Agroindustrial sustainability: Advanced Oxidative Processes (AOP) using brazilian bioabsorbents

Authors

DOI:

https://doi.org/10.33448/rsd-v10i5.12830

Keywords:

Brazilian waste; Banana peel; Cassava peel; AOPs; Adsorption mechanisms.

Abstract

The objective of this work was to evaluate bioadsorbers from Brazilian agro-industrial residues (banana and cassava peel) to be used in the elimination of the pollutant blue methylene model (MB). In this context, the adsorption process under various experimental conditions (temperature from 25 to 50 ° C, mass of the bio-adsorbents ranging from 0.5 to 1.0 g) was studied, as well as the kinetic modeling using three different models: pseudo-first order, pseudo-second intraparticle order and diffusion. Advanced Oxidative Processes (POA) UVc-AC and UV-C / Shells were subsequently studied under different conditions (temperature from 25 to 50 ° C, and lamp power from 11 to 33 W). The results obtained were promising, where the best results in the adsorption processes were those using the bio-absorbent banana peel, with a mass of 0.5 g and a temperature of 50 ° C. For the POAs used, the best MB degradation kinetics was in the C4 condition (55 ° C, 33 W) using the banana peel residue, showing a satisfactory and efficient agroindustrial residue to be applied in combination with the UV, contributing to the agro-industrial sustainability and for the improvement of water quality parameters.

References

Aguiar, L. (2006). Avaliação do processo de concentração osmótica para obtenção de banana-passa. 2006. 103 f (Doctoral dissertation, Dissertação (Mestrado em Tecnologia de Alimentos)-Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas).

Ahmad, A. L., Loh, M. M., & Aziz, J. A. (2007). Preparation and characterization of activated carbon from oil palm wood and its evaluation on methylene blue adsorption. Dyes and pigments, 75(2), 263-272.

Ali, H. (2010). Biodegradation of synthetic dyes—a review. Water, Air, & Soil Pollution, 213(1), 251-273.

Alver, E., Metin, A. Ü., & Brouers, F. (2020). Methylene blue adsorption on magnetic alginate/rice husk bio-composite. International journal of biological macromolecules, 154, 104-113.

Asfaram, A., Ghaedi, M., Dashtian, K., & Ghezelbash, G. R. (2018). Preparation and characterization of Mn0. 4Zn0. 6Fe2O4 nanoparticles supported on dead cells of Yarrowia lipolytica as a novel and efficient adsorbent/biosorbent composite for the removal of azo food dyes: central composite design optimization study. ACS Sustainable Chemistry & Engineering, 6(4), 4549-4563.

Asfour, H. M., Fadali, O. A., Nassar, M. M., & El‐Geundi, M. S. (1985). Equilibrium studies on adsorption of basic dyes on hardwood. Journal of Chemical Technology and Biotechnology. Chemical Technology, 35(1), 21-27.

Belaid, K. D., Kacha, S., Kameche, M., & Derriche, Z. (2013). Adsorption kinetics of some textile dyes onto granular activated carbon. Journal of Environmental Chemical Engineering, 1(3), 496-503.

Boehm, H. P. (2002). Surface oxides on carbon and their analysis: a critical assessment. Carbon, 40(2), 145-149.

Coha, M., Farinelli, G., Tiraferri, A., Minella, M., & Vione, D. (2021). Advanced oxidation processes in the removal of organic substances from produced water: Potential, configurations, and research needs. Chemical Engineering Journal, 128668.

Dąbek, L., Ozimina, E., & Picheta-Oleś, A. (2012). Applying the combined processes of sorption and oxidation to remove organic compounds from an aqueous environment using the example of p-chlorophenol. Ecological Chemistry and Engineering. A, 19(3), 275-286.a

Dabek, L., Ozimina, E., & Picheta-Oles, A. (2012). Dye removal efficiency of virgin activated carbon and activated carbon regenerated with Fenton's reagent. Environment Protection Engineering, 38(1), 5-13.b

de Sousa, D. N. R., Insa, S., Mozeto, A. A., Petrovic, M., Chaves, T. F., & Fadini, P. S. (2018). Equilibrium and kinetic studies of the adsorption of antibiotics from aqueous solutions onto powdered zeolites. Chemosphere, 205, 137-146.

de Moraes, M. F., de Oliveira, T. F., Cuellar, J., & Castiglioni, G. L. (2017). Phenol degradation using adsorption methods, advanced oxidative process (H2O2/UV) and H2O2/UV/activated carbon coupling: influence of homogeneous and heterogeneous phase. Desalination and Water Treatment, 100, 38-45.

de Almeida, M. C., de Oliveira, T. F., & de Sa, F. P. (2020). The elimination of cancerous pollutants by an advanced oxidation processes and adsorption in monosolute solutions mixtures in water. Desalination and water treatment, 191, 292-299.

