The influence of the quorum sensing on the formation of biofilm by Pseudomonas aeruginosa
DOI:
https://doi.org/10.33448/rsd-v10i2.12659Keywords:
Virulence factors; Biofilm; Drug resistance bacterial; Cross infection.Abstract
The bacteria are organized in an aggregated form in an extracellular matrix, called biofilm, a structure that gives protection to the bacteria, the action of antimicrobials and the hosts immune response. Therefore, Pseudomonas aeruginosa, is classified as an opportunistic microorganism, responsible for causing high numbers of nosocomial infections due to bacterial resistance developed by virulence factors such as biofilm, controlled by the quorum sensing system. Thereby, the objective of this work was to describe the communication of bacterial cells for the formation of biofilm by P. aeruginosa, during the process of colonization and infection in the host. This was followed by the methodology of a narrative review, based on articles published between 1990 and 2020, indexed in the Biblioteca Virtual em Saúde (BVS), using the descriptors: “quorum sensing”, "Pseudomonas aeruginosa", "biofilm", "virulence factors", "Flagella", "pili", "bacterial adhesion" "polysaccharide" "adhesins" and "biofilm matrix". Articles published in full, in English, between 2000 and 2020 were selected Incomplete articles, duplicates and academic papers such as theses and dissertations were excluded. The studies demonstrated that the bacterial resistance of P. aeruginosa to antibiotics is related to its high capacity to adapt to hostile environments and to the resistance mechanisms developed by the species, especially the formation of bacterial biofilm by the quorum sensing system from the biosynthesis of self-inducing molecules such as: N-3-oxo-dodecanoyl homoserine lactone, N-butanoyl-homoserin lactone and 2-heptyl-3-hydroxy-4-chi nolona, responsible for mediating the production of virulence factors. This review addressed the general aspects involving the pathogenicity arising from bacterial communication during its colonization process.
References
Brasil (2019). Agência Nacional de Vigilância Sanitária. Boletim Segurança do Paciente e Qualidade em Serviços de Saúde nº 20: Avaliação dos indicadores nacionais das IRAS e RM 2018. Brasília: ANVISA. https://bit.ly/2MRfYvE
Brindhadevi, K., LewisOscar, F., Mylonakis, E., Shanmugam, S., Verma, T. N., & Pugazhendhi, A. (2020). Biofilm and Quorum sensing mediated pathogenicity in Pseudomonas aeruginosa. Process Biochemistry. https://doi.org/10.1016/j.procbio.2020.06.001
Bruzaud, J., Tarrade, J., Coudreuse, A., Canette, A., Herry, J. M., de Givenchy, E. T., Darmaninc, T., Guittardc, F., Guilbauda, M., & Bellon-Fontaine, M. N. (2015). Flagella but not type IV pili are involved in the initial adhesion of Pseudomonas aeruginosa PAO1 to hydrophobic or superhydrophobic surfaces. Colloids and Surfaces B: Biointerfaces, 131, 59-66. https://doi.org/10.1016/j.colsurfb.2015.04.036
Byrd, M. S., Sadovskaya, I., Vinogradov, E., Lu, H., Sprinkle, A. B., Richardson, S. H., Ma, L., Ralston, B., Parsek, M. R., Anderson, E. M., Lam, J. S., & Daniel J. Wozniak (2009). Genetic and biochemical analyses of the Pseudomonas aeruginosa Psl exopolysaccharide reveal overlapping roles for polysaccharide synthesis enzymes in Psl and LPS production. Molecular microbiology, 73(4), 622-638. https://doi.org/10.1111/j.1365-2958.2009.06795.x
Churchill, M. E., & Chen, L. (2011). Structural basis of acyl-homoserine lactone-dependent signaling. Chemical reviews, 111(1), 68-85. https://doi.org/10.1021/cr1000817
Colvin, K. M., Gordon, V. D., Murakami, K., Borlee, B. R., Wozniak, D. J., Wong, G. C., & Parsek, M. R. (2011). The pel polysaccharide can serve a structural and protective role in the biofilm matrix of Pseudomonas aeruginosa. PLoS Pathog, 7(1), e1001264. https://doi.org/10.1371/journal.ppat.1001264
