani, C. & Petracci, M. (2018). Implications of white striping and spaghetti meat abnormalities on meat quality and histological features in broilers. Animal, 12, 164-173.
Baldi, G., Soglia, F., Laghi, L., Tappi, S., Rocculi, P., Tavaniello, S., Prioriello, D., Mucci, R., Maiorano, G. & Petracci, M. (2019). Comparison of quality traits among breast meat affected by current muscle abnormalities. Food Research International, 115, 369-376.
Bligh, E. G. & Dyer, W. J. (1959). A rapid method for total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911 - 917.
Carvalho, L. T., Owens, C. M., Giampietro-Ganeco, A., Mello, J. L. M., Ferrari, F. B., Carvalho, F. A. L., Souza, R. A., Amoroso, L., Souza, P. A., Borba, H. & Trindade, M.A. Quality of turkeys breast meat affected by White Striping myopathy. <https://www.sciencedirect.com/ science/article/pii/S0032579121000560>
Cross, H. R., Carpenter, Z. L. & Smith, G. C. (1973). Effects of intramuscular collagen and elastin on bovine muscle tenderness. Journal of Food Science, 38, 998-1003.
Cross, H. R., West, R. L. & Dutson, T. R. (1981). Comparison of methods for measuring sarcomere length in beef semitendinosus muscle. Meat Science, 5, 261-266.
Dalle Zotte, A, Tasoniero, G., Puolanne, E., Remignon, H., Cecchinato, M., Catelli, E. & Cullere, M. (2017). Effect of “wooden breast” appearance on poultry meat quality, histological traits, and lesions characterization. Czech Journal of Animal Science, 62, 51-57.
Gratta, F., Fasolato, L., Birolo, M., Zomeño, C., Novelli, E., Petracci, M., Pascual, A., Xiccato, G. & Trocino, A. (2019). Effect of breast myopathies on quality and microbial shelf life of broiler meat. Poultry Science, 98, 2641-2651.
Hadlich, J. C., Morales, D. C., Silveira, A. C., Oliveira, H. N. & Chardulo, L. A. L. (2006). Efeito do colágeno na maciez da carne de bovinos de distintos grupos genéticos. Acta Scientiarum. Animal Sciences, 28, 57-62.
Hamm, R. (1961). Biochemistry of meat hydration. Advances in Food Research, 10, 355–463.
Honikel, K. O. (1987). The water binding of meat. Fleischwirttsch, 67, 1098–1102.
Kuttappan, V. A., Brewer, V. B., Apple, J. K., Waldroup, P. W. & Owens, C. M. (2012). Influence of growth rate on the occurrence of white striping in broiler breast fillets. Poultry Science, 91(10), 2677-2685.
Kuttappan, V. A., Lee, Y., Erf, G., Meullenet, J. F., Mckee, S. & Owens, C.M. (2012b). Consumer acceptance of visual appearance of broiler breast meat with varying degrees of white striping. Poultry Science, 91, 1240-1247.
Kuttappan, V. A., Shivaprasad, H. L., Shaw, D. P., Valentine, B. A., Hargis, B. M., Clark, F. F., Mckee, S. R. & Owens, C. M. (2013). Pathological changes associated with white striping in broiler breast muscles. Poultry Science, 92, 331–338.
Kuttappan, V. A., Owens, C. M., Coon, C., Hargis, B. M. & Vazquez-Añon, M. (2017). Incidence of broiler breast myopathies at 2 different ages and its impact on selected raw meat quality parameters. Poultry Science, 96, 3005-3009.
Le Bihan-Duval, E., Debut, M., Berri, C.M., Sellier, N., Sante-Lhoutellier, V., Jego, Y. & Beaumont, C. (2008). Chicken meat quality: genetic variability and relationship with growth and muscle characteristics. BMC Genetics, 9, 53.
Lee, Y. S., Owens, C. M. & Meullenet, J. F. (2008). The Meullenet-Owens razor shear (MORS) for predicting poultry meat tenderness: its applications and optimization. Journal of Texture Studies, 39, 655-672.
Lyon, C. E., Lyon, B. G. & Dickens, J. A. (1998). Effects of carcass stimulation, deboning time, and marination on color and texture of broiler breast meat. Journal of Applied Poultry Research, 7, 53–60.
Maiorano, G., Wilkanowska, A., Tavaniello, S., Di Memmo, D., De Marzo, D. & Gambacorta, M. (2015). Effect of intramuscular injections of DL-α-tocopheryl acetate on growth performance and extracellular matrix of growing lambs. Animal, 9, 2060-2064.
Marchesi, J. A. P., Ibelli, A. M. G., Peixoto, J. O., Cantão, M. E., Pandolfi, J. R. C., Marciano, C. M. M., Zanella, R., Settles, M. L., Coutinho, L. L. & Ledur, M. C. (2019). Whole transcriptome analysis of the pectoralis major muscle reveals molecular mechanisms involved with white striping in broiler chickens. Poultry Science, 98, 590-601.
Meullenet, J. F., Jonville, E., Grezes, D. & Owens, C. M. (2004). Prediction of the texture of cooked poultry pectoralis major muscles by near-infrared reflectance analysis of raw meat. Journal of Texture Studies, 35, 573–585.