Doğan, M., & Alkan, M. (2003). Adsorption kinetics of methyl violet onto perlite. Chemosphere, 50(4), 517-528.

Ezzatahmadi, N., Ayoko, G. A., Millar, G. J., Speight, R., Yan, C., Li, J., ... & Xi, Y. (2017). Clay-supported nanoscale zero-valent iron composite materials for the remediation of contaminated aqueous solutions: a review. Chemical engineering journal, 312, 336-350.

Fadillah, G., Saleh, T. A., Wahyuningsih, S., Putri, E. N. K., & Febrianastuti, S. (2019). Electrochemical removal of methylene blue using alginate-modified graphene adsorbents. Chemical Engineering Journal, 378, 122140.

Flouret, A., de Almeida, M. C., de Oliveira, T. F., & de Sá, F. P. (2018). Advanced treatment of phenol by H2O2/UV/activated carbon coupling: Influence of homogeneous and heterogeneous phase. The Canadian Journal of Chemical Engineering, 96(9), 1979-1985.

Habib, I. Y., Burhan, J., Jaladi, F., Lim, C. M., Usman, A., Kumara, N. T. R. N., ... & Mahadi, A. H. (2020). Effect of Cr doping in CeO2 nanostructures on photocatalysis and H2O2 assisted methylene blue dye degradation. Catalysis Today.

Iheukwumere, F. C., Ndubuisi, E. C., Mazi, E. A., & Onyekwere, M. U. (2008). Performance, nutrient utilization and organ characteristics of broilers fed cassava leaf meal (Manihot esculenta Crantz). Pakistan Journal of Nutrition, 7(1), 13-16.

Islam, M. A., Ali, I., Karim, S. A., Firoz, M. S. H., Chowdhury, A. N., Morton, D. W., & Angove, M. J. (2019). Removal of dye from polluted water using novel nano manganese oxide-based materials. Journal of Water Process Engineering, 32, 100911.

Kousha, M., Daneshvar, E., Dopeikar, H., Taghavi, D., & Bhatnagar, A. (2012). Box–Behnken design optimization of Acid Black 1 dye biosorption by different brown macroalgae. Chemical Engineering Journal, 179, 158-168.

Li, Z., Hanafy, H., Zhang, L., Sellaoui, L., Netto, M. S., Oliveira, M. L., ... & Li, Q. (2020). Adsorption of congo red and methylene blue dyes on an ashitaba waste and a walnut shell-based activated carbon from aqueous solutions: Experiments, characterization and physical interpretations. Chemical Engineering Journal, 388, 124263.

Li, Z., Sellaoui, L., Dotto, G. L., Lamine, A. B., Bonilla-Petriciolet, A., Hanafy, H., ... & Erto, A. (2019). Interpretation of the adsorption mechanism of Reactive Black 5 and Ponceau 4R dyes on chitosan/polyamide nanofibers via advanced statistical physics model. Journal of Molecular Liquids, 285, 165-170.

Medellin-Castillo, N. A., Ocampo-Pérez, R., Leyva-Ramos, R., Sanchez-Polo, M., Rivera-Utrilla, J., & Méndez-Díaz, J. D. (2013). Removal of diethyl phthalate from water solution by adsorption, photo-oxidation, ozonation and advanced oxidation process (UV/H2O2, O3/H2O2 and O3/activated carbon). Science of the total environment, 442, 26-35.

Mittal, A., Mittal, J., & Kurup, L. (2006). Adsorption isotherms, kinetics and column operations for the removal of hazardous dye, Tartrazine from aqueous solutions using waste materials—Bottom Ash and De-Oiled Soya, as adsorbents. Journal of hazardous materials, 136(3), 567-578.

Moraes, J. T., Salamanca-Neto, C. A. R., Švorc, Ľ., & Sartori, E. R. (2017). Advanced sensing performance towards simultaneous determination of quaternary mixture of antihypertensives using boron-doped diamond electrode. Microchemical Journal, 134, 173-180.

de Oliveira, T. F., Chedeville, O., Cagnon, B., & Fauduet, H. (2011). Degradation kinetics of DEP in water by ozone/activated carbon process: Influence of pH. Desalination, 269(1-3), 271-275.

Pang, X., Sellaoui, L., Franco, D., Dotto, G. L., Georgin, J., Bajahzar, A., ... & Li, Z. (2019). Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: experimental study and theoretical modeling via monolayer and double layer statistical physics models. Chemical Engineering Journal, 378, 122101.