Colvin, K. M., Irie, Y., Tart, C. S., Urbano, R., Whitney, J. C., Ryder, C., Howell, P. L., Wozniak, D. J., & Parsek, M. R. (2012). The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environmental microbiology, 14(8), 1913-1928. https://doi.org/10.1111/j.1462-2920.2011.02657.x
D'Argenio, D. A., & Miller, S. I. (2004). Cyclic di-GMP as a bacterial second messenger. Microbiology, 150(8), 2497-2502. https://doi.org/10.1099/mic.0.27099-0
Davies, J. C. (2002). Pseudomonas aeruginosa in cystic fibrosis: pathogenesis and persistence. Paediatric respiratory reviews, 3(2), 128-134. https://doi.org/10.1016/S1526-0550(02)00003-3
Evans, L. R., & Linker, A. (1973). Production and characterization of the slime polysaccharide of Pseudomonas aeruginosa. Journal of bacteriology, 116(2), 915-924. https://doi.org/10.1128/JB.116.2.915-924.1973
Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature reviews microbiology, 8(9), 623-633. https://doi.org/10.1038/nrmicro2415
Franklin, M. J., Nivens, D. E., Weadge, J. T., & Howell, P. L. (2011). Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Frontiers in microbiology, 2, 167. https://doi.org/10.3389/fmicb.2011.00167
Friedman, L., & Kolter, R. (2004). Two genetic loci produce distinct carbohydrate-rich structural components of the Pseudomonas aeruginosa biofilm matrix. Journal of bacteriology, 186(14), 4457-4465. https://doi.org/10.1128/JB.186.14.4457-4465.2004
Gallagher, L. A., McKnight, S. L., Kuznetsova, M. S., Pesci, E. C., & Manoil, C. (2002). Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa. Journal of bacteriology, 184(23), 6472-6480. https://doi.org/10.1128/JB.184.23.6472-6480.2002
Gloag, E. S., Turnbull, L., Huang, A., Vallotton, P., Wang, H., Nolan, L. M., Mililli, L., Hunt, C., Lu, J., Osvath, S. R., Monahan, L. G., Cavaliere, R., Charles, I. G., Wand, M. P., Gee, M. L., Prabhakar, R., & Whitchurch, C. B. (2013). Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proceedings of the National Academy of Sciences, 110(28), 11541-11546. https://doi.org/10.1073/pnas.1218898110
Hawver, L. A., Jung, S. A., & Ng, W. L. (2016). Specificity and complexity in bacterial quorum-sensing systems. FEMS microbiology reviews, 40(5), 738-752. https://doi.org/10.1093/femsre/fuw014
Jenal, U., & Malone, J. (2006). Mechanisms of cyclic-di-GMP signaling in bacteria. Annu. Rev. Genet., 40, 385-407. https://doi.org/10.1146/annurev.genet.40.110405.090423
Jimenez, P. N., Koch, G., Thompson, J. A., Xavier, K. B., Cool, R. H., & Quax, W. J. (2012). The multiple signaling systems regulating virulence in Pseudomonas aeruginosa. Microbiology and Molecular Biology Reviews, 76(1), 46-65. https://doi.org/10.1128/MMBR.05007-11
Johansen, H. K., Kovesi, T. A., Koch, C., Corey, M., Høiby, N., & Levison, H. (1998). Pseudomonas aeruginosa and Burkholderia cepacia infection in cystic fibrosis patients treated in Toronto and Copenhagen. Pediatric pulmonology, 26(2), 89-96. https://doi.org/10.1002/(SICI)1099-0496(199808)26:2<89::AID-PPUL3>3.0.CO;2-C
Kariminik, A., Baseri-Salehi, M., & Kheirkhah, B. (2017). Pseudomonas aeruginosa quorum sensing modulates immune responses: an updated review article. Immunology letters, 190, 1-6. https://doi.org/10.1016/j.imlet.2017.07.002
Kievit, T. R., Gillis, R., Marx, S., Brown, C., & Iglewski, B. H. (2001). Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Applied and environmental microbiology, 67(4), 1865-1873. https://doi.org/10.1128/AEM.67.4.1865-1873.2001
Lee, J., Wu, J., Deng, Y., Wang, J., Wang, C., Wang, J., Chang, C., Dong, Y., Williams, P., & Zhang, L. H. (2013). A cell-cell communication signal integrates quorum sensing and stress response. Nature chemical biology, 9(5), 339. https://doi.org/10.1038/nchembio.1225
MacFaddin, J. F. (1985). Media for the isolation-cultivation-identification-maintenance of medical bacteria, vol. 1 Williams & Wilkins. Baltimore, MD.