Mudalal, S., Lorenzi, M., Soglia, F., Cavani, C. & Petracci, M. (2015). Implications of white striping and wooden breast abnormalities on quality traits of raw and marinated chicken meat. Animal, 9(4), 728–734.
Petracci, M., Mudalal, S., Bonfiglio, A. & Cavani, C. (2013). Occurrence of white striping and its impact on breast meat quality in broiler chickens. Poultry Science, 92, 1670-1675.
Petracci, M., Soglia, F. & Berri, C. (2017). Muscle metabolism and meat quality abnormalities. In: Petracci, M. & Berri, C. (Eds), Poultry quality evaluation, Ed. Duxford: Cambridge, p. 51-75.
Radaelli, G., Piccirillo, A., Birolo, M., Bertotto, D., Gratta, F., Ballarin, C., Vascellari, M., Xiccato, G. & Trocino, A. (2017). Effect of age on the occurrence of muscle fiber degeneration associated with myopathies in broiler chickens submitted to feed restriction. Poultry Science, 96, 309-319.
Russo, E., Drigo, M., Longoni, C., Pezzotti, R., Fasoli, P. & Recordati, C. (2015). Evaluation of White Striping prevalence and predisposing factors in broilers at slaughter. Poultry Science, 94, 1843-1848.
Saldanha, T., Mazalli, M. R. & Bragagnolo, N. (2004). Avaliação comparativa entre dois métodos para determinação do colesterol em carnes e leite. Ciência e Tecnologia de Alimentos, 24, 109-113.
Sánchez-Brambila, G., Bowker, B. C. & Zhuang, H. (2016). Comparison of sensory Texture attributes of broiler breast fillets with different degrees of white striping. Poultry Science, 95, 2472–2476.
SAS. (2012). Statistical Analysis System user’s guide. SAS Institute. Version 9.2, Cary.
Sihvo, H. K., Immonen, K. & Puolanne, E. (2014). Myodegeneration with fibrosis and regeneration in the pectoralis major muscle of broilers. Veterinary Pathology, 51, 619-623.
Soglia, F., Mudalal, S., Barbini, E., Di Nunzio, M., Mazzoni, M., Sirri, F., Cavani, C. & Petracci, M. (2016). Histology, composition, and quality traits of chicken Pectoralis major muscle affected by wooden breast abnormality. Poultry Science, 95, 651-659.
Soglia, F., Laghi, L., Canonico, L.C., Cavani, C. & Petracci, M. (2016). Functional property issues in broiler breast meat related to emerging muscle abnormalities. Food Research International, 89(3), 1071-1076.
Sun, X., Koltes, D. A., Coon, C. N., Chen, K. & Owens, C. M. (2018). Instrumental compression force and meat attribute changes in woody broiler breast fillets during short-term storage. Poultry Science, 0, 1-7. 10.3382/ps/pey107.
Tasoniero, G., Cullere, M., Cecchinato, M., Puolanne, E. & Dalle Zotte, A. (2016). Technological quality, mineral profile and sensory attributes of broiler chicken breasts affected by white striping and wooden breast myopathies. Poultry Science, 95, 2707–2714.
Tijare, V. V., Yang F. L., Kuttappan V. A., Alvarado, C. Z., Coon, C. N. & Owens, C. M. (2016). Meat quality of broiler breast fillets with white striping and woody breast muscle myopathies. Poultry Science, 95, 2167–2173.
Trocino, A., Piccirillo, A., Birolo, M., Radaelli, G., Bertotto, D., Filiou, E., Petracci, M. & Xiccato, G. (2015). Effect of genotype, gender and feed restriction on growth, meat quality and the occurrence of white striping and wooden breast in broiler chickens. Poultry Science, 94, 2996-3004.
Velleman, S. G., Clark, D. L. & Tonniges, J. R. (2017). Fibrillar collagen organization associated with broiler wooden breast fibrotic myopathy. Avian Diseases. 61, 481-490.
Woessner Junior, J. F. (1961). The determination of hydroxyproline in tissue and protein samples containing small proportions of this amino acid. Archives of Biochemistry and Biophysics, 93, 440-447.
Zambonelli, P., Zappaterra, M., Soglia, F., Petracci, M., Sirri, F., Cavani, C. & Davoli, R. (2016). Detection of differentially expressed genes in broiler pectoralis major muscle affected by white striping – wooden breast myopathies. Poultry Science, 95, 2771-2785.
Zhuang, H. & Bowker, B. (2018). The wooden breast condition results in surface discoloration of cooked broiler pectoralis major. Poultry Science, 97, 4458-4461.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Juliana Lolli Malagoli de Mello; Rodrigo Alves de Souza; Fábio Borba Ferrari; Erika Nayara Freire Cavalcanti; Rodrigo Fortunato de Oliveira; Heloisa de Almeida Fidelis; Mateus Roberto Pereira; Erick Alonso Villegas-Cayllahua; Aline Giampietro-Ganeco; Daniel Rodrigues Dutra; Pedro Alves de Souza; Hirasilva Borba
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.