Parvin, S., Rahman, M. W., Saha, I., Alam, M. J., & Khan, M. M. R. (2019). Coconut tree bark as a potential low-cost adsorbent for the removal of methylene blue from wastewater. DESALIN WATER TREAT, 146, 385-392.

Ponnusami, V., Vikram, S., & Srivastava, S. N. (2008). Guava (Psidium guajava) leaf powder: novel adsorbent for removal of methylene blue from aqueous solutions. Journal of hazardous materials, 152(1), 276-286.

Reddy, P. M. K., Verma, P., & Subrahmanyam, C. (2016). Bio-waste derived adsorbent material for methylene blue adsorption. Journal of the Taiwan Institute of Chemical Engineers, 58, 500-508.

Rivera-Utrilla, J., & Sánchez-Polo, M. (2002). Ozonation of 1, 3, 6-naphthalenetrisulphonic acid catalysed by activated carbon in aqueous phase. Applied Catalysis B: Environmental, 39(4), 319-329.

Rivera-Utrilla, J., Méndez-Díaz, J., Sánchez-Polo, M., Ferro-García, M. A., & Bautista-Toledo, I. (2006). Removal of the surfactant sodium dodecylbenzenesulphonate from water by simultaneous use of ozone and powdered activated carbon: Comparison with systems based on O3 and O3/H2O2. Water research, 40(8), 1717-1725.

Sánchez-Polo, M., von Gunten, U., & Rivera-Utrilla, J. (2005). Efficiency of activated carbon to transform ozone into OH radicals: influence of operational parameters. Water research, 39(14), 3189-3198.

Santhosh, C., Velmurugan, V., Jacob, G., Jeong, S. K., Grace, A. N., & Bhatnagar, A. (2016). Role of nanomaterials in water treatment applications: a review. Chemical Engineering Journal, 306, 1116-1137.

Shooto, N. D., Thabede, P. M., Bhila, B., Moloto, H., & Naidoo, E. B. (2020). Lead ions and methylene blue dye removal from aqueous solution by mucuna beans (velvet beans) adsorbents. Journal of Environmental Chemical Engineering, 8(2), 103557.

Somsesta, N., Sricharoenchaikul, V., & Aht-Ong, D. (2020). Adsorption removal of methylene blue onto activated carbon/cellulose biocomposite films: equilibrium and kinetic studies. Materials Chemistry and Physics, 240, 122221.

Stoeckli, F., López-Ramón, M. V., Hugi-Cleary, D., & Guillot, A. (2001). Micropore sizes in activated carbons determined from the Dubinin–Radushkevich equation. Carbon, 39(7), 1115-1116.

Uddin, M. T., Islam, M. A., Mahmud, S., & Rukanuzzaman, M. (2009). Adsorptive removal of methylene blue by tea waste. Journal of Hazardous Materials, 164(1), 53-60.

Valdés, H., & Zaror, C. A. (2006). Heterogeneous and homogeneous catalytic ozonation of benzothiazole promoted by activated carbon: kinetic approach. Chemosphere, 65(7), 1131-1136.

Vieira Filho, J. E. R., & Fishlow, A. (2017). Agricultura e indústria no Brasil: inovação e competitividade.

Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: a review. Advances in colloid and interface science, 209, 172-184.

Zare, E. N., Lakouraj, M. M., & Ramezani, A. (2016). Efficient sorption of Pb (II) from an aqueous solution using a poly (aniline-co-3-aminobenzoic acid)-based magnetic core–shell nanocomposite. New Journal of Chemistry, 40(3), 2521-2529.

Zhang, T., Walawender, W. P., Fan, L. T., Fan, M., Daugaard, D., & Brown, R. C. (2004). Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chemical Engineering Journal, 105(1-2), 53-59.

Zhang, W., Zhou, C., Zhou, W., Lei, A., Zhang, Q., Wan, Q., & Zou, B. (2011). Fast and considerable adsorption of methylene blue dye onto graphene oxide. Bulletin of environmental contamination and toxicology, 87(1), 86-90.

Zhou, Y., Lu, J., Zhou, Y., & Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: a review. Environmental pollution, 252, 352-365.

Published

11/05/2021

How to Cite

MARTINS, T. A. .; ALMEIDA, M. C. de .; LOPES, I. C. G. .; MORENO, I. F. .; OLIVEIRA, T. F. de . Agroindustrial sustainability: Advanced Oxidative Processes (AOP) using brazilian bioabsorbents. Research, Society and Development, [S. l.], v. 10, n. 5, p. e27310512830, 2021. DOI: 10.33448/rsd-v10i5.12830. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/12830. Acesso em: 20 apr. 2024.

Issue

Section

Agrarian and Biological Sciences