Mann, E. E., & Wozniak, D. J. (2012). Pseudomonas biofilm matrix composition and niche biology. FEMS microbiology reviews, 36(4), 893-916. https://doi.org/10.1111/j.1574-6976.2011.00322.x
McKnight, S. L., Iglewski, B. H., & Pesci, E. C. (2000). The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. Journal of bacteriology, 182(10), 2702-2708. https://doi.org/10.1128/JB.182.10.2702-2708.2000
Montanaro, L., Poggi, A., Visai, L., Ravaioli, S., Campoccia, D., Speziale, P., & Arciola, C. R. (2011). Extracellular DNA in biofilms. The International journal of artificial organs, 34(9), 824-831. https://doi.org/10.5301/ijao.5000051
Mukherjee, S., Moustafa, D. A., Stergioula, V., Smith, C. D., Goldberg, J. B., & Bassler, B. L. (2018). The PqsE and RhlR proteins are an autoinducer synthase–receptor pair that control virulence and biofilm development in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 115(40), E9411-E9418. https://doi.org/10.1073/pnas.1814023115
Nakagami, G., Minematsu, T., Morohoshi, T., Yamane, T., Kanazawa, T., Huang, L., Asada, M., Nagase, T., Ikeda, S., Ikeda, T., & Sanada, H. (2015). Pseudomonas aeruginosa quorum-sensing signaling molecule N-3-oxododecanoyl homoserine lactone induces matrix metalloproteinase 9 expression via the AP1 pathway in rat fibroblasts. Bioscience, Biotechnology, and Biochemistry, 79(10), 1719-1724. https://doi.org/10.1080/09168451.2015.1056509
O'Toole, G. A., & Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular microbiology, 30(2), 295-304. https://doi.org/10.1046/j.1365-2958.1998.01062.x
Palleroni, N. J. (2010). The Pseudomonas story. Environmental microbiology, 12(6), 1377-1383. https://doi.org/10.1111/j.1462-2920.2009.02041.x
Palleroni, N. J. (2015). Pseudomonas. Bergey’s manual of systematics of archaea and bacteria. https://books.google.com.br/
Pattnaik, S. S., Ranganathan, S., Ampasala, D. R., Syed, A., Ameen, F., & Busi, S. (2018). Attenuation of quorum sensing regulated virulence and biofilm development in Pseudomonas aeruginosa PAO1 by Diaporthe phaseolorum SSP12. Microbial pathogenesis, 118, 177-189. https://doi.org/10.1016/j.micpath.2018.03.031
Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Retrieved from: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1.
Pizarro-Cerdá, J., & Cossart, P. (2006). Bacterial adhesion and entry into host cells. Cell, 124(4), 715-727. https://doi.org/10.1016/j.cell.2006.02.012
Ramos, H. C., Rumbo, M., & Sirard, J. C. (2004). Bacterial flagellins: mediators of pathogenicity and host immune responses in mucosa. Trends in microbiology, 12(11), 509-517. https://doi.org/10.1016/j.tim.2004.09.002
Rampioni, G., Pustelny, C., Fletcher, M. P., Wright, V. J., Bruce, M., Rumbaugh, K. P., Heeb, S., Cámara, M., & Williams, P. (2010). Transcriptomic analysis reveals a global alkyl‐quinolone‐independent regulatory role for PqsE in facilitating the environmental adaptation of Pseudomonas aeruginosa to plant and animal hosts. Environmental microbiology, 12(6), 1659-1673. https://doi.org/10.1111/j.1462-2920.2010.02214.x
Rasamiravaka, T., Labtani, Q., Duez, P., & El Jaziri, M. (2015). The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. BioMed research international, 2015. https://doi.org/10.1155/2015/759348
Römling, U., Galperin, M. Y., & Gomelsky, M. (2013). Cyclic di-GMP: the first 25 years of a universal bacterial second messenger. Microbiology and Molecular Biology Reviews, 77(1), 1-52. https://doi.org/10.1128/MMBR.00043-12
Rybtke, M., Hultqvist, L. D., Givskov, M., & Tolker-Nielsen, T. (2015). Pseudomonas aeruginosa biofilm infections: community structure, antimicrobial tolerance and immune response. Journal of molecular biology, 427(23), 3628-3645. https://doi.org/10.1016/j.jmb.2015.08.016
Ryder, C., Byrd, M., & Wozniak, D. J. (2007). Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Current opinion in microbiology, 10(6), 644-648. https://doi.org/10.1016/j.mib.2007.09.010
Sharma, G., Rao, S., Bansal, A., Dang, S., Gupta, S., & Gabrani, R. (2014). Pseudomonas aeruginosa biofilm: potential therapeutic targets. Biologicals, 42(1), 1-7. https://doi.org/10.1016/j.biologicals.2013.11.001
Simpson, J. A., Smith, S. E., & Dean, R. T. (1993). Alginate may accumulate in cystic fibrosis lung because the enzymatic and free radical capacities of phagocytic cells are inadequate for its degradation. Biochemistry and molecular biology international, 30(6), 1021-1034. Retrived from: https://europepmc.org/article/med/8220249
Skariyachan, S., Sridhar, V. S., Packirisamy, S., Kumargowda, S. T., & Challapilli, S. B. (2018). Recent perspectives on the molecular basis of biofilm formation by Pseudomonas aeruginosa and approaches for treatment and biofilm dispersal. Folia microbiologica, 63(4), 413-432. https://doi.org/10.1007/s12223-018-0585-4
Soheili, V., Tajani, A. S., Ghodsi, R., & Bazzaz, B. S. F. (2019). Anti-PqsR compounds as next-generation antibacterial agents against Pseudomonas aeruginosa: A review. European journal of medicinal chemistry, 172, 26-35. https://doi.org/10.1016/j.ejmech.2019.03.049
Tan, Q., Ai, Q., Xu, Q., Li, F., & Yu, J. (2018). Polymorphonuclear leukocytes or hydrogen peroxide enhance biofilm development of mucoid Pseudomonas aeruginosa. Mediators of inflammation, 2018. https://doi.org/10.1155/2018/8151362
Taylor, P. K., Yeung, A. T., & Hancock, R. E. (2014). Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. Journal of Biotechnology, 191, 121-130. https://doi.org/10.1016/j.jbiotec.2014.09.003
Vasudevan, R. (2014). Biofilms: microbial cities of scientific significance. J Microbiol Exp, 1(3), 84-97. 10.15406/jmen.2014.01.00014
Wang, S., Liu, X., Liu, H., Zhang, L., Guo, Y., Yu, S., Wozniak, D. J., & Ma, L. Z. (2015). The exopolysaccharide Psl–eDNA interaction enables the formation of a biofilm skeleton in Pseudomonas aeruginosa. Environmental microbiology reports, 7(2), 330-340. https://doi.org/10.1111/1758-2229.12252
World Health Organization (2017) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics, https://www.who.int/medicines/ publications/global-priority-list-antibiotic-resistant-bacteria/en/.
Wu, Y. K., Cheng, N. C., & Cheng, C. M. (2019). Biofilms in chronic wounds: pathogenesis and diagnosis. Trends in biotechnology, 37(5), 505-517. https://doi.org/10.1016/j.tibtech.2018.10.011
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Marina Luizy da Rocha Neves ; Luanne Eugênia Nunes; Wilma Raianny Vieira da Rocha; Eulália Camelo Pessoa de Azevedo Ximenes ; Mônica Camelo Pessoa de Azevedo Albuquerque
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish with this journal agree to the following terms:
1) Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.